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The noncommutative theory of charge transport in mesoscopic aperiodic systems under magnetic fields,
developed by Bellissard, Shulz-Baldes and collaborators in the 90’s, is complemented with a practical numerical
implementation. The scheme, which is developed within a C*-algebraic framework, enables efficient evaluations
of the finite-temperature noncommutative Kubo formula, with errors that vanish exponentially fast in the
thermodynamic limit. Applications to a model of a two-dimensional quantum spin-Hall insulator are given.
The conductivity tensor is mapped as a function of Fermi level, disorder strength, and temperature, and the phase
diagram in the plane of Fermi level and disorder strength is quantitatively derived from the transport simulations.
Simulations at finite magnetic field strength are also presented.
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I. INTRODUCTION

Topological insulators represent a new state of matter where
the topology stabilizes some extremely robust properties such
as the emergence of conducting metallic edge or surface states
in spite of the presence of impurities or defects. Topological
insulators have been theoretically predicted in two and three
dimensions and now we have several concrete materials that
show some of the predicted properties.'® For the three-
dimensional topological materials, the surface states have been
mapped using angle resolved photoemission spectroscopy and
they show an odd number of Dirac cones, in perfect agreement
with the theory.”"'> However, the transport measurements have
revealed that, so far, all the samples display a metallic character
in the bulk. As such, the transport experiments have taken a
central stage in the research on topological insulators.

The literature abounds with high quality experimental
transport data for topological insulators.>!'*=% There are
detailed reports about the behavior of the transport coefficients
with the temperature. Magnetoelectric measurements are also
available, with maps of the conductivity tensor as function
of magnetic field strength and electron density, which is
controlled by gate voltages or by doping. There are also studies
done at finite frequencies and maps of the transport coefficients
as functions of films’ thickness and disorder strength have
been reported. The materials have been progressively tuned,
to a point where the contributions to the transport from the
bulk and surface are comparable. The available experimental
data could be used as a window into the microscopic properties
of these materials, if efficient quantitative theoretical analyses
could be developed and applied to the real materials. Such
analyses will have to include the disorder and the magnetic
fields, a task that at first sight may seem extremely difficult.

We will argue here that actually that is not the case: the
disordered systems under magnetic field can be analyzed very
much like we analyze the translational invariant systems.
Let us take a few lines to explain what we mean by this.
For translationally invariant systems, the response and the
correlation functions can be conveniently computed in the
dual k space. The k-space analysis consists of two parts:
(P1) derivation of closed-form expressions and (P2) numerical
evaluation of the formulas.
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For translational invariant systems, no matter how complex
the correlation function, one can easily derive closed-form ex-
pressions, which typically involve integrations and derivations
of ordinary functions defined over the Brillouin torus. Even
though these formulas are formal, in the sense that one still
needs a computer to evaluate them, they pretty much fulfill
our idea of an analytic solution because the expressions are
transparent enough to enable qualitative understanding and,
on the quantitative side, the formulas can be numerically
evaluated without much effort.

The analog of the k-space calculus for aperiodic systems is
the noncommutative Brillouin torus and its noncommutative
calculus developed by Bellissard and his collaborators,**!
and briefly described in Sec. IIIA. This formalism has
been already used in the published literature to derive
closed-form expressions for the transport coefficients,3*!
electric polarization, and orbital magnetization,*> all in the
presence of disorder and magnetic fields. We have used the
noncommutative calculus to compute topological invariants
for disordered topological insulators.****” Hastings and Loring
have also used the noncommutative formalism to derive and to
efficiently compute new invariants for disordered topological
insulators.*®" These applications of the noncommutative cal-
culus pretty much demonstrate that any response or correlation
function, that can be written in closed-form in the k space, can
be translated into a closed-form noncommutative expression
that incorporates the effect of disorder and magnetic fields. As
such, the first part (P1) of the analysis is already in place. In
a previous work,’! we have made progress on the second part
(P2) of the analysis, namely on how to quantitatively evaluate
the noncommutative formulas.

For translational invariant systems, the k derivatives are
evaluated using finely tuned finite-difference algorithms and
the integrals in the k space are evaluated using Riemann sums,
both done for various samplings of the Brillouin torus. This
leads to approximate results that converge to the exact result
as the sampling of the Brillouin torus becomes finer and finer.
If the integrands in these formulas are analytic functions of
k, as it is the case at finite temperatures, the convergence
happens exponentially fast. This is an important characteristic
of the k-space calculus because it enables extremely accurate
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calculations even with modest computational efforts, which
practically gives the solution to (P2) for periodic systems.
Note that in a first-principles calculation, one often deals with
hundreds of energy bands so even for k-space calculus the
efficiency is a big issue.

Now, when disorder and magnetic fields are present, we
have to switch to the noncommutative Brillouin torus and
its noncommutative calculus. These structures are defined
in the strict thermodynamic limit and they don’t have
immediate analogs at finite volumes. However, as it was
elaborated in Ref. 51, one can define an approximate,
finite-dimensional noncommutative Brillouin torus and an
approximate noncommutative calculus. These approximate
structures can be implemented and manipulated on a computer
and, most importantly, they provide canonical finite-volume
approximations to the exact noncommutative formulas written
in the thermodynamic limit. For example, the exact finite-
temperature noncommutative Kubo formula is written in
Eq. (49) and its finite-volume approximation is written in
Eq. (70). Another key result of Ref. 51 is that, at finite
temperature and finite dissipation, the approximate results
obtained in this way converge exponentially fast to the exact
ones as the dimensionality of the noncommutative Brillouin
torus is increased. For example, the approximate finite-volume
Kubo formula of Eq. (70) converges exponentially fast to the
exact formula of Eq. (49) as the finite volume is increased to
infinity. The rate of the exponential convergence slows down
as the temperature (7) and the dissipation are lowered, but
nevertheless we found that a scaling analysis as T — 0 is still
possible. Note that an inverse power law convergence is not
sufficient for exploring the typical interesting questions arising
for disordered systems. Hence, in some sense, Ref. 51 gave a
solution for the second part (P2) of the analysis.

The structure of the present paper is as follows. In the
first part, we give an introduction of the noncommutative
Brillouin torus and its noncommutative calculus, and present
a formal derivation of the noncommutative Kubo formula,
closely following Ref. 40. Even though this material has been
reviewed with other occasions (see, for example, Ref. 52),
an intuitive exposition using a language that is a little more
familiar to the condensed matter theorists could be of interest.
Furthermore, we thought that the readership will welcome a
format where the noncommutative framework, the numerical
algorithm and the applications are all presented in one place.

In the second part, we present the approximate finite volume
noncommutative Brillouin torus and its noncommutative cal-
culus, together with the emerging approximate Kubo formula.
The formula is then broken down to an explicit expression
which can be straightforwardly implemented on a computer.

In the third part, we present an application to a model of a
disordered two-dimensional quantum spin-Hall insulator with-
out edges. We map the bulk conductivity tensor as a function of
Fermi energy (EFr), disorder strength (W), and temperature.
We report several convergence tests. Based on this calcula-
tions, we identify the metallic phase and we map the phase
diagram of the systems in the (Er, W) plane. The results give
a direct confirmation, via the computation of the conductivity
tensor, that strong disorder closes the insulating gap and drives
the system into a metallic phase, and then into a topologically
trivial phase. When we place the model in the trivial phase,
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we find that the disorder alone can drive the system into a
metallic phase. The phase diagrams are found to be in very
good agreement with the ones reported in previous studies.
Furthermore, the phase diagram derived from the transport
simulations is compared with the phase diagram derived from
a level statistics analysis and good agreement is found.

In a second application, we turn the magnetic field on, and
we point out a markedly different behavior of the resulting
Hofstadter spectra for topological versus nontopological sys-
tems. We then map the resistivity tensor as function of Fermi
level at fixed magnetic field. We demonstrate that the algorithm
is able to resolve the expected Hall plateaus.

II. DISORDERED LATTICE MODELS IN THE PRESENCE
OF MAGNETIC FIELDS

We will restrict the discussion to two-dimensional lattice
models without edges. This setting is not restrictive because it
covers the bulk two-dimensional quantum spin-Hall insulators
and the films of three-dimensional insulators (all transport ex-
periments are carried on films). As we shall see, there are many
interesting questions arising even for bulk two-dimensional
quantum spin-Hall insulators, which are investigated in this
study.

The Hilbert space of a two-dimensional lattice model is
spanned by functions ¥ defined over the two-dimensional
lattice Z2 with values in C?, where D is the number of
quantum states per site. In the clean limit, D is also equal to
the number of bands of the model. We will consider a general
lattice Hamiltonian with on-site disorder:

(Ho¥)(m) =Y e o iy (m) + Wonp(n). (1)

The phase factor

e—igo,,,,, — e—imf)(n/\m) (2)

encodes the effect of the magnetic field via the Peierls
substitution,”® where ¢ is the magnetic flux per repeating
cell, measured in the units of flux quantum ¢g = /e, and
nAm=nm,—mny. The D x D matrix f; encodes the
hopping amplitudes from a site to its neighboring site situated
at the relative distance k, and &, is a diagonal D x D matrix
with independent random entries uniformly distributed in the
interval [—%,%].

The collection of the matrix amplitudes {®,},cz> can be
viewed as a point w in the space €2 defined as

Q= 117 3

The space 2 will be equipped with the probability measure:

D
do = ]—[ ]_[dw;';. )

neZ?a=1

The disorder average is then given by the integral fQ dof...}.
There is a natural action of the additive Z> discrete group
on 2 given by

tn Q2= Q, (br®)y = Opim. 5)

155445-2



NONCOMMUTATIVE KUBO FORMULA: APPLICATIONS TO ...

The measure dw is invariant and ergodic relative to the action
of this group.

We would like to point out that accurate lattice models exist
for most of the topological materials. They can be derived
empirically or from first-principles calculations by following,
for example, the methods presented in Ref. 54. These models
are believed to be well suited for the transport simulations.

III. THE NONCOMMUTATIVE FRAMEWORK

For periodic solids, the correlation functions can be cast
as closed formulas involving the classic integrodifferential
calculus over the Brillouin torus. These formulas give the
desired answers directly in the thermodynamic limit. Further-
more, by examining the degree of smoothness for the functions
entering these explicit expressions, one can easily understand
if the formulas are well behaved and how to evaluate them
numerically, i.e., how to proceed with the discretization of
the classical Brillouin torus and what finite-difference scheme
to use for the k derivatives. Similarly, the noncommutative
calculus provides an extremely convenient framework to
carry the calculations for aperiodic solids and ultimately to
derive closed formulas directly in the thermodynamic limit.
Furthermore, like in the periodic case, the noncommutative
calculus enables one to understand when these formulas are
well behaved and how to compute them numerically.

A. The abstract algebra of observables

For periodic solids, the integrodifferential calculus goes
over the algebra of functions defined on the classical Brillouin
torus. Letus recall a classic result in set topology that says that a
topological space can be reconstructed from the commutative
algebra of continuous functions defined over that space. As
such, the geometric Brillouin torus and the calculus defined
over it can be defined in a pure algebraic setting. This is exactly
the kind of shift of reasoning that is needed when dealing with
aperiodic solids because, when disorder or a magnetic field
with irrational flux per repeating cell are present, the geometric
Brillouin torus loses its meaning but the commutative algebra
of functions defined over the classic Brillouin torus can be
easily adapted to the situation. This algebra is replaced by
a noncommutative C* algebra and, in the spirit of what was
said above, the resulting noncommutative C* algebra can be
rightfully called the noncommutative Brillouin torus.*’

We now describe this algebra, denoted as A. Its elements
are continuous functions defined on Q x Z? with values in the
set Mpy.p of D x D complex matrices. We will use lower
capital letters like f, g, or & to refer to the elements of the
algebra. The addition rule for the algebra is

(f + 9)w.n) = f(w.n) + g(w,n), (6)

where the last “4” operation is the ordinary matrix addition.
The multiplication rule is

(f x@m) =Y flwmg(t,'on—m)e ™™ (1)
meZ?

where the productbetween f and g appearing on the right-hand
side is the usual matrix multiplication. The algebra has a unit
element defined by 1(w,n) = d,.9.
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The link between the abstract algebra defined above and the
operators acting on the quantum states is simple. Each element
f generates a covariant family of operators 7, f, which act on
a quantum state ¥ via the following formula:

(o VA0 = Y F(t, @.m —n)e™ ™ Dy m).  (8)

meZ?

For example, the Hamiltonian in Eq. (1) is generated by the
element

h(w,n) = fn + Wan,OCbnv 9)

as one can easily verify that w,h = H,. The functions of
the Hamiltonian, such as the Fermi operator ®pp(H,,), are
represented as elements of the noncommutative algebra via
the functional calculus with 4, to be discussed in the next
section. Another important observable that can be conveniently
represented as an element of the noncommutative algebra is
the velocity operator: v = i[H,,x]. This, in turn, allows one
to represent any density current, such as the charge or spin
density currents, as elements in the noncommutative algebra.
For example, the representation of the charge density current
is given in Eq. (31).

The map m,, defines a representation of the algebra in the
space of operators acting on the quantum states:

To(f * 8) = (o )T 8) (10)
The covariant property means
Ua(mo /U = Moo f. (an
where U, are the magnetic translations on 2(Z%y:
Ua¥)() = ™Y (n — a). (12)

An intuitive meaning of the noncommutative algebra can be
seen by examining this operator representation more closely.
Given a covariant operator F,, the function f(w,n) can be
thought as (0] F,|n). Then the multiplication rule of Eq. (7)
simply reflects the usual operator-operator multiplication
between covariant operators:

m
= Z(0|F“’|m)(0|Gt;,‘w|n — m>ei77¢(nAm),
m

13)

where for the last matrix element we used a translation by m
which in addition to shifting the bra to (0| it does two more
things: (1) it shifts the disorder configuration accordingly and
(2) it brings out the magnetic phase factor. The similarity
between Eqgs. (21) and (7) is evident.

The algebra defined above can be endowed with the
structure of a C* algebra, a fact that allows one to define
a fine spectral theory and a functional calculus, that is, a
natural framework to define functions of an element. For this
we need a norm with the special property || f * g|| < || flllgll
and an involution (usually called a *-operation) f — f* such
that || f = f*| = | fII?>. If || - || denotes the usual norm for
operators acting on the quantum states, then the following
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norm and the star operation:
£l =sup 7 fl', fH@.n)= f(t_,o,—n) (14)
weR

have those properties. If we consider only those elements
for which the norm in Eq. (14) is finite, then the algebra of
observables becomes a C* algebra, which is denoted as .A.
It is this algebra that is called the noncommutative Brillouin
torus.>’

B. Spectrum, the resolvent function, and the analytic
functional calculus

The eigenvalue problem

H, = A, (15)
and the functional calculus
O(H) =), ) ¥ ) (¥l (16)

for ordinary self-adjoint matrices can be formulated in a
purely algebraic language. In fact, both concepts can be
naturally developed and generalized in the abstract setting of
C* algebras, without making any reference to the eigenvectors.
A good reference for this topic is the short course in spectral
theory by Arveson.>

Let us first discuss the notion of the spectrum of an element
f from the algebra A, which generalizes the set of eigenvalues.
The points z of the complex plane for which z — f is invertible
(in A) form an open set, called the resolvent set of f. The usual
notation for this set is p(f). The spectrum of the element f
is the complement of the resolvent set: C — p(f), and this set
is usually denoted by o(f). For any f in a C* algebra, the
spectrum o ( f) is a nonempty compact subset of the complex
plane. There are two particular classes of elements that we
want to mention: (1) the self-adjoint elements

=1 a7

whose spectra are confined on the real axis, and (2) the unitary
elements

frfr=fxf=1 (18)

whose spectra are confined on the unit circle. For example,
the Hamiltonian 4 defined in Eq. (9) is a self-adjoint element
while the time evolution generated /4 is a one-parameter group
of unitary elements.

The inverse of z — f will be denoted by (z — f)~!. It is
an element of A if z € p(f). When viewed as a function of z,
(z — f)~!is called the resolvent function of f.Itis an analytic
function of z on the resolvent set p( f) with values in A. Given
a function ®(z), analytic in a neighborhood of the spectrum of
f, one can define the function ® of f through the formula

1
() =7~ ﬁ D(2)(z — f)dz, 19)

where C is a contour confined to the analytic domain of ®(z)
and circling the spectrum of f. The above formula provides
a functional calculus, i.e., a morphism between the algebra of
analytic functions in a neighborhood of o (f) and the algebra
A, that is,

(@ D)(f) = O(f)* D'(f), (20)
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for any ® and @’ two such functions. As such, any algebraic
identity for ordinary functions, belonging to the class allowed
above, translates automatically into an identity for the same
functions but with z replaced by f.

C. The noncommutative integrodifferential calculus

The commutative algebra of ordinary functions defined
over the classical Brillouin torus has been replaced by the
noncommutative C* algebra A. The correlation functions for
translational invariant systems are computed via integrals of
the form

/ dk tr{ F (k)}, (21

where tr is the trace over Mpyp space. The operation in
Eq. (21) can be seen as a linear functional defined on the
space of functions defined over the classical Brillouin torus
with values in M py p. This linear functional has two special
properties. It is cyclic,

/ dk tr{ F (k)G (k)} = / dk tr{G(k)F (k)}, (22)
and it is positive,
/ dk tr{F (k) Fk)} > 0. (23)

These two properties makes the linear functional of Eq. (21)
into a generalized trace.

Now on A, it is still possible to define a bounded linear
functional that replaces the k integration. This functional is

T(f) = /de tr{ f (@,0)}, (24)

where, like before, tr is the trace over M p p space. The linear
functional defined in Eq. (24) is cyclic and positive:

T(fxe)=T=*[f), T(f=[f")=0. (25)

This makes 7 into a generalized trace and 7 replaces the
k integration. The existence of a generalized trace is also
extremely useful because the algebra A can be endowed with
a scalar product,

(f.8)=T(f"g), (26)

which makes A into a Hilbert space. As we shall see, this
is important because the linear maps acting on the space of
operators then become linear maps on a Hilbert space and we
do know how to manipulate linear maps on Hilbert spaces.

The noncommutative integration defined in Eq. (24) is
natural in the sense that in the absence of disorder it reduces
to the ordinary k integration. Furthermore, like the classic
integration over the Brillouin torus, the noncommutative
integration defined in Eq. (24) gives the correlation functions
directly in the thermodynamic limit. More precisely, if F,
G, ..., arethe operators acting on the quantum states generated
by f,g,...,then

1
lim ———TrA{FG...} =T 27
A oA N y=T(fxg*...) €2))
where the trace at the left-hand side is taken only over the
quantum states inside the box A. The identity of Eq. (27) not
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only gives a close formula for the correlation functions for
disordered systems under magnetic fields, but also provides
a convenient way to determine when a correlation function
is well defined in the thermodynamic limit. We will have an
entire discussion of this aspect for the conductivity tensor.
For translationally invariant systems, most if not all the
correlation functions of interest are of the form:
/dk {9y 1 [H(K)]9* D[ H(K)] ... }, (28)
where ®;[H (k)] are some functions of the Hamiltonian and
d," are the k derivations (possibly of higher power) on such
functions. Thus, the k derivations are important. On the algebra
A, one can define a set of automorphisms to replace the k
derivations:

o, Fl) — 3; f)w,n) =in; f(w,n),

where n; is the jth component of n. The derivations defined
above are natural in the sense that in the absence of disorder,
they reduce to the ordinary k derivations. Some of the
classic rules in integrodifferential calculus still apply, such as
0;0; = 0;0;, 0;(f *g) = (0; ) * g + f * (3;g) (Leibniz rule)
or T[®(h)3; d'(h)] = 0.

We end by pointing out that the representation of the
derivation on the quantum states is

7o(9; f) = —ilx;, 70 f1.

As such, the element of A that generates the charge-current
operator is

(29)

(30)

j=—Vh, 31)
since

n,J =ilx,m,h] = ei[H,.x], (32)
where e = —1 is the electron charge.

IV. THE NONCOMMUTATIVE KUBO FORMULA

We now have all the rules of calculus and we can proceed
with the derivation of the noncommutative Kubo formula. We
closely follow Refs. 39 and 40 and we will present only the
main steps of the derivation. The interested reader can consult
the ample review article from Ref. 52.

A. The coherent time evolution

The Hamiltonian 4 itself defines a derivation, i.e., a linear
map on the algebra A that satisfies the Leibniz rule,*® through
the Liouvillian:

Lylf1=ith=f — fxh). (33)

The equation

Ou(t) = —Lylu@®], u0) =1, (34)

defines a one parameter unitary flow u(t) over A,>® which
implements the time evolution in the Heisenberg picture.
Explicitly,

u()f =e “ f =" x e (35)
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In the presence of a uniform electric field E, the Hamilto-

nian becomes (here, we set e = —1)

hg=h+E-V, (36)
and the quantum time evolution is generated as

ug(t)f = e f, (37)

with »ChE =L—EV.

B. Scattering processes and the dissipative time evolution

Decoherence is introduced by random scattering events,
such as the electron-phonon scattering. The scattering matrices
for various dissipation mechanisms are known explicitly.>?
Here, however, we will proceed at a formal level and assume
that the scattering matrix is known and given. Later on, we
will adopt the relaxation time approximation.

If the scattering matrix for a scattering event at time ¢ is
denoted by wy, the instantaneous time evolution from initial
time + = 0 to some arbitrary time ¢ takes the form:

wz,“E(tl)-
(33)

The time sequence {t;};— »,... is assumed to be generated by a
Poisson random process with an average frequency 1/t. The
scattering matrices w can fluctuate from a scattering event
to another. The average of ug(¢) over the collision times and
the fluctuations of w’s, denoted by iig(¢), can be computed
explicitly, and the result is*>#0

uw,E(t) =up(t— t,,)w,”uE(tn - tn—l)wt,,,, ce.

—t(T+Liy)

ig(t) =e , 39)

where I' = (1 — w)/t with w being the average of w over its
fluctuations.

The evolution iig(¢) includes the dissipation and is no
longer unitary. However, in the absence of an electric field, the
dissipative time evolution must leave the thermal equilibrium
state unaltered, and this requires that I and £;, commute.

C. The conductivity tensor

We assume that the electric field was turned on at t = 0,
when the system was still in its thermal equilibrium state
described by the density matrix pg = ®pp(h). Here, Ppp
is the Fermi-Dirac distribution function corresponding to a
temperature 7 and Fermi level E . After the field was turned
on, the density matrix evolves according to: p(t) = u,, £(t)po.
As such, the instantaneous expected value of the charge current
density is

Jw,E(t) = T[] * uw,E(t)pO]- (40)
The average over the collision processes leads to
Je@) =T[j *ag®)pol, (41
and the time average
- 1 (! -
(Jg) = lim — | dt’ Jp(t') (42)
t—oo t 0
can be computed as it follows:
o0
(Je) = lim § / dt e Jg(t). (43)
-0 Jo
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With the explicit expression of J g(z) from Eq. (41) and the
explicit formula for i g(¢) from Eq. (39), the integral over ¢
can be computed explicitly leading to

(JE) =§i_)ﬁ(1)5 TLj* @ +T + Ly, " pol. (44)

Since there is no current in the absence of the electric field, we
must have

STIj*G+T + Ly " pol =0, (45)

and we can subtract such null term from Eq. (44), which then
becomes

(Je) =lims T[j (6 +T + Ly)™"

o(EV)o (8 +T + L) ' pol. (46)

Since L, 00 = 0 and I'py = 0 (recall that £, and I' commute),
the action of the map seen in the second line of the above
equation reduces to just 8~ py. Hence, we can take the limit
8 — 0 to finally obtain

(Jg) = =TUVR) * (T + L) (EVpo)l. (47)

The nonlinear conductivity tensor can be easily read from
above:

0ij(E) = —T{(@:h) % (T + L4,) " 8;Prp(W)].  (48)
Its limit as £ — 0 gives the linear conductivity tensor
0ij = =T1(0h) % (T + L4)~'3; Pen(h)], (49)

and this is the noncommutative Kubo formula.

In the relaxation-time approximation, which we adopt from
here on, the map I' is replace by the identity map times
a coefficient 1/7,. The relaxation time . is an empirical
parameter, which is assumed as given. The Kubo formula in
the relaxation time approximation becomes

0;j = —TI(®h) * (1/Te + L)' 3;Pep(W)].  (50)

This is the expression that will be used in our present transport
simulations. For this simplified expression, one can easily
show that all the entries are well behaved. In particular, the
inverse (1/7. + L)~ exists in A, since the map iL; is a
self-adjoint operator in the Hilbert space defined by the scalar
product of Eq. (26), hence the operator £, does not have
spectrum at —1/t (or in other words, —1/1, belongs to
its resolvent set hence 1/t + £, is invertible). Also, the
derivation of Fermi-Dirac function of / belongs to the algebra
A due to its rapid decay to infinity. As such, all the entries
in Eq. (49) are well defined hence the noncommutative Kubo
formula takes finite values and is numerically stable. We should
point out that without the noncommutative formalism, the
most one could do was to express the conductivity tensor as
a thermodynamic limit [like in Eq. (27)] whose existence and
stability would have been very difficult to establish.

V. AN OPTIMAL KUBO FORMULA AT FINITE VOLUMES

The exercise from the previous section, we hope, is fairly
convincing in showing that the linear response coefficients, in
general, can be expressed as compact and transparent formulas.
In this section, we discuss how to efficiently evaluate such
formulas, which are written directly in the thermodynamic
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limit, and the thermodynamic limit is not accessible to a
computer. Once we complete this numerical aspect, we will
have a rigorous and practical formalism to investigate the linear
response coefficients of disordered systems under magnetic
fields.

A. The C* algebra over a torus

We consider a finite square lattice which is wrapped
into a torus. The torus is generated by two discrete circles
T = S}, x S},. We specifically require that each discrete circle
contain 2 + 1 points. On this torus, we pick an arbitrary
point and call it the origin 0. We also introduce a coordinate
system on T by naturally unrolling the torus onto the points
{=N, ..., N}? C Z?, such that the coordinate of the origin is
0. The coordinates of a point p € T will be denoted by n,.
The total number of nodes, equal to (2N + 1)2, will be denoted
by |T|.

We now define the group of rotations, which replaces the
group of translations on Z>. Given a point p of the discrete
torus, we can imagine a succession of rigid rotations of
the S }3 circles, that rotate the torus until the origin o reaches
the position where the point p was located before the rotations.
All the other points rotate rigidly with the origin, hence this
action defines a map t, on the torus. It is clear that t,(0) = p,
and that t, is independent of the specific sequence (which
is not unique) of S}, rotations used to bring the origin at
position p. The rotations satisfy the following commutative
group relations:

Tg Oty =T p = Tp Oty = Ty,q. (51

‘We now define the equivalent 2 space for the torus, which is
denoted by Q. Let @ = {®p ) peT be a sequence of diagonal
D x D matrices with identical independent random entries
uniformly distribution in [—1/2,1/2]. Then & can be viewed
as a point of the probability space Qy = [—1/2,1/2]PIT],
which will be endowed with the probability measure

D
d = ]_[ ]_[ do®. (52)

peT a=1

The rotations v induce a group of automorphisms on €2/:
T = {a)tqp}pdr, (53)

whose actions leave the measure d@ invariant.

The C* algebra At over the torus is defined as follows.
The elements are functions f defined on Q2 x T and taking
values in M pyp. The law of composition is

(f*)@.p) =) f(@.98(c; @5, p)e™™ 0. (54)
qeT

We need to define a norm and a % operation with the proper
characteristics mentioned when we discussed the C* algebra
A. As before, the norm will be introduced via the operator
representations. Each element f induces an operator acting on
£2(T) x CP, the square summable sequences defined over the
torus with values in C?:

(7o Delp) = F(x, ' @.x,'q)e ™™ " p(g).  (55)

qeT
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The map 7; provides a representation of the algebra Ar, i.e.,
Fo(f % 8) = (o [)Fad), (56)

if and only if the flux ¢ (in the units of ¢) takes a quantized
value:
¢

x integer, (57)

2
2N+
which, from now on, it will always be assumed to be true. We
mention that the quantization condition for the flux is in line
with Zak’s finding that the magnetic translations accept finite
representations only if the above quantization is satisfied.’’

In this conditions, one can define the norm

Ifll = sup 7 fl',

DEQN

(58)

where this time the primed norm denotes the operator norm
on (*(T) x CP. This norm has the desired property that
IIf =&l <IfIgll. Furthermore, a % operation can be de-
fined,

F@.p) = F(5,'a.5,'0), (59)

so that the 7 representation and the *x operation satisfy the
essential relation:

7ol = (7o ).
As such, the norm defined in Eq. (58) has the fundamental
property

(60)

If* £ = 1717,
which makes A7 into a C* algebra.

(61)

B. An approximate integrodifferential calculus over the torus

We now introduce the generalized trace (the integration)
over Ar. It is defined by

Tr(f) = f

Qn

do tr{ f(@,0)). (62)
This linear functional satisfies all the required properties of a
generalized trace, i.e., positivity and cyclicality. The trace can
be computed via the equivalent formula

do Tr{fs f).

~ 1
Tr(f) = —

63
IT| Ja, ©3)

The differential calculus defined over A will not work over
the torus because in, f(p) does not close continuously at the
boundaries of the coordinate system. What we can do is to
define an approximate differential calculus, and that is done as
follows. Let x : S }) — R be a continuous function such that
(n, is the coordinate of the point p € S}))

lx(p) —npl =0 if |n,l <N/2 (64)
and
lx(p)| < |n,| forall peSp. (65)
Then the formula for the approximate derivations is
@ N(p) = ix(p)) f(p). (66)

PHYSICAL REVIEW B 86, 155445 (2012)

This formula acts like the exact derivation on functions which
takes nonzero values only around the origin o. The elements
entering in the Kubo formula, like 9; ®rp(h), are concentrated
near the origin and have a fast exponential decay away from the
origin. So the errors introduced by the approximate derivations
decay exponentially fast with the size of the torus.

The operator representation of the derivation is as follows.
Let O be the discrete unit circle in the complex plane defined
by the solutions of z2V*! = 1 and let

x(p) =) bk

reO

(67)

be the discrete Fourier decomposition of the function x. Then,

Ao f) =1 Y bid " (e I,

re0

(68)

where x; is the ith coordinate operator: (x;@)(p) = np,@(p)
for ¢ a quantum state over the torus (i.e., in £2(T) x CP). In
the numerical simulations, the function x(p) will be chosen
in the same way as in Ref. 43, where we computed the Chern
number using the noncommutative calculus.

C. The approximate Kubo formula on the torus

If 4 is a short-range Hamiltonian in .4, then it also defines
a Hamiltonian / in A,
h(®,p) = h(@,np), (69)
provided the torus is large enough. Note that @ € 2 is also
part of the space 2. We now can write down the approximate
Kubo formula on the torus:
&ij = —=Tr[@ih) * 1/t + L)™' 3;Pe@)].  (70)
The above expression is self-averaging, so the fluctuations with
& rapidly disappear as the size of the torus is increased. The
most important fact about the above formula is the following
error estimate that was established in Ref. 51:
|Gij — oij| < Cge_%EN’ (71)
which tells that Eq. (70) converges exponentially fast to its
thermodynamic limit. Above, £ is any constant between the
bounds 0 < & < sinh_'(/c/2d}_z), with k = min{1/2t.,7kT}
and & being the largest hopping amplitude of 4. The constant
C: is fully identifiable and increases with &.

The formula in Eq. (70) can be directly evaluated using
the standard linear algebra routines, but replacing the matrix
operations with the composition rules and the norms corre-
sponding to algebra AT, the latter being needed to evaluate
the remainders and to advance the iterations (hence the norms
introduced above are not just for formalities). In the present
work, however, we adopted a more traditional way even though
it is probably not very efficient. It is based on the following
observations. If {€q,¢q};_1 5 1s the eigensystem for the

Hamiltonian 77 4h,

(ﬁ(bﬁ)(pa = €4Pa, (72)
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then Eq. (70) can be cast in the following equivalent form:

D|T|

3 (PalFa (01| dp) (P57 PED (1) a)
1/t +i(e, — €) .

1
T

61']' = —
a,b=1
(73)

This expression may look very similar to the usual Kubo
formula at finite volume, already used in the previous
simulations for disordered systerns,Sg‘61 but there are a few
major differences. Since the derivation d has a more involved
expression in our case, the derivation of ®pp(h) cannot be
processed any further. As such, our expression doesn’t look
like a current-current correlation function. We can bring our
formula to such form if we use a low approximations for
d but that will destroy the exponential convergence. The
finite-volume Kubo formula used in the references mentioned
above converges to the thermodynamic limit only as an inverse
power law. This can be seen by looking at a one-band model in
the clean limit, where the exact Kubo formula takes the form*!

L[k, DE() IE®K)
Glj - _m (27_[)2 FD( ( )) akl 8]{]

, (74)

where E(k) is the band energy. As detailed in a previous
work,* various expressions of 9 in the real space lead to
various finite-difference approximations of 9/0; in the k
space. In particular, the finite volume Kubo formula used
previously>®! leads to a two-point approximation of 9/
in the current components 9 E(k)dy, ; in Eq. (74) [see Eq. (3)
of Ref. 43 or the discussion at page 38 in Ref. 46]. This
makes the entire finite-volume formula of o;; converge only
as inverse power with the size of the system (regardless of
the size of the insulating gap). We also want to mention that
one of the original motivation behind our work in Ref. 43 was
exactly the very poor quantization and slow convergence of the
previously used zero-temperature Hall conductance formulas.
In this reference, we documented that the new formula can
give quantizations of the zero-temperature Hall conductance
with better than nine digits of precision even when computed
on a very small lattice of 40x40 sites!

The transport coefficients can be also computed via the
Landauer formula by evaluating the transfer matrix. Strictly
speaking, Landauer formula gives the conductance, but in two
dimensions and for a square geometry, conductance and con-
ductivity are the same. However, the transfer matrix approach
is limited in several respects: (1) it is difficult to compute the
off-diagonal components of the conductivity tensor; (2) the
method gives the conductance at zero temperature. In principle,
one can go from zero to a finite temperature, but the procedure
is extremely costly. (3) It is difficult to include realistic
dissipation operators I".

At the end of our theoretical exposition, we want to stress
again that the approximate formula (70) and the error estimate
(71) should be considered together, because one of them gives
a practical way to do computations and the other really tells
what is being computed. The C*-algebraic framework has been
instrumental for obtaining both results in Ref. 51. We have
also insisted on presenting the C* formalism because then
one could follow a similar philosophy to derive and compute
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other important linear response coefficients, such as the spin-
transport coefficients.

VI. TRANSPORT SIMULATIONS FOR A DISORDERED
QUANTUM SPIN-HALL INSULATOR

A. The model

We will work with the Bernevig-Hughes-Zhang model,*
which fits the “low-energy” band theory of the clean
HgTe/CdTe wells. In the k space, this effective Hamiltonian

takes the form
h(k) L'(k)
Hto=( " (75)
r'k)y h*(=k)
where h(k) = e(k) +d(k) - o, with 0 = (0x,0,,0;) encoding
the Pauli’s matrices, and I'(k) is a S,-nonconserving interac-
tion. The minimal form of the (k) matrix is®

sink, —isink, 0

I'k)=iA . (76
=1 ( 0 sinkx+isinky> (76)

The experimentally measured energy bands, in the proximity
of the I" point, can be captured by the following expression for
d(k):

d =[Asink,,Asink,,M — 2B(2 — cosk, —cosky,)]. (77)

The Hamiltonian H, displays a topological phase if 0 <
M/B <4 and 4 < M /B < 8 with the insulating gap closing
at M/B =0, 4 and 8, and a topologically trivial phase if
M/B < Qor M/B > 8.Inoursimulations, the parameters will
befixedat A=1,B=1,C=0,D =0, A =0.5, and (k)
will be also set to zero. The phase diagram of the model, with
exactly these same parameter values, has bee investigated in
Refs. 62 and 45. We will compare the phase diagrams derived
from the transport simulations with the phase diagrams from
these two references.

The model can be realized in real space using a square lattice
with four quantum states per site. Explicitly, the matrices #,,
to be plugged in Eq. (1), are given by

A A
o =it (et B B (78)
(1.0) = T1,0) A g 4 Boy )
2i

A A
f(oyl) _ f(TO " _ ?0'2 + B(T3 ) 50'3 , (79)
’ 20'3 —302 + BO’3
and
: . (M —4B)o3 0 80)
©o= 0 (M —4B)o3 |

The onsite disorder is introduced as discussed in the
second section, with the restriction that it needs to preserve
the time reversal symmetry. For this, the random amplitudes
that enter on the diagonal of the matrix @, (the rest of the
entries are zero) must satisfy the following: (®,)11 = (@n)33
and (@p)22 = (On)a4-

B. Simple test results

We show here the most straightforward test calculation,
with the disorder and magnetic field turned off. In this case, the
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TABLE I. The diagonal conductivity o}, in the units of e?/h
computed via Eq. (73) for different Fermi energies. The calculations
were performed on a 50 x 50 lattice with the magnetic field and
disorder turned off. The table also shows the exact values of oy,
obtained with the classical Kubo formula and the relative errors
occurring in the first calculation.

Er o1 (50 x 50 lattice) o1; (Exact) Error (%)
0.000 0.013 0.013 0
—0.368 0.013 0.013 0
—0.737 0.013 0.013 0
—1.105 166.284 162.006 2
—1.474 390.475 389.231 0.3
—1.842 428.067 429.085 0.2
—2.211 444.573 443.920 0.1
—2.579 460.576 459.891 0.1
—2.947 448.714 448.550 0.1
—3.316 421.281 422.249 0.2
—3.684 387.195 385.555 0.4
—4.053 341.874 340.844 0.3
—4.421 292.086 289.548 0.8
—4.790 232.352 232.622 0.1
—5.158 171.330 170.758 0.3
—5.526 104.282 104.477 0.2
—5.895 34.388 34.187 0.6

conductivity is given by the traditional Kubo formula which
can be evaluated in the k space where we can increase the
sampling of the Brillouin torus until the computation becomes
virtually exact. At the same time, we can still evaluate the
conductivity via Eq. (73). A comparison between the two
results will provide the test.

Table I lists o7, as a function of Fermi energy, with the
noncommutative Kubo formula of Eq. (73) evaluated on a
50 x 50 lattice. The table also lists the virtually exact oy,
values obtained with the traditional Kubo formula in k space.
As the table shows, all the errors are less than one percent,
except in one case where we see a 2% error (due to a spike in the
density of states at that energy). Based on this table we expect
well converged results when the calculations are performed
on 50 x 50. When disorder is present, the convergence will be
double-checked by comparing the outputs from calculations
performed on lattices of increasing sizes, typically, 30 x 30,
40 x 40, and 50 x 50. As we shall see, the convergence of the
calculations is also confirmed by those tests.

C. The diagonal conductivity as function of disorder
and Fermi level

Figure 1 reports the calculated o;; for the topological
case M = 6 (the off-diagonal components of o are zero
because of time reversal symmetry). The diagonal conductivity
is plotted as function of Fermi energy at various disorder
strengths. The first three columns show the results obtained
by evaluating Eq. (73) on 30 x 30, 40 x 40, and 50 x 50
lattices. The temperature and the relaxation time were fixed
at kT = 1/7 = 0.01. The calculations were repeated for ten
random disorder configurations and the results are all shown
in the first three columns of Fig. 1 without averaging (hence
the fuzziness displayed in those graphs). The (vertical) spread
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of o1 due to the changing of the disorder configuration tells
us about the degree of self-averaging in these calculations.
Clearly the spread decreases, and as such, the self-averaging
is improved as the lattice size is increased. But the most
important fact about these data are the averages of oj; over
the disorder configurations shown in the 4-th column of Fig. 1.
There are minor or no visible variations between the averages
obtained on different lattice sizes, a fact that indicates a very
well converged simulation. With that, we fulfilled the main
goal of this work, namely, to demonstrate the efficiency and
effectiveness of the noncommutative Kubo formula.

We now discuss the data. In Fig. 1, one can see that, if
the Fermi level is located in certain energy regions, o rapidly
decreases as the disorder strength is increased. But one can also
see well defined energy regions where o}, saturates and stays
at a certain appreciable value even at large disorder strengths.
As we shall see from the temperature-dependence analysis,
the latter spectral regions are metallic in character, while the
former ones are insulating.

Figure 1 also displays a pattern that is very specific
to topological models. The energy regions where o; is
maximum are seen to drift towards each other and ultimately
to merge together as the disorder strength is increased. This
phenomenon is called the levitation and annihilation of the
conducting states. Its origin is connected to the fact that the
conducting states carry a nontrivial topological Z, invariant.
Since this invariant is robust against strong disorder, the
conducting states cannot suddenly disappear and, instead,
neighboring conducting states levitate towards each other and
annihilate their Z, invariants. From there on, the states can
localize, as it inherently happens in any system if the disorder
strength is large enough.%> This phenomenon was widely
discussed in the context of Integer quantum Hall effect,%0-64-67
and it was first observed in the context of quantum spin-Hall
Insulators in Ref. 68 and in Chern insulators in Ref. 43.

D. Temperature dependence and the phase diagram

The relaxation time ) behaves as te; ~ 1/(kT)* (¢ > 0)
in the limit of low temperatures, where the exponent o
depends on the dominant dissipation mechanism (o =5 if
the dissipation is through phonons). As such, the temperature
dependence of o7; comes from the Fermi-Dirac statistics and
from 7. The behavior of o;; as a function of T in the
asymptotic limit 7 — 0 can provide an accurate picture of the
nature of the energy spectrum and the transport characteristics
of the system.

The spectral, fractal, and diffusion exponents and their
inter-relations and relevance to transport in aperiodic solids
were introduced in Ref. 40. In particular, the diffusion
exponent Bgis at the Fermi level was defined through the mean
square of the displacement operator in the asymptotic limit of
large time intervals:

Sx(t) = % / dt’ T(x(t") — x)*mg, ]| ~ 1P, (81)
0

Here, x is the position operator, x(¢) is its time evolution and
7, 1s the projector onto the energy spectrum below Ep. The
following behavior of o;; at low temperatures was proved in
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FIG. 1. The diagonal conductivity for the topological case (M = 6) as a function of Fermi level, lattice size, and disorder strength. For
each Fermi level, the noncommutative Kubo formula was evaluated for ten random disorder configurations, with k7 = 1/t = 0.01. The last
column shows the averages over the disorder configurations. The averages corresponding to the three lattice sizes overlap each other almost
perfectly indicating a good convergence of the calculations with the lattice size.

Ref. 40:

o1~ TDt(l—Zﬂdiff)_ (82)
This relation is the Drude formula for aperiodic solids.

The diffusion exponent takes values between 0 and 1. Its
precise value can give information about the nature of energy
spectrum. In general, the energy spectrum can be absolute-
continuous, singular-continuous (fractal) or pure point (local-
ized). The transport is called ballistic if Bg = 1 and that
requires the spectrum around Ef to be absolute continuous.
The reverse statement is true in one dimension, but in higher
dimensions there are models with absolute continuous spec-
trum but with nonballistic (diffusive) transport.%” The transport
is called diffusive if 0 < Bgir < 1 and occurs when the energy
spectrum around Ef is singular continuous. Absence of
diffusion Bgir = 0 occurs when the spectrum is pure point
(localized). A detailed discussion of Bt for different quantum
models, together with the physical implications, was given in
Refs. 70 and 52. We want to point out that the exponent in

Eq. (82) was experimentally evaluated in Ref. 25 for a film of
Bi,Se;. We believe this exponent can be extracted from many
other experimental data.

While we do have the technology to compute the diffusion
exponent for our topological model, here we address a coarser
problem, namely, we determine when the system behaves as
a conductor: a1 /" oo as T N\ 0, or as an insulator: a7; N\ 0
as T N\ 0. This is something we can do at the grand-scale of
Fig. 1, which then will allow us to draw the phase diagram
of the system. A study on the By itself will be reported
elsewhere.

For this, we repeated the calculations from Fig. 1 for kT =
1/te1 = 0.025 and kT = 1/1 = 0.05. We thus assume an
exponent o = 1 but note that the conducting or insulating
character is independent of this exponent. The theory predicts
a much faster convergence for these cases towards the
thermodynamic limit, so we restricted these calculations to
only a 40 x 40 lattice. The results are reported in Fig. 2.
According to the previous discussion, in these plots, we
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FIG. 2. (Color online) The diagonal conductivity for the topologi-
cal case (M = 6) as a function of Fermi energy, disorder strength, and
temperature. An average over 10 disorder configurations was used.
Each panel displays three curves, corresponding to k7T = 1/1, =
0.01 (black), kT = 1/t = 0.025 (gray), and kT = 1/t = 0.05
(light gray). The shaded regions indicate the Fermi energies where
oy increases when the temperature is reduced, i.e., where the model
displays a metallic behavior.

should see conducting energy regions where the values of o7,
increase as T is lowered and insulating energy regions where
o1 decreases as T is lowered. This is indeed consistently
observed in Fig. 2 for all three curves corresponding to
different temperatures. For example, all three curves intersect
each other at more or less the same point, so the transition
point between the conducting and insulating regions can
be identified. As expected, the conducting energy regions
occur in the middle of the bands while the insulating regions
occur near the edges. In agreement with the levitation and
annihilation picture, the conducting regions are seen to drift
towards each other until they merge, at about W =7, at
which point they rapidly diminish as W is being further
increased.
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E. Disorder induced conducting states

The model used in our simulations can enter the quantum
spin-Hall topological phase upon increasing the disorder,
even if we start from the trivial phase at W = 0.456271-73
That is due to a strong disorder-induced deformation of the
quantum spin-Hall phase boundary.*> We should mention that
this phenomenon can disappear if other types of disorder are
used.’”* The phase diagram of the model with on-site disorder
was computed by various methods such as by mapping the
conductance of the edge states,’'~’3 the Lyapunov exponent,%?
or the spin-Chern number.*

With the Rashba interaction turned on, the model belongs
to the symplectic class so the topological and trivial phases are
separated by a metallic phase.***%%2 As such, we can use our
transport simulations to see if indeed there are metallic states
induced at large disorder, when such states are absent at weak
disorder. In principle, we can use the transport simulations
to map the whole metallic phase between the trivial and the
topological insulating phases, in the three-dimensional space
of Er, W, and M, and that will be the fourth way to compute
the phase diagram of the model. The fifth way will be to use
the level statistics analysis as it was done for other models of
disordered topological insulators 3464775

However, in this section, we will compute just another slice
of the phase diagram, corresponding to M = 9 which is in the
trivial part of phase diagram at W = 0. We have repeated the
simulations reported in Fig. 1 (with M set at the new value) and
the results are reported in Fig. 3. Here, we see again a reduction
in the spread due to the disorder of oy as the size of the lattice is
increased, and a good overlap of the disorder-averages for the
different lattice sizes. While for the most part of the spectrum
the conductivity rapidly decay with the increase of W, one can
see in the middle of the spectrum and starting from W =7 a
sudden increase of o, until it reaches the same value as in
Fig. 1. To demonstrate that the system enters a metallic phase,
we have repeated the simulations from Fig. 2 giving M the
new value. The results are reported in Fig. 4 and they indeed
confirm that, starting from W = 7, there is a region where
oy increases as the temperature is lowered, hence those states
have metallic character.

We will like to point out that our conclusions based on the
transport calculations are in quantitative agreement with the
phase diagrams computed in Refs. 62 and 45. For example,
our data in Fig. 1 show that at W = 7 the topological phase is
completely gone, and only the metallic and the trivial phases
are still present. This is precisely what was predicted in these
two mentioned studies. Furthermore, it was predicted that if
M =9, then the model will enter the metallic phase at about
W =7, which is exactly what we observe in our transport
simulations.

VII. COMPARISON WITH THE LEVEL STATISTICS

A. The topological case

We performed a level statistics analysis in precisely the
same manner as in our previous studies.*>*%477> The exact
procedure for the level statistics analysis was described in
detail in these publications. Figure 5 reports the variance of
the distribution of the level spacings collected from small
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FIG. 3. The diagonal conductivity for the trivial case (M = 9) as a function of Fermi level, lattice size, and disorder strength. For each Fermi
level, the noncommutative Kubo formula was evaluated for ten random disorder configurations, with k7" = 1/1, = 0.01. The last column
shows the averages over the disorder configurations. The averages corresponding to the three lattice sizes overlap each other almost perfectly
indicating a good convergence of the calculations with the lattice size (maybe with the exception of the last panel).

energy windows centered at various energies while the random
potential was updated 500 times. The mass term was fixed at
M = 6. Tt is a well established fact that,’® if the localization
length of the system is smaller than the simulation box, then
the level spacings follow a Poisson distribution, which has
variance equal to 1, and if the localization length is comparable
or larger than the simulation box, then the level spacings follow
the Wigner surmise for symplectic Gaussian ensembles which
has a variance of 0.104. As such, Fig. 5 allows us to identify the
spectral regions with very large or infinite localization lengths,
which coincide with the energy intervals where the variance is
close to expected value of 0.104. The level statistics analysis
was performed on a 40 x 40 lattice.

The energy regions harboring the extended states have been
shaded in Fig. 5 for a better visualization. The phenomenon
of levitation and annihilation is clearly displayed there and
the emerging phase diagram is in good quantitative agreement
with Fig. 2. Strictly speaking, the metallic region identified in
Fig. 2 is strictly contained (thus not equal) inside the region of

extended states identified in Fig. 5. That is because the metallic
phase in Fig. 2 contains all the states with Bgi > 0.5 while the
phase of extended states in Fig. 5 contains all the states with
Baite > 0.

B. The disorder induced conducting states

We have repeated the level statistics analysis for M = 9 and
the results are reported in Fig. 6. We have again shaded the
energy regions that harbor extended states and, sure enough,
we observe the emergence of the extended states that were
previously seen in our transport simulations reported in Fig. 4.
Besides these interesting conducting states, one can also see
the extended states that originate directly from the bands of
the clean system. We should probably mention that in a two-
dimensional symplectic model, unlike the unitary Anderson
model, the extended states can survive moderate disorder. But
there is a distinct difference in the way these extended states
and the extended states in Fig. 5 behave as the disorder is
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FIG. 4. (Color online) The diagonal conductivity for the trivial
case (M =9) as a function of Fermi energy, disorder strength and
temperature. An average over 10 disorder configurations was used.
Each panel displays three curves, corresponding to k7T = 1/, =
0.01 (black), kT = 1/ = 0.025 (gray) and kT = 1/7, = 0.05
(light gray). The shaded regions indicate the Fermi energies where
oy increases when the temperature is reduced, i.e., where the model
displays a metallic behavior.

increased. In the former case, the levitation and annihilation is
absent and the energy domains harboring the extended states
simply contract and vanish.

VIII. TRANSPORT SIMULATIONS FOR DISORDERED
QUANTUM SPIN-HALL INSULATORS UNDER
MAGNETIC FIELDS

The time-reversal symmetry is essential for the topological
properties of the quantum spin-Hall Insulators. Nevertheless,
the transport experiments in the presence of a magnetic field,
which breaks the time-reversal symmetry, are extremely useful
for understanding the microscopic electronic structure of the
samples. In a typical experiment, the transport coefficients
are mapped as functions of the magnetic field strength and
of a gate potential. The Hall resistivity measurements at weak
magnetic fields provide an accurate map of the electron density

PHYSICAL REVIEW B 86, 155445 (2012)
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FIG. 5. (Color online) The variance of the ensembles of level
spacings for the topological case (M = 6), recorded at various
energies as function of disorder strength. A total of 500 disorder
configurations were used in these simulations and, for each disorder
configuration and energy E, 13 level spacings were collected from
the immediate vicinity of E. As such, the ensembles contain
6500 level spacings. The size of the lattice for these simulations
was 40 x 40.

as function of the gate potential, and typically this function
has a simple linear shape. As such, the dependance of the
transport coefficients on the magnetic field, electron density
and temperature can be accurately determined.

A typical transport measurement on HgTe quantum spin-
Hall insulators or thin films of three-dimensional topological
insulators shows the following qualitative features: initially,
the Hall resistivity increases (decrease) linearly for n-type
(p-type) carrier concentration as the magnetic field is turned
on. Hall plateaus start to appear at some point and they
become fairly wide and well defined at larger field strengths,
typically of a few Teslas. The diagonal resistivity starts flat
as the magnetic field is strengthened, but at some point
it starts to develop well defined oscillations of increasing
amplitude, the Shubnikov-de Haas oscillations. At strong
magnetic fields, where the Hall plateaus are wide and well
defined, the direct resistivity becomes zero inside the Hall
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FIG. 6. (Color online) Same as Fig. 5 for the trivial case
(M =9).

plateaus and displays sharp peaks at the edges of the Hall
plateaus. The Shubnikov-de Haas oscillations can be analyzed
using semiclassical theoretical approaches and information
about the geometry of the Fermi surface can be extracted.'®
This type of analysis has been intensely used in the search
of the two-dimensional component of the Fermi surface of
three-dimensional topological insulators, which can be related
to the topological surface states. Besides the Shubnikov-de
Haas oscillations, the widths of the Hall plateaus could be
used to assess the degree of disorder present in the samples.
Our hope is that the present technique will enable us to reverse
engineer the experimental results on the resistivity tensor to a
point where we can pin point a particular microscopic model
for a given sample.

The transport simulations in the presence magnetic fields
present the same technical difficulties as before since the effect
of the magnetic fields is introduced via the Peierls substitution
as discussed. However, to resolve all the expected features,
we will need to increase the simulation box. In this section,
we only want to demonstrate that we can indeed perform
such simulations using the noncommutative formalism, more
precisely, that we can resolve Hall plateaus and Shubnikov
de Haas oscillations when the resistivity tensor is plotted

PHYSICAL REVIEW B 86, 155445 (2012)

Magnetic flux (®o)

FIG. 7. (Color online) Evolution of the density of states (DOS)
for the topological case M = 6 (left) and trivial case M = 9 (right)
with the variation of the magnetic field. The lattice size for these
simulations was 100x100 and W = 0.

as a function of electron density. These features are easily
reproduced when the data is plotted as a function of the
Fermi energy, but as we shall see, they disappear when plotted
as a function of electron density (which is how the data is
plotted in the experiments), unless fairly strong disorder is
present. As such, resolving the Hall plateaus in a transport
simulation is a highly nontrivial problem, which even for the
simple integer quantum Hall effect has not been completely
solved.

We now start the discussion of our simulation results. The
energy spectrum of periodic systems under magnetic fields
have a Hofstadter fractal structure.”’ Figure 7 shows the
density of states (DOS) as a function of energy and magnetic
field, when the model is in the topological and trivial phases,
with the disorder turned off. As it was already pointed out
in Ref. 13, there is an interesting qualitative difference in the
behavior of the energy spectrum for the topological and trivial
cases. What one basically sees in Fig. 7 is two Hofstadter
butterflies, one below and one above the spectral gap, that
are attracted to each other in the topological case, and are
repelled by each other in the trivial case. The behavior of
DOS with the magnetic field reminds us of the levitation and
annihilation phenomenon discussed in the previous sections,
but the cause of this behavior is not understood yet. Given that
the insulating gap of most topological materials is small, this
effect must be definitely taken into account when interpreting
the experimental data.

Now the Hofstadter spectrum is complex and has a fractal
nature, but still at low magnetic fields one can distinguish clear
thin Landau bands in Fig. 7. Of course, if we zoom in on these
bands, we will see the whole structure repeating itself over and
over again. But at the scale of Fig. 7, when the Fermi level is
located in between these Landau bands, the Hall conductivity
or resistivity should be quantized and the direct conductivity
or resistivity should display a local minimum (the simulations
are at finite temperature so we don’t expect a strictly null direct
conductivity). The Hall conductivity or resistivity should jump
to the next Hall plateau when the Fermi level is brushed over
a Landau band, while the direct conductivity or resistivity
should have a spike. The Landau bands are clearly contoured
at the bottom or at the top of the energy spectrum but, at
the scale of Fig. 7, they are not well resolved at the edges
of the insulating gap where one will be most interested in.
As such, our transport simulations in which the Fermi level
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FIG. 8. (Color online) (Upper) The diagonal and Hall resistivities
for the topological case (M = 6), computed at a fixed magnetic flux
¢ = 0.08 x ¢, while the Fermi energy was swept over the entire
energy spectrum. The lattice size in these simulations was 50 x 50,
W =0, and kT = 1/, = 0.01. (Lower) The data from the upper
panel is replotted as function of the electron density.

is varied over the entire energy spectrum and are done at the
same scale as that of Fig. 7, are expected to show quantized
Hall plateaus only at the bottom and at the top of the energy
spectrum. More refined simulations which hopefully could
resolve the energy region near the gap edges will be presented
elsewhere.

Figure 8 reports the simulated direct and Hall resistivities
for a magnetic flux per unit cell of ¢ =0.08 ¢o. The
simulations were performed on a 50 x 50 lattice. In Fig. 8(a),
the results are plotted as a function of Fermi energy, while in
Fig. 8(b) the results are plotted as a function of electron density.
In the first case, the Hall plateaus appear very clearly contoured
and the spikes in the direct resistivity can be seen whenever
the sampled energies fell between two Hall plateaus. However,
when the data is plotted as function of electron density, the Hall
plateaus are reduced to a single point because the electron
density does not vary when the Fermi level sweeps over the
clean spectral gaps. As a result, the Hall plateaus disappear.
When the disorder is turned on, the Hofstadter spectrum is

Magnetic flux (®o)

FIG. 9. (Color online) Same as Fig. 7 but for W = 3.
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FIG. 10. (Color online) Same as Fig. 8 but for W = 3.

smoothed out by the localized states that are pulled out the
Landau bands, as one can see in Fig. 9 where we plot the
DOS for W = 3. The results of the transport simulations for
W = 3 are reported in Fig. 10. The magnetic flux per unit
cell and the lattice size were fixed at the same values as
for Fig. 8. The plots in Fig. 9 are obtained with a single
disorder configuration. To read the data in Fig. 9, it is best
to look first at the direct conductivity because it displays
four clear dips. Examining the Hall resistivity plots, we see
that they display a Hall plateau at each of these dips. The
Hall plateaus are not perfectly quantized but their widths
are clearly identifiable and that is enough for comparisons
with the experiments. Very importantly, the widths of the Hall
plateaus remain finite when the data is plotted as function of
the electron density.

IX. CONCLUSIONS

The main purpose of the present work was to introduce
the reader to the noncommutative theory of charge transport
and to present an efficient and fast converging numerical
implementation of the noncommutative Kubo formula. As an
interesting application, we chose a model of a topological
insulator where we were able to map the diagonal conductivity
as a function of Fermi level, disorder strength, and temperature.
This enabled us to demonstrate that the topological phase is
surrounded by a diffusive metallic phase where the transport
coefficients increase as the temperature is lowered. This means
that disorder alone can drive the system from a topological
insulator into a diffusive metal. We postulate that this is what
is actually happening in the current experimental observations
where all the samples showed metallic bulk so far. When
we introduce a perpendicular magnetic field, we found an
intriguing behavior of the energy spectrum in that the valence
and conduction bands move toward each other as the strength
of the field is increased, until they touch and merge. In our
transport simulations at fixed magnetic flux and in the presence
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of disorder, we were able to resolve a few Hall plateaus even
when the conductivity was plotted as a function of electron
density.

PHYSICAL REVIEW B 86, 155445 (2012)
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