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X-ray diffuse scattering study of vacancy nanoclusters in homoepitaxial Ag(001) films

Chinkyo Kim
Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, 26 Kyunghee-daero,

Dongdaemun-gu, Seoul 130-701, Korea

Edward H. Conrad
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Paul F. Miceli*

Department of Physics and Astronomy, University of Missouri at Columbia, Columbia, Missouri 65211, USA
(Received 21 May 2012; revised manuscript received 3 September 2012; published 24 October 2012)

The analysis of x-ray diffuse scattering measurements on Ag homoepitaxial films is presented. The experiments,
which establish that a low concentration of large vacancy clusters can be incorporated into noble metals during
homoepitaxial growth, were performed on 100 monolayer films of Ag deposited on Ag(001) at low temperature.
The diffuse scattering of this film was measured, in situ, near several in-plane Bragg positions in grazing-incidence
geometry. Because of the large dilatation from the vacancy clusters, the usual approximations of Huang and
Stokes-Wilson scattering cannot be made and it is shown that numerical integration of the diffuse scattering
equations leads to good agreement between the data and a point-defect scattering model.
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I. INTRODUCTION

As technology and science move towards ever decreasing
length scales, there is considerable motivation to understand
the physical principles that control the growth and evolution
of nanoscale materials. Consequently, there has been extensive
experimental as well as theoretical investigation of growth pro-
cesses, particularly for noble metal homoepitaxy whose sim-
plicity can help reveal the essential atomic-scale mechanisms.1

Simulations of growth at surfaces on sufficiently large systems
are typically performed using kinetic Monte Carlo (KMC)
methods, which require input knowledge about the basic
kinetic steps that dictate the growth of films that are far from
equilibrium. Each kinetic mechanism, such as nucleation, the
diffusion on terraces, and the hopping both across and along
step edges, must be specifically included. Such simulations
also require knowledge of the corresponding kinetic barriers,
which is best obtained through comparisons to experiments.

What has not been widely explored during epitaxial crystal
growth, however, is the subsurface region. Generally, the
ideal crystalline atomic positions have been assumed. For
example, in KMC simulations, atoms that deposit at crystalline
step edges are “funneled”2 into crystalline sites in order to
preserve the crystal geometry and to explicitly eliminate the
formation of vacancies.3 Similarly, on the experimental side,
scanning-probe techniques that are typically used to study
the growth behavior at surfaces cannot see below the surface.
Therefore, there has been little impetus to consider the incor-
poration of subsurface defects. Nevertheless, x-ray reflectivity
experiments on the low-temperature homoepitaxial growth of
several noble-metal surfaces have shown a large amount of
compressive strain, on the order of 1%.4–6 This strain, which
can be annealed out at the known annealing temperature for
vacancies in these metals, was attributed to the incorporation of
vacancies during epitaxial growth, although the experiments
could not distinguish between monovacancies and vacancy
clusters.5 In addition, Botez et al.5 found that the strain
increased with decreasing temperature concomitantly with a

low-temperature reentrant roughening observed by STM7,8.
The reentrant roughening was reproduced in KMC simulations
by relaxing the funneling condition which introduced internal
voids or vacancy clusters, thereby giving theoretical support
for the presence of such incorporated defects.9

An alternative explanation was later suggested by Shim
et al.10 whose accelerated molecular dynamics (MD) sim-
ulations reported that large off-normal deposition angles
cause nanoscale surface roughness which, in turn, leads to
compressive strain comparable in size to that observed in the
x-ray reflectivity studies. However, x-ray diffuse scattering
experiments by Kim et al., performed for 100 monolayer (ML)
Ag(001) homoepitaxial films grown at a considerably smaller
off-normal deposition angle, revealed point-defect scattering
that provides clear experimental evidence for the existence
of large vacancy clusters.11 Although nanoroughness-induced
strain is plausible,12 the diffuse scattering experiments estab-
lish the presence of vacancy clusters in relatively thicker films
(100 ML) where surface-induced contributions to strain would
be small. It should also be noted that the concentration of the
vacancy clusters in the experiments was found to be extremely
low, and therefore more difficult to observe in MD simulations,
although each cluster contributes a large displacement field.

In practice, there are few experimental tools to directly
probe the vacancies themselves within a thin film.13,14 The
alternative approach is to measure the displacement field
arising from the vacancies. X-ray diffuse scattering measured
near a Bragg peak is very sensitive to the static displacement
of the atoms from their ideal crystalline positions and, by
maintaining the incident and scattered beams near grazing
angles with respect to the surface, one can have a greater
sensitivity to the atomic displacements near the surface as
compared to positions deeper in the sample. It is important
to recognize that diffuse scattering measurements differ
significantly from the earlier reflectivity measurements: the
latter measures the average (long-range) strain whereas the
former measures the (local) elastic distortion around a defect.
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Thus, the diffuse scattering is directly tied to localized defects.
Moreover, the theoretical model to calculate the diffuse
scattering intensity is well developed so that the structural
characterization of vacancies can be done in a quantitative
manner.15 X-ray diffuse scattering has been extensively used
to study point defects in metals and semiconductors16,17

where the diffuse scattering intensity calculations typically
employ the approximation that the displacement field is small,
so that the intensity can be expanded in a power series in
1/q. Here, q ≡ Q − Qn, where Q is the wave-vector transfer
and Qn is the reciprocal-lattice vector of the nearest Bragg
peak. This approximation significantly simplifies the intensity
calculation and, depending on the regime in which the diffuse
scattering is measured, it results in the diffuse intensity varying
as 1/q2 (Huang scattering, measured close to the Bragg peak)
or 1/q4 (Stokes-Wilson scattering, measured farther from the
Bragg peak). However, these approximations are not valid if
the displacement field is too large. A crucial and central point
of the present work is that the analysis of diffuse scattering
from large vacancy clusters is complicated by the fact that their
displacement fields are very large, which requires a different
strategy for treating these systems.

In this paper, we present a detailed account of the diffuse
x-ray scattering measurements and analysis by Kim et al.11

The main conclusion is that the data are well described
by a point defect scattering model having a large negative
displacement volume due to vacancy clusters. It is shown
that one cannot make the conventional approximations that
lead to the Huang and Stokes-Wilson scattering regimes
because the displacement field due to the vacancy clusters
is very large. However, by numerically calculating the full
diffuse scattering model for point defects, without making
the conventional approximations, it is shown that excellent
agreement between the measurements and the point-defect
scattering model is achieved. More importantly, the ability to
accurately describe these data by the full point-defect model
gives clear evidence of large vacancy clusters forming in
low-temperature homoepitaxially grown Ag films.

II. EXPERIMENT

The experiments were performed at the Advanced Photon
Source Sector 6 beamline at Argonne National Laboratory.
The surface preparation, film growth, and x-ray scattering
measurements were carried out in an ultrahigh vacuum growth
and analysis chamber that is integrated with a ψ diffractometer
which is resident at the beamline. The base pressure of the
chamber was 10−10 Torr and the clean surface was prepared
by cycles of Ar ion sputtering and high-temperature thermal
annealing. After a few iterations of this surface cleaning
procedure, Auger electron spectroscopy (AES) measurements
confirmed that there was no trace of contaminants on the clean
surface within its sensitivity.

Homoepitaxial films of Ag, 100 monolayers (MLs) in
thickness, were prepared by thermal evaporation of 99.9999%
pure Ag from a pyrolytic boron nitride crucible onto the
Ag(001) substrate, which was maintained at 150 K during
the deposition as well as during all of the x-ray scattering
measurements. The evaporation rate was 3.2 monolayers per
minute, which was determined from the period of intensity

FIG. 1. Schematic diagram in reciprocal space showing the
measurement and calculation details. Experimental measurements
were carried out along the [0, K, 0.1] direction as shown by the thin
horizontal lines. The shaded rectangular region schematically shows
the resolution function of the detector at one measurement point,
indicating that the intensity is integrated along the surface normal,
from L = 0.005 to L = 0.15. The thick solid lines on the K axis
show where the numerical calculation of diffuse scattering intensity
was performed. Note that the scale is exaggerated in the diagram: it
is highly elongated along L and compressed along K .

oscillation that was measured during Ag deposition at the (001)
anti-Bragg position. The angle at which Ag was deposited
onto the substrate was 30◦ relative to the sample normal, as
was dictated by the geometry of the surface chamber. The
experiments could be repeated by annealing at 700 ◦C in order
to regain the starting substrate.

The diffuse scattering intensity was first measured for the
clean Ag(001) surface and then subsequently measured for a
surface on which a Ag film had been deposited. This allowed
for the subtraction of the diffuse scattering that was intrinsic to
the bulk crystal. The measurements were carried out in grazing
incidence geometry in the vicinity of four Bragg reflections
(H,K,L), indexed in reciprocal-lattice units of Ag, with L =
0.1, where L is taken to be along the surface normal. Scans
were performed along the K direction near the Bragg positions
at Kn = 2, 4, 6, 8 with H = 0. Figure 1 schematically shows
where the diffuse scattering was measured in reciprocal space.
The shaded rectangle indicates the resolution function of the
detector at one data point. Since we fully opened the horizontal
detector slit, the diffuse intensity was integrated along the
surface normal direction from L = 0.005 to L = 0.15. The
vertical slit size was set in such a way that the resolution was
narrow enough so that there was no overlap among the data
points along the K direction. The thick solid lines represent
where the numerical calculation of the diffuse scattering
intensity was carried out, which will be discussed later in detail.

III. RESULTS AND DISCUSSION

Figure 2 shows the x-ray diffuse scattering data obtained
in the vicinity of the four Bragg peaks before and after the
deposition of 100 MLs of Ag. Among the many sources
of diffuse scattering, we are only interested in the diffuse
scattering due to the defects in the 100-ML film. The only way
to accomplish this is to subtract the diffuse scattering obtained
before deposition from the total diffuse scattering measured
after deposition. In this manner, extraneous contributions to
the diffuse scattering from the Ag substrate, including thermal
diffuse scattering, are removed. It should also be noted that
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FIG. 2. (Color online) Diffuse x-ray scattering data for
Ag/Ag(001) obtained along [0, K, 0.1] in the vicinity of four Bragg
positions, Kn. It was measured for the clean starting surface (squares)
and with 100 MLs of deposited Ag (diamonds).

diffuse scattering due to surface roughening, which results
from film deposition, will be zero at the Bragg peak and it
will increase only as one moves away from the Bragg position
along the surface normal direction, L. Since our measurements
of the diffuse scattering were taken near the Bragg peaks for
very small values of L, our measurements are not sensitive to
the surface roughening; but they are sensitive to the static dis-
placement of atoms within the film due to localized defects. In
what follows, the diffuse scattering intensity will always refer
to the subtracted diffuse scattering, which is shown in Fig. 3.

In general, it is known that point defects introduce an
asymmetry to the diffuse scattering about the Bragg position:18

the intensity is higher on the low-K side for vacancy defects
whereas it is higher on the high-K side for interstitials. Figure 3
clearly reveals that the diffuse scattering has higher intensity
on the lower-K side for each of the four Bragg positions,
indicating that the origin of the diffuse scattering is from
vacancies rather than from interstitials. It is also observed that
the diffuse scattering intensity decreases rapidly in going from
lower- to higher-order Bragg positions, Kn, which suggests
that there is a high degree of static disorder.

For a quantitative analysis, we need to consider a theoretical
model for the diffuse scattering that not only contains the point
defects, but also includes the modification of the scattering
that arises from the influence of the interfaces of a thin film
on the elastic fields. Although a completely general model
is not available, we can get some guidance from Barabash
and Krivoglaz15,19 who have calculated the diffuse scattering
in the limit of small displacements from point defects in a
homoepitaxial film; their result is given by

I (Q) = Nd e−2M |F |2(ao)2

(
(Q · q)2

q4

− 2
Q · q
q2

Re[cL(q|| + iqz)�]

d
+ cL(2q|| )|�|2

d

)
,

FIG. 3. The x-ray diffuse scattering intensity is shown for the 100-
ML Ag(001) film. It was obtained by subtracting the diffuse scattering
measured on the clean starting substrate from the total scattering
measured on the substrate containing the deposited film. Note that
the distribution of diffuse scattering around the Bragg positions is
asymmetric toward lower K and that the intensity decreases rapidly
with increasing Kn.
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where d is a lattice constant, De is the thickness of the film
containing vacancies, c is the concentration of defect clusters,
Nd is the number of defect clusters within the film, and F
is the structure factor of the unit cell. q|| and Q|| are the in-
plane components while qz and Qz are the surface-normal
components of q and Q, respectively. uss ′ is the displacement
vector of a Ag atom located at position s due to the defect
cluster located at position s ′, σ is the Poisson ratio, and � is
the volume per atom. There are several assumptions made in
deriving Eq. (1) which are (i) the concentration of defects is
uniform within the film, (ii) the material is elastically isotropic,
and (iii) M is much smaller than unity, which corresponds to
the elastic displacements being small relative to the Q being
measured.

Although we will later show that Eq. (1) cannot be used
because it employs the small-displacement approximation, this
equation is nevertheless useful for understanding the impact
of thin-film effects on the diffuse scattering. When q||De � 1
in Eq. (1), only the first term in I(Q) is significant, which
reduces this result to the bulk case where the diffuse scattering
intensity is proportional to 1/q2. Because q||De � 1 for the
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whole range of data in our experiment, we conclude that a
thin-film model is unnecessary and a bulk model can be used
to calculate the diffuse scattering intensity.

For a bulk material, Dederichs18 as well as Krivoglaz15

have calculated the diffuse intensity from defect clusters in an
isotropic elastic medium where no assumption is made about
the size of the displacement field and it is given by18

I (Q) = Ne−2M |F/Nc|2
∫

dR
�

eiq·R (eφ(R)−φ(∞) − 1),

φ(R) ≡ c

∫
dr
�

(eiQ·(t(r+R/2)−t(r−R/2)) − 1),
(2)

φ(∞) ≡ −2M ≡ −2c

∫
dr
�

(1 − cos(Q · t(r))),

t(r) ≡ b
r
r3

, q ≡ Q − Qn,

where N is the number of atoms, Nc is the number of atoms
per unit cell, F is the unit cell structure factor, t(r) is the
elastic displacement at a distance r from a point defect, and b

gives both the sign and strength of the point defect. By Gauss’
law, this spherical defect causes a volume dilatation, �v =
4πb, and, in the case of vacancies, b is negative. Note that
the structure factor, which was omitted in Dederichs’ paper, is
included in Eq. (2). It is important that this factor is included
because it contains the Q-dependent atomic form factor f0

that varies over the large Q range of our measurements (four
orders of Bragg peaks).

The static Debye-Waller factor e−2M is a useful guide to the
strength of the defect scattering. When M is small, Eq. (2) has
the limit of the well-known 1/q2 dependence for the diffuse
scattering intensity near a Bragg peak (Huang scattering) and
1/q4 in the region further away from the Bragg peak (Stokes-
Wilson scattering). Note that these terms are multiplied by the
static Debye-Waller factor e−2M which is essentially unity for
the limit of small M. M can be calculated in closed form for
Eq. (2):

M = c
4πRc

3

3�
α, (3)

where Rc = √
Q|b| is the Q-dependent characteristic length

scale of the problem and α = 2
5

√
2π ≈ 1. Thus, the limit of the

“small displacement approximation” is determined by the size
of M , which depends on c, b, and Q. It can be seen in Fig. 3,
however, that the diffuse scattering intensities decrease con-
siderably with the increasing order of Bragg position Kn. This
rapid decrease of intensity with Kn is also observed in Fig. 4,
which shows the symmetric component of the diffuse intensity,
defined as Isym(q) = [I (Qn − q) + I (Qn + q)]/2. Therefore,
M is not small and the small displacement approximation is not
valid for describing our data. An additional manifestation of
the breakdown of the small displacement approximation can be
seen in Fig. 4, where resolution-corrected 1/q2 and 1/q4 lines
are plotted along with the data. All of the 1/q2 lines and just the
1/q4 line for Kn = 2 were placed so that they overlap with the
data. The remaining 1/q4 lines for Kn 	= 2 were placed so as
to intersect with the 1/q2 at the same q location, as suggested
by Dederichs.18 It can be seen that, with increasing Kn, the
data progressively move to higher q than predicted by the 1/q4

lines. Moreover, in the small displacement approximation, the

FIG. 4. (Color online) The symmetric diffuse intensity,
Isym(q||) = [I (Qn − q||) + I (Qn + q||)]/2, is plotted for all measured
orders of Bragg position Kn. Notice that the intensity decreases
rapidly with increasing Kn, indicating a large static Debye-Waller
factor. Also plotted are resolution-corrected 1/q2 and 1/q4 lines that
show the Huang and Stokes-Wilson scattering, respectively, predicted
in the small displacement approximation.

Dederichs result should be corrected so that the crossover point
between the two power laws is not constant in q but, rather, it
should move to lower qc ∼ 1/Rc with increasing Kn; this will
further exacerbate the disagreement of the 1/q4 lines with the
data.

The above considerations require that Eq. (2) must be
evaluated without approximation and we have done this by
numerical calculation. It should be noted that there are only
two variables in Eq. (2). One is b, which determines the sign
and magnitude of the displacement field due to the defect
clusters, and the other variable is the concentration of the defect
clusters, c. The sign of b is readily determined by inspection
of the data: the asymmetry observed towards the low-q side of
the Bragg peak indicates vacancy clusters so that b is negative.
Thus, we can determine both b and c by fitting this model to
our data.

Before proceeding, two effects must be included in the
model: instrumental resolution and the thermal vibration of
the atomic positions. Formally, the effect of thermal vibrations
can be absorbed into an effective atomic form factor,

f (Q) = f◦(Q) e−W (Q), (4)

where f◦(Q) is the atomic form factor for Ag. W is given by

W (Q) = 3h2T

2πmk
2

[
φ(x) + x

4

]
Q, (5)

where h is Planck’s constant, k is Boltzmann’s constant, and
T is the absolute temperature.20 m and 
 are the atomic mass
and the Debye temperature for Ag, respectively. x = 
/T

and φ(x) is a tabulated function. For Ag, 
 = 210 K so that
x = 1.4 at T = 150 K, yielding φ(x) = 0.703.20 Therefore,
the scattering intensity is reduced by the thermal Debye-Waller
factor, exp(−2W ), which is a function of Kn and it is given in
Table I.

The second experimental effect concerns a correction for
resolution. The diffuse scattering intensity was nominally
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TABLE I. Thermal Debye-Waller factors for Ag as a function of
the reciprocal-lattice unit K.

Kn W exp (−2W ) exp (−2W )/0.95517

2 0.02293 0.95517 1.0
4 0.09173 0.83239 0.87146
6 0.20639 0.66181 0.69288
8 0.36691 0.48007 0.50261

measured along K with L = 0.1 and the detector slit open
in the surface-normal direction, which corresponds to the
intensity being integrated over a small range from L = 0.005
to 0.15. However, the calculated diffuse scattering intensity
was determined along K with L = 0. This is because the six-
dimensional integration of Eq. (2) becomes quite complicated
to evaluate, even numerically, if q is not parallel to Qn.
The experimental integration and the calculation direction
are schematically shown in Fig. 1. Because the effect of
integration is relatively insensitive to the precise form of the
diffuse scattering, we estimated the effect of integration using
Eq. (1) (= 1/q2 in the thick-film limit), which is much easier
to evaluate than the numerical evaluation of Eq. (2). Figure 5
shows a comparison of the integrated and nonintegrated diffuse
intensity calculated in this manner at Kn = 2. It can be seen
that the effect of integration is to reduce the diffuse intensity
near the Bragg peak; the results are independent of Kn.
Note that there are no asymmetric distortions of the diffuse
intensity due to the effect of resolution. Therefore, a resolution
correction factor, defined as the ratio of the integrated to
the nonintegrated diffuse intensity, was applied to the diffuse
intensity calculated from Eq. (2) for the purpose of comparing
to the experimentally measured diffuse intensity.

Figure 6 compares the experimental data and the numerical
calculation of diffuse scattering intensity. The model of Eq. (2)
contains two parameters for the vacancy clusters, the strength
of their displacement field b, and their concentration c. The
best agreement between the model and data occurs for b =
−60 ± 15 (Å3) and c = 0.0005 ± 0.0002. To demonstrate the
sensitivity to the model parameters, two other curves are also

FIG. 5. The effect of resolution is shown by comparing the diffuse
intensity calculated for qz = 0 (dotted line) with the same intensity
integrated over the experimental resolution, qz = 0.005 ∼ 0.15 (solid
line).

FIG. 6. (Color online) Comparison of the measured diffuse
scattering intensity (circles) and the numerically calculated intensities
(lines). Dotted (blue), solid (black), and dashed (red) lines are for
−b = 30, 60, and 100, respectively.

presented in Fig. 6 for comparison. In the plots, the product
bc was held fixed to the best-fit value because the model is
extremely sensitive to this product and the curves would be
very far from the data if this were not done. Using the best-fit
parameters, the model compares well with the experimental
data over the entire data range. Moreover, it can be seen
that having data for four orders of Bragg positions provides a
discerning measure of the model parameters.

A comparison of the model and experimental data can also
be examined in a different way by plotting the symmetric
intensity and the antisymmetric intensity, defined as Isym(q||) =
[I (Qn − q||) + I (Qn + q||)]/2 and Ianti−sym(q||) = [I (Qn −
q||) − I (Qn + q||)]/2, respectively, as shown in Fig. 7. From
these plots, which are shown on a logarithmic intensity scale,
it can be seen that the model does a good job of capturing the
strong variation of intensity between different orders of Bragg
positions. Moreover, as can be seen in Fig. 7(a), within a given
Bragg position the large change in symmetric intensity with q||
is well described by the model, including the curvature of the
data. This is in stark contrast to any attempt to use simple 1/q2

||
and 1/q4

|| power laws, as discussed in connection with Fig. 4.
Therefore, these plots clearly illustrate the necessity to use the
complete diffuse scattering formalism of Eq. (2). Although
the overall intensity variation between Bragg positions for
the antisymmetric intensity in Fig. 7(b) is well described
by the model, the quality of fit is not nearly as good as for
the symmetric part. Above q|| > 0.1 the agreement is quite
poor. It should be noted, however, that the antisymmetric
intensity involves taking the difference of intensity and it
is, therefore, quite sensitive to other effects that have not
been considered. Experimentally, the difference intensity can
be affected by small systematic errors that are difficult to
estimate, particularly at large q|| where the intensity is very
low. Similarly, the model makes a number of assumptions that
will ultimately break down at some point. For example, the
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(a)

(b)

FIG. 7. (Color online) The symmetric and antisymmetric com-
ponents of the experimental diffuse intensities are shown on a
logarithmic scale for the four measured Bragg positions, along with
the same calculated curves as shown in Fig. 6.

vacancy clusters are assumed to be spherical when, in fact,
there could be uniaxial anisotropic effects due to the thin-film
geometry. Cubic crystalline anisotropy was not included and
there is likely to be a distribution of cluster sizes, which also
was not accounted for. We expect that these effects would only
give small quantitative changes within the given error bars,
rather than qualitatively change the results. Finally, an elastic
continuum theory is used and, for larger q||, atomistic effects
are certainly expected to become important. Nevertheless, we
have demonstrated that the spherical cluster model which
numerically integrates Eq. (2) agrees reasonably well with the
experimental measurements on a logarithmic intensity scale.

It is useful to emphasize that the Kn dependence of
the diffuse scattering is extremely sensitive to the size of
the dilatation due to the vacancy clusters, as illustrated in
Fig. 8. For a small dilatation (b = −1, which would roughly
correspond to a monovacancy, as discussed below) the diffuse

FIG. 8. (Color online) Calculated diffuse scattering intensity at
q = 0.02 as a function of Kn for different defect cluster sizes. For a
monovacancy, the intensity initially increases with Kn, but for larger
clusters the diffuse intensity decreases monotonically. The lines are
a guide for the eye.

scattering intensity initially increases as a function of Kn,
whereas the diffuse intensity monotonically decreases for
much larger values of b. Moreover, the diffuse intensity
decreases more rapidly with Kn as the dilatation b increases.
Therefore, from the experimentally measured diffuse intensity
in Fig. 3, one can qualitatively determine that the vacancy
clusters are quite large. Additionally, the detailed shape of
the q|| dependence of the diffuse scattering intensity depends
strongly on Kn and this imposes useful constraints on the
model of Eq. (2) which, for large clusters, differs significantly
from Huang and Stokes-Wilson scattering. Therefore, it can be
seen that measuring the diffuse scattering for a range of Bragg
positions places stringent constraints on the determination of
the size of the dilatation caused by the clusters.

The vacancy cluster size can be roughly estimated from the
strength of the displacement field b which was determined
in our experiments. Given that the local elastic volume
dilatation21 around a defect is given by �v = 4πb, then using
our best-fit value of b = −60 yields �v = −750 Å3, which
corresponds to ∼45 atomic volumes. However, this is an elastic
dilatation volume and not the volume of the missing atoms in
a cluster. To crudely estimate the latter, we refer to studies of
monovacancies in noble metals which show that the elastic
dilatation volume is less than half of the atomic volume of the
vacancy.22,23 This would suggest that there are on the order
of 100 missing atoms in a vacancy cluster. Independent of the
precise number in a cluster, however, it is clear that the system
contains a low concentration of very large vacancy clusters.

The local dilatation around a defect is elastically related
to the macroscopic homogeneous strain that is measured by
diffraction (or reflectivity). In the latter case, the homogeneous
relative volume change is given by21

�V

V
= 3

1 − σ

1 + σ

�v

�
c, (6)

where σ is Poisson’s ratio for the metal. Using σ = 0.37 for
Ag and the best-fit values of b and c, we obtain a relative
lattice constant change �d

d
= 1

3
�V
V

= −0.01 that corresponds
well to prior x-ray reflectivity measurements.5 Therefore,
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FIG. 9. (Color online) Diffuse scattering intensity as a function of
K at L = 0.02 for two different growth temperatures: 285 K (squares)
and 150 K (circles).

both length scales measured by x-ray scattering—the local
dilatation and the homogenous strain—are in good agreement
with one another.

In addition to the diffuse scattering due to vacancies that
appears around the Bragg peaks, several small peaks far away
from the single-crystal Bragg peaks were also observed after
deposition. Figure 9 shows measurements from two films
grown at different temperatures. It can be seen that, besides the
Bragg peak at K = 4 and the diffuse scattering around it, both
films exhibit small peaks at K = 3.3, 3.45, 4.33, 4.45, and
4.87. These positions correspond to the bulk Ag reflections
of (113), (222), (133), (024), and (224), which suggests the
presence of randomly oriented bulk crystallites of Ag. Indeed,
a two-dimensional map of the scattering around the K = 4
Bragg position in Fig. 10 clearly shows the circular distribution
of scattering intensity, which confirms the powder diffraction.
These powder peaks are not observed on the starting Ag
single-crystal substrate and, therefore, the randomly oriented

FIG. 10. (Color online) Contour map of the diffuse scattering
intensity near the (0, 4, 0) Bragg peak which shows the arc-shaped
intensity distribution of powder peaks. The white strip at the center
of the map is an artifact because no data were taken there.

crystallites form as a result of the deposition. Tiny crystallites
were observed by visual inspection of the sample after it
was removed from the vacuum system, indicating that the
crystallites are macroscopic in size. These results indicate
that nonepitaxial crystallites form by random nucleation and
continue to grow during the deposition of 100 MLs.

It is important to note that the crystallites do not influence
the diffuse scattering intensity observed around the Bragg
reflections of the single-crystal substrate. As seen in Fig. 9, at
the higher growth temperature the diffuse scattering decreases
by approximately a factor of 10, whereas the powder peaks
of the crystallites do not change with temperature. Therefore,
the formation of the crystallites occur independently of the
vacancy cluster mechanism in the homoepitaxial film that
grows on the single-crystal substrate.

Although a detailed temperature dependence was not
studied, Fig. 9 shows that the diffuse scattering from the
vacancy clusters does not completely disappear at the higher
measured temperature of 285 K. By assuming the same cluster
size as for the film grown at 150 K, the concentration of
vacancy clusters in the film grown at 285 K is estimated to
be almost 30 times smaller than that of the 150-K film. The
measurable amount of diffuse scattering from the film grown
at 285 K demonstrates that diffuse scattering measurements
are quite sensitive to a very small concentration of vacancy
clusters. It is significantly more sensitive than the x-ray
reflectivity experiments.5

Finally, we consider the effect of the missing atoms on
the diffuse scattering. The model of Eq. (2) includes only
the displacement of the atoms by the vacancy clusters and it
neglects the effect of the missing atoms in the cluster. Although
this is a commonly used approximation because it is known that
the phase is more important than the amplitude, particularly
at large Kn, we can estimate the magnitude of the neglected
volume scattering from the nanocavities themselves. If we as-
sume that the nanocavities are randomly distributed in the film
in such a way that their scattering amplitudes do not interfere,
we can use Babinet’s principle which states that the missing
intensity distribution due to the cavities is the same as that from
a set of crystals with the same sizes, shapes, and orientations
as those of the cavities. To make the calculation simpler, we
calculate the scattering intensity from a nanocrystal of Ag with
the dimension of 2 × 3 × 3 unit cells, which contains 72 Ag
atoms. The intensity of this small crystal is given by

I (Q)cav = Ncav| F |2
∣∣∣∣∣
∑

s

eiQrs

∣∣∣∣∣
2

= Ncav|F |2
∣∣∣∣∣

1∑
nx=0

2∑
ny=0

2∑
nz=0

e2πi(Kny )

∣∣∣∣∣
2

(7)

= 36Ncav|F |2|1 + ei2πK + ei4πK |2,
where Ncav is the number of cavities within the film, F is a
structure factor of Ag unit cell, Q = (0,K,0). If we compare
I (Q)cav with I (Q) from Eq. (2), we find that the volume
scattering intensity from the nanocavities is five orders
of magnitude weaker than the diffuse scattering intensity
from the displaced atoms surrounding the cavities, thereby
justifying the neglect of the volume contribution in Eq. (2).
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IV. CONCLUSIONS

In conclusion, the x-ray diffuse scattering measurements
reported here are accurately described by a point-defect
scattering model where there is excellent agreement between
the model calculations and the data over a broad range in
q as well as over four different orders of Bragg positions
Kn. These results indicate that large vacancy clusters are
incorporated into 100-ML Ag(001) films which are grown
homoepitaxially at low temperature. The long-range strain
computed from our diffuse scattering experiments also agrees
well with previous x-ray reflectivity measurements.5 Because
of the strong displacement field associated with the large size
of the vacancy clusters, we have demonstrated that the con-
ventional Huang and Stokes-Wilson scattering regimes cannot
be assumed and that one must numerically integrate the full
diffuse scattering model.

Although these experiments are well described by a point-
defect distortion caused by large vacancy clusters, there remain
interesting and important questions about how nanoscale

asperities at the surface lead to elastic distortions. Simulation
studies of relatively thin films deposited at grazing angles
suggest the development of nanoscale roughness that leads
to surface strains.10 However, a connection between those
simulations and the present work is difficult to make because
our films were quite thick (100 MLs) and they were deposited
at near-normal (30◦). Future experiments on thinner films and
performed as a function of deposition angle are required in or-
der to explore the effect of nanoscale surface roughness effects.
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