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Interaction-induced enhancement of g factor in graphene
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We study the effect of electron interaction on the spin splitting and the g factor in graphene in a perpendicular
magnetic field using the Hartree and the Hubbard approximations within the Thomas-Fermi model. We found
that the effective g factor is enhanced in comparison to its free-electron value g = 2 and oscillates as a function
of the filling factor ν in the range 2 � g∗ � 4 reaching maxima at ν = 4N = 0, ± 4, ± 8, . . . and minima at
ν = 4

(
N + 1

2

) = ±2, ± 6, ± 10, . . ., with N being the Landau level index. We outline the role of charged
impurities in the substrate, which are shown to suppress the oscillations of the g∗ factor. This effect becomes
especially pronounced with the increase of the impurity concentration, when the effective g factor becomes
independent of the filling factor, reaching a value of g∗ ≈ 2.3. A relation to the recent experiment is discussed.
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I. INTRODUCTION

Graphene being subjected to a perpendicular magnetic
field exhibits the unusual quantization of the energy spec-
trum, which is manifested in a nonequally spaced sequence
of the Landau levels (LLs).1 In contrast to conventional
two-dimensional electron gas (2DEG) systems, the energy
difference between the lowest LLs is large enough to allow
observation of the quantum Hall plateau even at room
temperatures.2 Another interesting peculiarity of graphene is
the existence of the zeroth Landau level located precisely at the
Dirac point and equally shared by electrons and holes.1 If the
magnetic field is high enough, in addition to the Landau level
quantization, the level splitting due to the Zeeman effect takes
place. This kind of splitting was clearly observed in the recent
experiments even for states lying relatively far from the Dirac
point, at the filling factors ν = ±4.3 The Zeeman splitting is
by its nature a one-electron effect, which tells us that a particle
possessing a spin degree of freedom acquires the additional
energy in the magnetic field B

V σ
Z = σgμBB, (1)

where σ = ± 1
2 describes two opposite spin states ↑ , ↓; μB

is the Bohr magneton; and g is the free-electron Landé
factor (g factor). g = 2 for graphene. However, experimentally
observed splitting of the Landau levels cannot be solely
attributed to the Zeeman effect, as this splitting can also
be enhanced by electron-electron interaction.4 The electron-
electron interaction in graphene is especially important at
high magnetic fields near ν = 0 when a new insulating state
emerges.5 Even though the nature of this state is still under
debate, it is commonly believed that it is related to the
electron-electron interaction.3

The enhancement of the spin splitting due the electron-
electron interaction can be described by introducing a
phenomenological effective g factor, g∗, which effectively
incorporates the interaction effects within the one-electron
description. Calculation of the effective g factor was originally
done for conventional 2DEG systems based on Si MOS4 and
GaAs/AlGaAs6 structures. It was shown that the g factor can
be enhanced by the electron-electron interaction up to one

order of magnitude in comparison to its bare value6 and
oscillates as a function of a carrier density.4,6 Interaction-
induced spin splitting was extensively studied in confined
2DEG structures such as quantum wires.7–15 It was also argued
that interaction-induced spontaneous spin splitting can take
place in 2DEG systems even in the absence of a magnetic
field.16–18

The enhancement of the effective g factor was also
observed in carbon-based systems. In graphite the effective
g factor is reported to be g∗ ≈ 2.5.19 Recently, Kurganova
et al.20 performed measurements of the effective g factor
in graphene. It was found to be g∗ = 2.7 ± 0.2, which is
larger than its noninteracting value g = 2. This indicates
that electron-electron interaction effects play an important
role and should be taken into account for explanation of
the enhanced spin splitting. Motivated by this experiment we
use the Thomas-Fermi approach to study the spin splitting in
realistic two-dimensional graphene sheets in a perpendicular
magnetic field situated on a dielectric surface and subjected to
a smooth confining potential due to charged impurities. (Note
that the enhancement of the effective g factor in ideal graphene
nanoribbons has been recently studied by Ihnatsenka et al.21).

The paper is organized as follows. Section II presents
the model, where we specify the system at hand and
define the Hamiltonian. In Sec. III we discussed the ob-
tained results and provide an explanation for the ob-
served behavior of the g∗ factor. Section IV contains the
conclusions.

II. MODEL

We consider a system depicted in Fig. 1, consisting of
a graphene sheet located on an insulating substrate of the
width d with the dielectric constant εr . (We choose εr =
3.9 corresponding to SiO2.) A metallic back gate is used
to tune the carrier density by varying the gate voltage Vg .
We assume the charged impurities with the concentration
ni are randomly distributed in the substrate at the distance
h = 1 nm apart from the graphene layer.22 The whole system
is subjected to the perpendicular magnetic field B. In order to
find the ground-state carrier density, we use the Thomas-Fermi
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FIG. 1. (Color online) Schematic illustration of the studied
structure. A graphene sheet is located on an insulating substrate
of the width d separating it from a metallic gate. The substrate
is contaminated by charged impurities with q = ±1 situated at the
distance h = 1 nm apart from the graphene layer.

approximation with the local relation23–25

nσ (r)

=
{∫ ∞

V σ (r) ρ
σ (E − V σ (r))f e

FD(E − EF )dE (electrons)∫ V σ (r)
−∞ ρσ (E − V σ (r))f h

FD(E − EF )dE (holes)

(2)

between the spin-dependent carrier density nσ (r) of the
graphene and the total potential energy V σ (r). Here f e

FD(E −
EF ) = 1/{exp[(E − EF )/kBT ] + 1} and f h

FD(E,μ) = 1−
f e

FD(E − EF ) are the Fermi-Dirac distribution functions for
electrons and holes, respectively; EF = eVg is the Fermi
energy. The Landau density of state in graphene is given by1

ρσ (E) =
{∑∞

N=0
gν

2πl2
B

δ(E − h̄ωc

√
N ) (electrons)∑∞

N=0
gν

2πl2
B

δ(E + h̄ωc

√
N ) (holes),

(3)

where N is a number of a Landau level, ωc = √
2vF /lB is the

cyclotron frequency, lB = √
h̄/eB is the magnetic length, vF

is the Fermi velocity in graphene; the factor gv = 2 takes into
account the valley degeneracy for all levels except of the zeroth
one. The zeroth Landau level belongs both to electrons and
holes which we take into account by setting gv = 1. According
to Eq. (2), the carrier density nσ (r) at the position r depends
on the total potential only at that position.

The total potential

V σ (r) = VH (r) + V σ
U (r) + V σ

Z + Vimp(r) (4)

is a sum of the Hartree, Hubbard, Zeeman, and external
potential produced by the impurities. The Hartree potential
is given by26,27

VH (r) = e2

4πε0εr

∑
r′ 	=r

n(r′)

(
1

|r − r′| − 1√
|r − r′|2 + 4d2

)
,

(5)

where n(r) = n↑(r) + n↓(r) is the local carrier density, and
the second term describes a contribution from the mirror
charges.28 The second term in Eq. (4) is the standard
Hubbard potential which is shown to describe carbon elec-

tron systems in a good agreement with the first-principles
calculations27,29

V σ
U (r) = Unσ ′

(r)Sa, (6)

where U is the effective Hubbard constant and Sa =
(3

√
3/4)a2 is the area corresponding to one carbon atom

in the graphene lattice (a ≈ 0.142 nm is the carbon-carbon
distance). In our work we use U = 9.3 eV which has been
recently calculated within the constrained random phase
approximation.29 The third term Eq. (4) is the Zeeman energy
given by Eq. (1). The last term in Eq. (4) corresponds to the
potential due to charged impurities and is given by

Vimp(r) = e2

4πε0εr

Nimp∑
i=1

(
qi

|r − ri |2 + h2

− qi√
|r − ri |2 + (2d − h)2

)
, (7)

where the summation is performed over charged impurities in
the dielectric; ri is the coordinate in the graphene plane of the
projection of the ith impurity of the charge qi situated at the
distance h from the plane. Equations (2) and (4) are solved
self-consistently until a convergence is achieved.

We define the effective g factor as follows:

g∗μBB = 〈
V ↑(r) − V ↓(r)

〉
, (8)

which assumes that spin splitting in the system is caused by
the Zeeman term, Eq. (1), where the free-electron value g is
replaced by the effective g factor, g∗. (If the Hubbard inter-
action is absent, U = 0, then apparently g∗ = g.) Substituting
Eq. (4) into Eq. (8), we arrived at the equation used to calculate
g∗,

g∗ = g + U

μBB
〈n↓(r) − n↑(r)〉, (9)

where 〈. . .〉 denotes spatial averaging over the graphene lattice
sites.

III. RESULTS AND DISCUSSION

Figure 2 presents the central result of the paper. It shows
the effective g factor as a function of the filling factor
ν = n

nB
(nB = 1/2πl2

B) calculated for different concentrations
of impurities. The dependence g∗ = g∗(ν) exhibits two main
features. First, the effective g factor is enhanced (g∗ > g)
and oscillates in the range 2 � g∗ � 4 achieving its maximal
values at ν = 4N = 0, ± 4, ± 8, . . . and minimal values at
ν = 4(N + 1

2 ) = ±2, ± 6, ± 10, . . . . Second, the increase of
the impurity concentration suppresses the enhancement as
well as the oscillatory behavior of g∗, such that for high ni

the effective g factor becomes only weakly dependent on
ν reaching the value g∗ ≈ 2.3. Note that Fig. 2 shows the
effective g factor for electrons, i.e., for ν > 0. In the case of
holes, ν < 0, the effective g factor show the same behavior.

In order to understand the observed behavior let us
first consider in detail the case of a low concentration of
impurities shown in Fig. 3, where the g∗-factor dependence
for ni = 0.02% is complemented by the spin-density and the
polarization dependencies. For small ni the effect of impurities
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FIG. 2. (Color online) The effective g factor as a function of
the filling factor ν for different concentrations of charged impurities,
ni = 0%,0.02%,0.08%,0.2%, at the constant perpendicular magnetic
field B = 35 T. Inset: The dependence of g∗ on the Hubbard constant
U for the fixed ν = 5. All the calculations are done at the temperature
T = 4 K.

is small and the filling factor can be directly related to the
number of the occupied Landau levels of an ideal system (i.e.,
without impurities). For a fixed value of the magnetic field
the increase of the filling factor corresponds to the increase of
charge density through subsequent population of the Landau
levels. As seen in Fig. 3, the total spin polarization P =
〈P (r)〉 = 〈 |n↓(r)|−|n↑(r)|

|n↓(r)|+|n↑(r)| 〉 exhibits the same qualitative behavior
as the g factor (except for ν = 0, which will be discussed
below). At ν = 2 the g∗ factor reaches its minimal value

FIG. 3. (Color online) The dependence of (a) the charge concen-
tration, (b) the polarization, and (c) the effective g factor on the filling
factor in an almost ideal system (i.e., in a graphene sheet with the low
concentration of charged impurities in the substrate, ni = 0.02%).

g∗ = g. In this case the Fermi energy is located in between the
zeroth Landau level (LL0) and the first Landau level (LL1);
i.e., the LL0 is fully occupied, while LL1 is completely empty
(see inset in Fig. 3). This gives rise to the equal spin-up and
spin-down densities and hence to the zero spin polarization.
The increase of the filling factor in the range 2 < ν < 4 leads
to gradual population of the first spin-down (↓) Landau level
[LL1(↓)] and, in turn, to the increase of n↓, while n↑ does not
change. (Note that even though in our model the DOS is given
by the delta functions, it is effectively smeared out by a nonzero
temperature, which results in a smooth change of the charge
densities.) Since the difference n↓ − n↑ increases, according to
Eq. (9) g∗ grows and reaches its maximum g∗ ≈ 3.5 at ν = 4,
when the Fermi energy lies in the middle of two spin-split
levels corresponding to the same Landau level (LL1). The
enhancement of the effective g factor in comparison to its
noninteracting value is apparently caused by the Hubbard term
in Eq. (4). The Hubbard interaction enhances the spin splitting
triggered by the Zeeman interaction giving rise to g∗ > g.

When the filling factor is further increased from ν = 4 to
ν = 6, i.e., the Fermi energy is shifted towards higher energies,
the population of the spin-up (↑) level belonging to LL1
gradually grows, while the density of the spin-down electrons
(↓) belonging to the same LL1 remains unchanged as the
later level remains completely filled. Eventually, at ν = 6 the
spin densities become equal, n↓ ≈ n↑, the system is not spin
polarized (P = 0), and the effective g factor again reaches
its minimum g∗ = g. The same physics is responsible for
similar oscillatory behavior of the effective g factor and the
polarization for higher filling factors.

The dependencies of the effective g factor and the po-
larization are qualitatively different for |ν| < 2. Namely, the
polarization drops to zero at ν = 0, while the effective g factor
reaches its maximum; see Figs. 3(b), 3(c). This is in contrast
to all other filling factors at which both g∗ and P exhibit
maxima. This can be understood as follows. In contrast to
other Landau levels, LL0 is equally shared by electrons and
holes at EF = 0, which is a distinct feature of graphene.
As illustrated in Fig. 4, when the magnetic field is high
enough, i.e., the spin-split levels are well resolved, electrons
predominantly populate the LL0(↓) state, while LL0(↑) is
mostly occupied by holes. As a result, n↓ = −n↑, and therefore

FIG. 4. (Color online) Schematic illustration of Landau level
population at ν = 0 for electrons and holes. Shaded regions (red
and blue) correspond to states occupied in the LL0 by spin-up and
spin-down electrons.
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FIG. 5. (Color online) Distribution of (a), (e) the self-consistent
potential, (b), (f) spin-up and (c), (g) spin-down electron density, and
(d), (h) the spin polarization for a single impurity at different filing
factors ν = 4 and ν = 6 (left and right columns, respectively).

the effective g factor reaches the maximum because of the
Hubbard term ∼ U (n↓ − n↑) = 2Un↓. On the other hand, at
ν = 0 the graphene is electrically neutral, n = n↓ + n↑ = 0,
and spin polarization is absent, P = 0, since |n↓| = |n↑|. Note
that the effect of electron-electron interaction on spin splitting
in graphene nanoribbons at ν ≈ 0 was discussed in Ref. 30.

The above analysis is strictly speaking applicable only for
ideal graphene, when ni = 0. In this case, the range of g factor
oscillations can be easily estimated from Eq. (9). At the filling
factors ν = 4(N + 1

2 ) = ±2, ± 6, ± 10 . . . corresponding to
fully occupied Landau levels, i.e., n↓ = n↑, Eq. (9) gives
g∗

min = g = 2; while at ν = 4N = 0, ± 4, ± 8 . . ., when EF

lies between two spin-split levels of a given Landau level,
for the chosen parameters U and B, the effective g factor
g∗

max = 2 + USa/πl2
BμB ≈ 4, which is in accordance with

our numerical calculations (Fig. 2, ni = 0 ). However, in the
presence of impurities, this is not the case anymore, as the
oscillations of the effective g factor get suppressed and g∗
never reaches g∗

max and always stays larger than g∗
min; see Fig. 2.

In order to explain the influence of impurities on the g

factor, let us now consider a system consisting of a single
repulsive impurity only. Figure 5(a) shows the cross section
of the self-consistent potentials V ↑ and V ↓ for spin-up and
spin-down electrons, respectively. The LL0(↓ , ↑) coincides
with the self-consistent potential V ↓,↑, while the positions of
the LL1(↓ , ↑) are given by V ↓,↑ + h̄ωc. We have chosen two
representative values of the filling factor, namely, ν = 4 and
ν = 6, corresponding to maximum and minimum values of the
effective g factor.

At ν = 4, which in ideal graphene corresponds to the
almost occupied spin-down and almost empty spin-up states
of the LL1, g∗ reaches the maximal value. Figure 5 shows
that the LL1(↓) is pinned to the Fermi energy EF . (For the

effect of pinning of EF within the Landau levels see, e.g.,
Ref. 31.) The states lying in the interval |E − EF | < 2πkBT

are partially filled 0 < fFD < 1 and therefore the electron
density can be redistributed under an influence of an external
potential. These states represent the compressible strips,32

which in our case extend over the whole system (except of
the impurity region). The presence of negative impurity leads
to the distortion of the potential as depicted in Fig. 5(a). As a
result, in the impurity region the LL1(↓) raises above EF and
this state becomes depopulated, Fig. 5(c). [Note that LL1(↑)
is practically depopulated even in an absence of the impurity,
Fig. 5(b).] As a result, the spin density difference, n↓ − n↑,

decreases in the impurity region, which apparently leads to
the decrease of P and g∗ in comparison to ideal graphene; see
Fig. 5(d).

On the other hand, the influence of the impurity is opposite
for ν = 6 when the system is predominantly in a nonpolarized
state, which is manifested by the minimum of g∗. However,
the distortion of the potential due to the impurity gives rise
to the formation of a compressible strip around the impurity,
where EF intersects the LL1. This is clearly seen in Fig. 5(e)
where the compressible strip corresponds to regions where
the potential is flat because of the pinning to EF within the
energy window |E − EF | < 2πkBT (where 0 < fFD < 1).
Because of the partial filling of the compressible strip, the
electron density there can be easily redistributed there. As a
result, the Hubbard interaction pushes up and depopulates the
LL1(↑) while the LL1(↓) remains populated; see Figs. 5(f),
5(g). This leads to a local spin polarization around the impurity
as illustrated in Fig. 5(h). Therefore, the overall polarization
is no longer zero, 〈P (r)〉 > 0, and hence, the effective g factor
does not drop to the minimum value, remaining g∗ > g∗

min.
Summarizing, the influence of a single impurity is twofold:

When the system is predominantly spin polarized, ν = 4N =
0, ± 4, ± 8 . . ., the impurity decreases the average polariza-
tion and the effective g factor by locally pushing up the
Landau levels and depopulating them; in the opposite case
of a predominantly nonpolarized system, ν = 4(N + 1

2 ) =
±2, ± 6, ± 10 . . ., the impurity leads to the local formation of
the spin-polarized compressible strips, which instead increases
the average polarization and the effective g factor.

Having understood the effect of a single impurity on the
average polarization and the effective g factor it is straight-
forward to generalize the obtained results for an arbitrary
concentration of impurities. The higher the concentration ni ,
the larger the influence of impurities on the average value of
the spin polarization and the effective g factor. As a result, an
increase of the impurity concentration leads to the suppression
of the amplitude of oscillations as shown in Fig. 2.

Note that for a sufficiently large impurity concentration
(in our case ni = 0.2%), the oscillations of g∗ get practically
suppressed and g∗ becomes rather independent of the filling
factor; see Fig. 2. This effect can be understood from a
comparison of two distinct cases of low and high impurity
concentration, ni = 0.02% and ni = 0.2%; see Fig. 6. When
the impurity concentration is low (ni = 0.02%, two left
columns in Fig. 6), the self-consistent potentials produced
by different impurities do not overlap and the system can
be treated as an assembly of independent impurities. [The
potential is flat everywhere besides narrow regions close to the
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FIG. 6. (Color online) The spin-resolved potential, densities, and polarization for different concentrations of charged impurities (ni =
0.2%,0.02%) and for different filling factors (ν = 4,6). The one-dimensional plots of (a) V ↑(y), (b) the spin-up and (c) spin-down charge
densities, and (d) the spin polarization P (y) as a function of y for x = 50 nm. Dashed lines correspond to the ideal system (without impurities).
(e) The 2D plot of the spatially resolved spin polarization P (x,y) in a graphene sheet. The system parameters are Nx = 800, Ny = 461,
d = 10 nm, B = 50 T.

impurities; see (a) panels for ni = 0.02% in Fig. 6.] At ν = 4
the presence of impurities decreases local polarization [dips
in (c) panel], while at ν = 6 the local polarization increases
[peaks in (c) panel].

However, when the impurity concentration is high (ni =
0.2%; two right columns in Fig. 6), the potentials produced by
different impurities start to overlap and the analysis in terms
of a single impurity is no longer justified. A given value of
the filling factor cannot be associated with a certain number
of the Landau levels, since the potential is strongly distorted
in comparison to the ideal case [(a) panels for ni = 0.2%
in Fig. 6] and therefore electrons occupy different Landau
levels [(b) and (c) panels for ni = 0.2% in Fig. 6]. In fact,
the deviations in the potential and densities from those of the
ideal case become so significant, so the difference between
the cases of ν = 4 and ν = 6 is practically washed out (see
two right columns in Fig. 6). As a result, the average value of
the polarization and the effective g factor becomes practically
independent of the filling factor.

In the model used in our calculation the enhancement of the
g factor is caused by the Hubbard term in the potential, Eqs.

(6) and (9). Let us briefly discuss how the calculated value of
g∗ depends on the Hubbard constant U . While we used value
U ≈ 3.5t ,29 the current literature reports various estimations
of U in the range 0.5t � U � 2t,33–35 where t ≈ 2.7 eV is
the hopping integral in the standard p-orbital tight-binding
Hamiltonian.1 We calculated the dependencies g∗ = g∗(ν) for
different values of the parameter U and found that the results
show the same qualitative behavior and the calculated value
of g∗ scales linearly with U. This is illustrated in the inset to
Fig. 2 which shows a dependence of the effective g factor on
the Hubbard constant for a representative value of ν = 5.

Note that our explanation of the suppression of the g factor
due to the effect of impurities is based on the Thomas-Fermi
approximation. Within the spirit of this approximation, the
density of states is spatially varied and is given by the
δ-shaped locally defined Landau levels, Eq. (3). Within the
fully self-consistent quantum mechanical approach, the effect
of impurities would lead to broadening of the Landau levels
of the whole system under consideration, and the behavior
of the effective g factor can be related to this broadening.
(It is noteworthy that in conventional 2DEG systems these
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two methods lead to very similar results for self-consisted
potentials and electron densities; see, e.g., Ref. 38.) It should be
however noted that the full self-consistent quantum mechanical
treatment of the systems considered in the present study is
beyond the current computational capabilities.

Let us now discuss the relation of our findings to the recent
experiment. Measurements done by Kurganova et al.20 exhibit
the enhancement of the effective spin splitting leading to the
effective g factor g∗ = 2.7 ± 0.2. Also, the enhanced effective
g factor was found to be practically independent of ν. Our
calculations show that for low impurity concentrations, g∗
exhibits a pronounced oscillatory behavior in the range 2 �
g∗ � 4, and it becomes rather independent of ν for larger ni

reaching a saturated value g∗ ∼ 2.3. Our calculations therefore
strongly suggest that impurities always present in realistic
samples play an essential role in suppressing the oscillatory
behavior of g∗. Note that in real systems the oscillations of
g∗ can be smoothed by a number of additional factors. The
measurements of Kurganova et al.20 were performed in tilted
magnetic fields and at large filling factors ν > 6. In this case
the distance between the adjacent Landau levels is comparable
to the Zeeman splitting which results in stronger overlap
of the successive Landau levels and eventually leads to an
additional smearing of g∗. Therefore our calculations provide
motivation for further studies of the effective g factor close
to ν = 0, where the oscillatory behavior of g∗ is expected
to be more pronounced. Our findings also indicate that the
oscillatory behavior of the effective g factor is expected to be
more pronounced in suspended samples where the influence
of charged impurities will be much less important.

Finally, it is noteworthy that spin splitting in graphene36

and graphene quantum dots37 was also experimentally studied
in a parallel magnetic filed. It was concluded that in this case
the effective g factor does differ from its free-electron value.
This can be explained by the fact that in the parallel field

the Landau levels do not form and therefore the interaction-
induced enhancement of the g∗ factor is small.

IV. CONCLUSIONS

In this work we employed the Thomas-Fermi approxima-
tion in order to study the effective g factor in graphene in the
presence of a perpendicular magnetic field taking into account
the effect of charged impurities in the substrate. We found
that electron-electron interaction leads to the enhancement
of the spin splitting, which is characterized by the increase
of the effective g factor. We showed that for a low impurity
concentration g∗ oscillates as a function of the filling factor ν in
the range from g∗

min = 2 to g∗
max ≈ 4 reaching minima at filling

factors ν = 4(N + 1
2 ) = ±2, ± 6, ± 10, . . . and maxima at

ν = 4N = 0, ± 4, ± 8, . . ., with N being the Landau level
index. Finally, we outlined the influence of impurities on
the spin splitting and demonstrated that the increase of
the impurity concentration leads to the suppression of the
oscillation amplitude and to a saturation of the effective g

factor around a value of g∗ ≈ 2.3. Also, the measurements
based on the electron spin resonance yield the g factor
corresponding to its free-electron value.39 This is because the
ESR method probes the energy difference of the spin states
of individual electrons and is thus insensitive to many-body
corrections leading to a difference of the total spin-up and
spin-down populations of the system at hand.
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