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Stability of Majorana fermions in proximity-coupled topological insulator nanowires
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It has been shown previously that a finite-length topological insulator nanowire, proximity-coupled to an
ordinary bulk s-wave superconductor and subject to a longitudinal applied magnetic field, realizes a one-
dimensional topological superconductor with an unpaired Majorana fermion (MF) localized at each end of the
nanowire. Here, we study the stability of these MFs with respect to various perturbations that are likely to occur
in a physical realization of the proposed device. We show that the unpaired Majorana fermions persist in this
system for any value of the chemical potential inside the bulk band gap of order 300 meV in Bi2Se3 by computing
the Majorana number. From this calculation, we also show that the unpaired Majorana fermions persist when
the magnetic flux through the nanowire cross section deviates significantly from half flux quantum. Lastly, we
demonstrate that the unpaired Majorana fermions persist in strongly disordered wires with fluctuations in the
on-site potential ranging in magnitude up to several times the size of the bulk band gap. These results suggest
this solid-state system should exhibit unpaired Majorana fermions under accessible conditions likely important
for experimental study or future applications.
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I. INTRODUCTION

In 1937, Ettore Majorana first showed that the complex
Dirac equation can be separated into a pair of real wave
equations, each of which is satisfied by real fermionic fields.1

Such a real fermionic field, denoted by �, satisfies the property
that � = �†. A particle created by this field, known as a
Majorana fermion, is therefore distinguished by the fact that
it is its own antiparticle.2–5 Having many properties which
make them interesting from the standpoint of fundamental
science, while also being a possible platform for fault-tolerant,
scalable quantum computation,6–11 Majorana fermions are
of tremendous interest to the condensed matter community.
After intense effort, some proposals to realize Majorana
zero modes made in recent years13,14 seem to be bearing
fruit, with signatures of Majorana fermions already being
reported.15–17 Of the many devices proposed for harboring
Majorana fermions,4,5 however, virtually all face considerable
experimental challenges in achieving the conditions neces-
sary for Majorana fermion emergence. Additional hurdles
are associated with the control and manipulation of MFs
which is necessary for harnessing their potential for quantum
computation. Thus, even if Majorana fermions have indeed
been conclusively observed, there remains a need for more
accessible platforms with which to realize MFs sufficiently
robust for applications.

The purpose of this paper is to present results on the
stability of MFs in a solid-state device previously predicted18

to host these quasiparticle excitations. The device, depicted
schematically in Fig. 1, consists of a nanowire fashioned
out of a strong topological insulator (STI), such as Bi2Se3

or Bi2Te2Se, placed in contact with an ordinary s-wave
superconductor (SC), subject to an applied magnetic field
along the axis of the nanowire. We show that MFs are
remarkably stable in this device, making it unique amongst
the many proposals for observing MFs in solid-state systems
and a significant advancement towards study of MFs and
development of MF-based technology.

We note that Bi2Se3 nanowires and nanoribbons have been
synthesized and can exhibit diverse morphologies controllable
by growth conditions.19 Aharonov-Bohm (AB) oscillations
in the longitudinal magneto-resistance of Bi2Se3 nanoribbons
have also been observed, proving the existence of a coherent
surface conducting channel.20 Studies of magnetoresistance
of Bi2Se3 nanoribbons under a variety of magnetic field
orientations also reveal a linear magnetoresistance that persists
to room temperature and is consistent with transport through
topological surface states.21 Lastly, the superconducting prox-
imity effect and possible evidence for Pearl vortices has been
observed in Bi2Se3 nanoribbons.22 This experimental progress
suggests our proposed device may be realized experimentally
with relative ease.

Stability of MFs in our proposed device is confirmed by
showing that the degenerate quasiparticle ground state is
separated from excited states by an energy gap close to the
superconducting (SC) gap which can be as large as ∼10 meV,
through study of a low-energy analytical theory and numerical
study of a lattice-model Hamiltonian. We also compute the
topological phase diagram for the system numerically to
show that MFs exist in the system for any value of the
chemical potential in the bulk band gap of the TI (for Bi2Se3,
∼300 meV). Furthermore, we find that the topological phase
corresponding to the presence of MFs persists even when the
chemical potential is in the bulk conduction band, although,
since we observe rapid collapse of the excitation gap in this
regime, this result is of limited experimental relevance.

These results also support additional explicit numerical
studies of the robustness of MFs against nonmagnetic disorder
also discussed, which show that the MFs persist in the presence
of fluctuations in the on-site chemical potential in an explicit
lattice-model Hamiltonian on the order of the bulk band gap
(300 meV). As such, previous expectations that MFs would be
robust against nonmagnetic disorder according to Anderson’s
theorem, because time reversal symmetry (TRS) holds in this
device under operating conditions,18 are here confirmed.
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FIG. 1. (Color online) Schematic of the proposed device. Mag-
netic field B is applied along the axis of the wire taken to coincide
with the z direction.

In the most promising of other proposals, the MFs are
protected by an SC gap of at most 1 meV, and the chemical
potential must also be tuned to lie within a window of the
same size.13,14 Although these requirements are possible to
achieve in experiments on individual wires,15 such fine tuning
will be difficult to replicate in more complex setups (i.e., those
containing wire networks necessary for MF manipulation.)23

Furthermore, other proposals are not predicted to possess MFs
under TR-invariant conditions, meaning these devices are not
expected to be robust against nonmagnetic disorder. Therefore
MFs constructed in these proposals might be too delicate to
be useful in practical applications. Our results on the re-
markable stability of MFs in the TI nanowire-based proposal
therefore outline a practical route towards applications based
on the physics of Majorana fermions.

II. MAJORANA FERMIONS

A. Significance and relevance of Majorana fermions

In the more than 70 years since Majorana’s seminal paper,1

it is only very recently that any experimental evidence of
Majorana fermions has been obtained. Recent developments
in topological states of matter have potentially already led
to successful construction of Majorana fermions in solid-
state systems,15,16 as quasiparticle excitations.5 The race to
experimentally study these quasiparticles has been especially
heated because of the observation by Kitaev24 that Majorana
fermions could be used as a platform for robust quantum
computing. In this scheme, a quantum bit is stored in a Dirac
fermion that has been teased apart into two Majorana fermions.
If these two Majorana fermions are separated spatially from
one another, then, whether this shared fermion is occupied or
empty, it is distributed nonlocally, and no local perturbation
can measure this shared quantum bit.24

Furthermore, a system of N spatially separated Majorana
fermions is predicted to satisfy non-Abelian statistics, imply-
ing that such a system has an N -quasiparticle ground state that
is degenerate. This degeneracy allows adiabatic interchange
of the quasiparticles, or braiding, to correspond to unitary
operations on the ground state. For Majorana fermions, it
has also been shown that the only way to perform unitary
operations on the ground state—which could be used for
computing—is by braiding, and these operations are dependent
only on the topology of the braid. Since the system is in a
topological phase when Majorana fermions are present, this
degenerate ground state is also separated from the rest of
the spectrum by an energy gap known as the “minigap.” If
the temperature is much lower than the minigap, and the

system is weakly perturbed using frequencies much smaller
than the gap, the system evolves only within the ground-state
subspace.25

All of these features combined mean that a system of
spatially separated Majorana fermions could be used as a
quantum computer that is immune to the tremendous obstacle
faced by most other proposed platforms for quantum com-
puting known as decoherence.26 Experimental confirmation
of the existence of Majorana fermions is a crucial first step
towards practical quantum computing, but it is imperative that
platforms possessing robust Majorana fermions under stable
conditions be identified and developed.

B. Other existing proposals for realizing Majorana fermions
experimentally

There is no shortage of proposals for realizing Majorana
fermions experimentally. Earlier suggestions for physical sys-
tems that support Majorana fermion states include fractional
quantum Hall states at filling ν = 5

2
27 and Helium-3.28 These

ground-breaking proposals are thought to be extremely chal-
lenging to realize experimentally,14 however. We will discuss
the many other proposals and comment on the experimental
challenges they face below.

Two-dimensional (2D) topological insulators have long
been proposed as platforms for realizing Majorana zero modes,
for instance, having the advantages of greatly facilitating
Josephson-based Majorana detection, long considered to be
smoking gun confirmation of the presence of Majorana
zero modes,4 as well as being unaffected by nonmagnetic
disorder due to time-reversal invariance29,30 and, in princi-
ple, possessing a large pairing gap exhibited by the parent
superconductor.29,31 However, of many materials predicted to
be 2D topological insulators,32–38 only one, HgTe, has been
confirmed experimentally thus far,39,40 although there has
also been some evidence recently that InAs/GaSb quantum
wells may also exhibit a topological insulator phase.41,42

2D semiconductor heterostructures have also shown promise
as platforms for realizing Majorana zero modes, but face
challenges due to small spin-orbit energies,43,44 a need
for difficult-to-engineer, high-quality interfaces, and limited
tunability.4

An innovative proposal for realizing Majorana zero modes
in three-dimensional topological insulators due to Fu and
Kane exists,12 but this proposal, while groundbreaking, faces
considerable challenges given that time-reversal symmetry
must be broken to achieve Majorana zero modes, making
the device vulnerable to nonmagnetic disorder.4 There have
also been many proposals based on Su2RuO4, but even in the
simplest of these proposals, the minigap protecting Majorana
zero modes from excited states is in the milliKelvin range,4

and a beautiful proposal for realizing Kitaev’s one-dimensional
(1D) toy model along an ordinary hc

2e
vortex line threading a

layered spinful p + ip superconductor likely to be Su2RuO4

currently faces the same problem.4,45

There is great interest in realizing Majorana zero modes
in one-dimensional systems, because they have generally
been predicted to remain separated from excited states by a
larger energy gap than in other proposals.4 Conventional 1D
wires with sizable spin-orbit coupling, proximate to s-wave
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superconductors, and subject to modest magnetic fields13,14

are seen as very promising platforms for first experimental
realization of Majorana zero modes.4 These proposals must
overcome numerous issues, however, such as positioning of
the chemical potential in a rather small interval of roughly
1 K over distances long compared to the wire’s coherence
length.4 This constraint could be relaxed by applying larger
magnetic fields, but this introduces other difficulties.4 Tuning
of the chemical potential could likely be even more difficult
due to disorder-induced fluctuations in the chemical potential,
since the topological phase corresponding to the presence of
Majorana zero modes appears only at finite magnetic fields in
these devices, so Anderson’s theorem does not protect the gap
against nonmagnetic disorder, which is always pair-breaking
according to many previous studies.29,46–53 Furthermore, since
the ratio of Zeeman energy to spin-orbit energy is small for
both wires made of InAs and InSb,54 disorder is likely to play a
nontrivial role.4 Although there have been efforts to ameliorate
this issue by eliminating an applied magnetic field55,56 from
the device or reducing it,57,58 these approaches can also lead
to complications that can potentially cause the Majorana zero
modes to disappear.55,57

The above conventional 1D wire proposals further face the
challenge that multiple subbands are usually occupied in these
wires and gating into the lowest subband regime is potentially
nontrivial, especially if these wires are in close proximity
to a superconductor as proposed.4 Multichannel wires have
been shown to support the 1D topological superconductor
state leading to Majorana zero modes away from the lowest
subband limit,49,52,59,60 but these systems still require some
degree of gating, leading to proposals of increasing complexity
involving regular arrays of superconducting islands in contact
with the wire.61–63 Such work has even led to the ingenious
proposal of a chain of quantum dots that would be bridged
by superconducting islands,63 but reaching the regime where
only a comparatively small number of quantum dots would
be needed would require very fine-tuning that would likely
suffer from strong randomness.4 Carbon nanotubes, also
suggested as hosts for Majorana zero modes, face considerable
challenges in reaching the spinless regime with proximity-
induced pairing required,64–66 while proposals involving half-
metallic ferromagnetic wire also face challenges, such as the
need to couple to noncentrosymmetric superconductors with
spin-orbit coupling.67,68

Despite these challenges, there have been promising exper-
imental results for Majorana fermions based on some of these
proposals. Josephson effects at the surface of a variety of three-
dimensional (3D) topological insulators with superconducting
electrodes have been observed.16,69–74 While these experi-
ments, and related Andreev conductance measurements75–78

show interesting and unusual features, these cannot be readily
attributed to the single Majorana zero mode (typically only
one out of 105 modes).5

The nanowire-based proposal of Lutchyn et al.13,14 and
Oreg et al.14 has also led to convincing evidence for a
Majorana zero mode in an InSb nanowire as reported by
Kouwenhoven and his group.15 Since then, theoretical work79

by Patrick Lee and collaborators has indicated that, under
conditions for semiconducting wires with modest amounts
of disorder relevant to Kouwenhoven’s work, Majorana end

states are destroyed and do not give rise to quantized zero-bias
peaks (ZBPs). At finite temperatures, furthermore, ZBPs of
a nontopological origin are predicted to appear, leading to
clusters of low-energy states localized near the wire end.
These nontopological ZBPs are further anticipated to be
typically stable with respect to variations of chemical potential
and magnetic field, and appear and disappear under nearly
identical conditions to those of true Majorana peaks. This work
suggests caution is required in interpreting recent experiments
to observe MZMs and that substantially longer and cleaner
wires are required to conclusively observe MZMs.

However, work by Tewari and Stanescu80 also indicates, for
a smooth confinement potential at the ends of a semiconductor
Majorana wire, emergence of zero bias conductance peaks
corresponding to the topologically trivial phase is necessarily
accompanied by a signature similar to closing of the bulk band
gap. This gap closing signature in the end-of-wire local density
of states was absent in the Kouwenhoven study, suggesting
Kouwenhoven’s group and others81,82 may have been success-
ful in observing MZMs. If indeed Majorana zero modes have
finally be observed, however, there still remains a need for
devices in which MFs can be realized under more accessible
conditions, are robust, and can finally be manipulated for
topologically protected computation, motivating the results
we present here on a proposal in which Majorana fermions
occur under a wide range of accessible conditions robustly.

III. TI NANOWIRE WITH MAGNETIC AND
SUPERCONDUCTING ORDER

A. Low-energy theory: normal state

We begin by presenting the low-energy analytical theory
of the device18 in greater detail to facilitate later discussion of
the novel results on stability, as this foundation is later used to
understand the new results.

First, we motivate the proposal with study of a cylindrical
TI nanowire proximity coupled to a bulk s-wave SC as the
greater symmetry of this system permits analytical study of
the low-energy fermionic excitations on the surface of the
nanowire.

The low-energy fermionic excitations on the surface of the
topological insulator are governed by the Dirac Hamiltonian83

h0 = v

2
[h̄∇ · n̂ + n̂ · (p × s) + (p × s) · n̂], (1)

where n̂ is a unit vector normal to the surface, p = −i∇ is the
momentum operator, and s is the vector of Pauli matrices in the
spin space. We will also include the effect of a magnetic coating
on the TI nanowire by adding an additional term, hm = s · m,
to the Hamiltonian. Later, we will show that this term is not
necessary for Majorana zero modes to emerge in the device,
but its inclusion will be convenient in calculations.

Let us now consider the specific case of a cylindrical
topological insulator nanowire of radius R with magnetic field
B applied along the ẑ axis as shown in Fig. 2. The unit vector n̂
is then taken to be normal to the curved surface of the nanowire.
To include a flux � through the end of the wire (in the ẑ

direction) as proposed, we replace the momentum operator p
in Eq. (1) with π = p − (e/c)A, where A = η�0(ẑ × r)/2πr2

is the vector potential and �0 is the flux quantum. Therefore,
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FIG. 2. (Color online) Schematic of the device simplified for
analytical study, in which a cylindrical TI nanowire is substituted
for a more realistic TI nanowire with square cross section. Magnetic
field B is still applied along the axis of the wire taken to coincide with
the z direction.

suppressing vh̄, we now have the Hamiltonian,

h = 1

2r
I + (n̂ × π) · s + s · m. (2)

Taking m = mẑ, we can rewrite the Hamiltonian in cylindrical
coordinates as

h = 1

2R
I + s1k sin(φ) − s2k cos(φ)−s3

(
i

R
∂φ+ η

R

)
+ ms3.

(3)

To diagonalize this Hamiltonian for an infinitely long wire, we
exploit the translational and rotational symmetries and write a
solution ψkl of the form,

ψk(z,ϕ) = eiϕle−ikz

(
fkl

eiϕgkl

)
. (4)

With this ansatz, our Hamiltonian is

h̃kl = s2k + s3
[(

l + 1
2 − η

)/
R + m

]
. (5)

The spectrum Ekl for m = 0, if vh̄ is reinstated, is then

Ekl = ±vh̄

√
k2 +

(
l + 1

2 − η
)2

R2
. (6)

Here k labels momentum eigenstates along the cylinder while
l = 0,±1, . . . is the angular momentum. We see that the
spectrum has a gapless branch for η = n + 1

2 , where n is any
integer (η = �/�0 measures the magnetic flux through the
wire cross section in the units of flux quantum �0 = hc/e).
The periodicity η → η + n with n integer in Eq. (6) reflects
the expected �0 periodicity in the total flux.

We now notice that, although the branches of Ekl are doubly
degenerate for η = 0, the degeneracy is lifted for η �= 0. One
can always find a value of the chemical potential μ that yields
a single pair of nondegenerate Fermi points for η �= 0, as
illustrated in Fig. 3, or more generally, an odd number of such
pairs. According to the Kitaev’s criterion24 pairing induced by
the proximity effect is then expected to drive the system into a
topological phase. In the special case η = 1/2 the two lowest
bands are nondegenerate, while all higher bands are doubly
degenerate, yielding an odd number of Fermi points at any μ in
the bulk band gap. While the semiconductor wire proposal13,14

only possesses Majorana fermions for values of the chemical

1
3
5

EkEk

kk

1

2

1 meV
300 meV

(a) (b)

FIG. 3. (Color online) The normal state dispersion under con-
ditions required for emergence of Majorana fermions for (a) the
Rashba-coupled semiconductor quantum wire proposal in Refs. 13
and 14, where the dispersion is shown without Zeeman coupling
(dashed lines) and with Zeeman coupling, and (b) our topological
insulator nanowire proposal, with doubly degenerate bands shown as
black and blue dashed lines. Green and pink horizontal lines represent
the level of the chemical potential and a number to the right of a line
indicates the number of Fermi points in the right half of the Brillouin
zone at that value of the chemical potential. Vertical green lines
indicate the interval inside which the chemical potential can be tuned
to yield Majorana fermions in the corresponding SC state.

potential in a 1-meV interval, our proposal possesses Majorana
fermions for any value of the chemical potential μ inside the
300-meV bulk band gap of Bi2Se3. Fine-tuning of the chemical
potential is unnecessary in our device at η = 1/2 due to the
specific pattern of degeneracies of the bands which is in turn
protected by the Kramers theorem.

The surface Dirac Hamiltonian (1) is expected to be valid
in the limit when the surface state penetration depth ζ is much
smaller than the wire radius R. In the opposite limit of a thin
wire, ζ > R, one could worry that the wave-funcion overlap
in the interior of the wire might lead to the formation of a
gap, as happens, for example, in thin TI films. We study the
limit of a thin wire in Appendix A, based on a 3D effective
model of a TI. The results of this study are interesting. We
find that the gapless mode actually persists for an arbitrary
radius R in the case when the magnetic flux �0/2 has the
form of a δ function centered at the axis of the cylinder. For
a uniform magnetic flux a gap in the surface state opens up
and its magnitude is proportional to (ζ/R)2 representing the
amount of magnetic flux to which the wave function is exposed.
Thus, in the case of a cylindrical wire, it is not the wave-
function overlap (which would lead to a gap ∼e−R/ζ ) but the
amount of T breaking in the system that determines the gap.
We note that our numerical simulations discussed in Sec. IV
below indicate that for moderately thin wires (i.e., ζ being a
significant fraction of R), the gapless state actually persists
but now exists at somewhat higher magnetic flux. In addition,
the wires likely to be used in an experiment19–21 are tens of
nanometers thick and are thus in the thick-wire limit, ζ being
typically just a few lattice spacings.

Finally we note that the surface Dirac Hamiltonian (1) rep-
resents the simplest possible model that neglects anisotropies
present in real materials, such as Bi2Se3. Such anisotropies
will necessarily lead to a spin texture that depends on
the crystallographic direction of the surface which can be
described by an effective 4 × 4 surface Hamiltonian.84 It
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would be interesting to understand these effects for various
wire geometries but we leave this problem for future study. We
note that our lattice Hamiltonian employed in Sec. IV includes
the above mentioned anisotropies and the results based on
it confirm all the essential features of our simple analytical
model.

B. Low-energy theory: Majorana fermions

To study the emergence of Majorana fermions in the
simplest possible setting, we now focus on the η = 1

2 case and
consider values of the chemical potential satisfying |μ| < vh̄

R

(i.e., intersecting only the l = 0 branch of the spectrum). The
Hamiltonian for this branch then becomes hk = ks2 − μ +
ms3, where we have explicitly included the chemical potential
term. The Bogoliubov-de Gennes Hamiltonian describing the
proximity-induced superconducting order in the nanowire
can be written, in the second-quantized notation, as H =∑

k �
†
kHk�k with �k = (fk,gk,f

†
−k,g

†
−k)T and

Hk =
(

hk k

−∗
−k −h∗

−k

)
. (7)

For the surface state, η = 1/2 represents a T -invariant point
at which h∗

−k = hk . Therefore, Hk can be written as

Hk =
(

hk k

−∗
−k −hk

)
. (8)

In the following, we consider the simplest s-wave pairing
potential k = 0is2, with 0 a (complex) constant order
parameter, which corresponds to the pairing term 0(f †

k g
†
−k −

g
†
kf

†
−k). It is useful to note that this form of k actually

implies a vortex in the SC order parameter, as can be seen
by transforming Hk back into the original electron basis [i.e.,
undoing the transformation indicated in Eq. (4)]. The phase of
the order parameter in this basis winds by 2π on going around
the cylinder as required in the presence of the applied magnetic
field whose total flux is �0/2.

Introducing Pauli matrices τα in the Nambu space and
assuming 0 real, we can write

Hk = τ3(ks2 − μ) + τ3s3m − τ2s20. (9)

(Here we have again taken v = h̄ = 1.) The spectrum for
this Hamiltonian is Ek = ±[k2 + μ2 + m2 + 2

0 ± 2(k2μ2 +
μ2m2 + m22

0)1/2]1/2. We now consider a special case when
μ = 0. The Hamiltonian simplifies, Hk = τ3s2k + τ3s3m −
τ2s20 and the spectrum assumes a simple and suggestive
form,

Ek = ±
√

k2 + (m ± 0)2. (10)

We observe that the spectrum is fully gapped in the presence
of either SC or magnetic order but has a gapless branch when
m = ±0. Thus, we expect a topological phase transition at
this point. Consequently, we expect gapless modes to exist at
an interface between SC and magnetic domains in a wire.

Now consider spatially varying m(z) and (z) such that
m(0) = (0) as sketched in Fig. 4. With these choices for
the order parameters, we expect the spectrum to be gapped
far away from the domain wall, but we expect gapless modes
localized near z = 0. To determine if there are any fermionic

z

Δ(z)

m(z)

µ(z)

FIG. 4. (Color online) A convenient possible choice for the
SC/magnetic domain wall at z = 0. (z) is the SC order parameter
and m(z) the magnetic order parameter. A dashed line shows the
zero-mode solution μ(z) for this domain wall. This particular choice
of boundary conditions can be used to show Majorana fermions
occur at the ends of the TI nanowire irrespective of precise boundary
conditions.

zero modes, we rotate Hk in s − τ space so that the rotated
Hamiltonian is completely off-diagonal, that is, we work with
H̃k = UHkU

−1, where

U = e−i π
4 s2e−i π

4 τ2 . (11)

Then H̃k = τ1s2k + τ1s1m − τ2s2, so H̃k is of the form,

H̃k =
(

0 Dk

D
†
k 0

)
, (12)

where Dk = s2k + s1m + is2.
We now replace k → −i∂z and look for solutions �̃(z)

satisfying

H̃k�̃(z) = 0. (13)

Taking �̃(z) = (ψ1,ψ2,ψ3,ψ4)T and reinstating v, Eq. (13)
yields four independent equations:

(+v∂z + m + )ψ1 = 0, (14)

(−v∂z + m − )ψ2 = 0, (15)

(+v∂z + m − )ψ3 = 0, (16)

(−v∂z + m + )ψ4 = 0. (17)

Here we have suppressed the z dependence. The solution u(z)
of an equation of the form,

[v∂z + ω(z)] uz = 0, (18)

a Jackiw-Rossi zero mode,85 can be written as

u(z) = u0e
−1
v

∫ z

0 dz′ω(z′). (19)

This solution is normalizable provided that ω(z) has a soliton
profile [i.e., is proportional to sgn(z) for large |z|]. According
to our assumptions, m(z) + (z) > 0 for all values of z, so
there is no normalizable solution for ψ1 or ψ4. With v > 0,
there is also no normalizable solution for ψ2, but there is one
for ψ3:

ψ3(z) = u0e
−1
v

∫ z

0 dz′(m(z′)−(z′)). (20)

(For v < 0, ψ2 would be the normalizable solution instead.)
Thus, for (z), m(z) as given in Fig. 4, our Hamiltonian has
a single zero-mode solution of the form �̃0 = (0,0,1,0)T u(z)
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localized near the domain wall at z = 0. This solution is valid
as long as v > 0 and m(z) − (z) → ±const for z → ±∞. To
see if the zero mode �̃0(z) corresponds to a Majorana fermion,
we undo the unitary rotation and inspect the corresponding
solution �0(z) = U−1�̃0(z), which is

�0(z) = 1
2 (1,−1,1,−1)T u(z). (21)

In second quantization, the field operator destroying the
particle in the state �0(z) is

ψ̂0 = 1

2

∫
dzu(z)[f (z) − g(z) + f †(z) − g†(z)], (22)

where f (z), g(z) are real-space versions of the fk , gk operators
in �k . Since u(z) is real, it holds that ψ̂†

0 = ψ̂0, so �0 represents
a Majorana fermion.

With a few additional observations, the above calculation
can be used to show that an additional unpaired Majorana
mode exists at the SC end of the wire irrespective of boundary
conditions. First, recall that in a finite system Majoranas
always come in pairs, since they are formed from ordinary
fermions.5 This second Majorana fermion, being a zero mode,
cannot not exist in the nanowire bulk where the spectrum
is gapped. It cannot exist at the magnetic end because the
magnetic order does not support the requisite particle-hole
mixing. The second MF must therefore be at the SC end of the
nanowire, irrespective of the exact boundary condition. From
this, we can argue that the special conditions used to establish
the existence of unpaired MFs in the device are unnecessary:
The zero modes in fact exist in the device under generic
boundary conditions as confirmed by explicit numerical study
using a lattice model, discussed in Sec. III. A specific example
of Majorana end states obtained in such a lattice calculation
under general conditions is given in Sec. IV A below.

C. Energy gap protecting Majorana zero modes

As mentioned in Ref. 87, in order to detect and manipulate
MFs under experimentally accessible conditions it is crucial
that they are protected from all other excitations by a
gap. The latter is often refered to as a “minigap” because
typically there will be other excitations inside the bulk gap.
We study the minigap in this TI nanowire-based device both
analytically and numerically.

In this section we estimate the minigap for the supercon-
ducting TI nanowire using the analytical low-energy theory.
Specifically, we wish to find the lowest nonzero eigenvalue of
H̃k defined in Eq. (12). We start by squaring the Hamiltonian.
We find, with k → −i∂z and D

†
kDk → D†D,

D†D = ∂2
z + [′(z) − s3m

′(z)] + [(z) − s3m(z)]2. (23)

The two independent equations for s3 = ±1 in D†D can more
conveniently be written as (D†D)+ and (D†D)−, where

(D†D)± = ∂2
z + [′(z) ∓ m′(z)] + [(z) ∓ m(z)]2. (24)

To find the energy of the first excited state, we look for
solutions ψ satisfying

hψ = εψ, (25)

where h = H̃2 and ε > 0. We consider m(z), (z) such that
(z) + m(z) = const for each z, and (z) − m(z) = f (z) hav-
ing a soliton profile [e.g., we may take f (z) = 0 tanh (z/ξ )],
as shown in Fig. 4. Then (D†D)− yields no bound states.
(D†D)+, however, has the form, with velocity v restored,

(D†D)+ = −v2∂2
z + vf ′(z) + f 2(z). (26)

For bound-state energies much less than 0, f (z) can be
approximated as linear in the vicinity of z = 0. With f (z) 

−0

z
ξ
, where ξ is the length scale over which the SC order

parameter varies near the domain wall, we then have

(D†D)+ = −v2∂2
z − v0

ξ
+

(
0

ξ

)2

z2. (27)

This is the Hamiltonian for the harmonic oscillator with
the identification h̄2

2m
= v2, mω2

2 = (0
ξ

)2, and h̄2ω2 = 4v2 2
0

ξ 2 .

Therefore, allowed eigenenergies of (D†D)+ bounded above
by 2

0 are

εn = h̄ω

(
n + 1

2

)
− v0

ξ
= 2h̄v0

ξ
n, (28)

where n is any non-negative integer. The energy spectrum of
H̃ in this approximation is, then,

En = ±√
εn = ±

√
2h̄v0

ξ
n. (29)

Since ξ is the length scale over which the SC order parameter
varies near the wire end, it is at most the SC coherence length
h̄v

π0
. The minimum energy of the first excited state E1 is, then,

E1 = 0

√
2π, (30)

which is already greater than 0. Therefore, there are no
excited states where the linear approximation holds. There
can be some at energies close to 0 and this is consistent with
numerical results presented in Ref. 18. We thus conclude that
the minigap amplitude is close to 0 in this case.

We also note that the calculation presented above is valid
in the special case μ = 0. For nonzero chemical potential the
situation is more complicated and we are not able to find a
simple analytic solution for the excited states in this case. Since
the density of states of the underlying Dirac semimetal grows
with increasing energy we expect there to be more low-lying
excited states when μ �= 0 and thus reduced minigap. This
expectation is indeed confirmed by our numerical simulations
discussed below.

D. Majorana state in a finite-wire configuration

So far in our analytical calculation we have shown that a
Majorana state exists in a TI wire at the interface between
SC and magnetic domains. A more realistic situation from an
experimental point of view is to consider a finite-length wire
located on top of an s-wave superconductor. One would expect
the Majorana zero modes to live close to the ends of the wire
where the SC order parameter vanishes and the magnetic flux
pierces the surface of the wire. Our numerical results below
confirm this intuition but here we briefly show that one can
also analytically prove this for a simple wire configuration and
find the Majorana state.
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ρ = 0

z = 0
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C

ρ =R
0

θ

a0

FIG. 5. (Color online) The schematics of a finite-length wire on a
superconducting substrate. The surface of the wire has been divided
into three regions A, B, and C (bottom panel) according to the form
of the Hamiltonian. The top panel details the assumed shape of the
wire end with various quantities used in the text indicated.

Consider one end of a finite wire with a configuration as
shown in Fig. 5: a cylinder with the sharp edge smoothed out.
For convenience we think of the resulting surface separated
into three regions. As before we consider a uniform magnetic
flux with η = 0.5 through the wire but we assume that
it only pierces region C of the surface. The form of the
Hamiltonian is different in each region as one would expect
due to the curvature effects and is discussed in detail in
Appendix B. The regions have been chosen in such a way that
the first spatial derivative operator that appears in the Dirac
Hamiltonian is continuous everywhere on the wire including
the boundaries between the regions. This way it is legitimate
to use Dirac Hamiltonian Eq. (1) to study the surface states
since the normal unit vector to the surface of the TI is well
defined everywhere on the wire. Note that this would not
be the case if we considered sharp edges. We can exploit
the azimuthal symmetry of this configuration and perform
the unitary transformation defined by Eq. (4). The full BdG
Hamiltonian for the l = 0 branch then reads

H =
∫

dζ�†(ζ )H(ζ )� (ζ ), (31)

where H(ζ ) is a 4 × 4 matrix given by (h̄ = v = 1),

H(ζ ) = τ3[is2∂ζ + g(ζ )s1 + m(ζ )s3 + λ(ζ )] − (ζ )τ2s2.

The Hamiltonian is a function of the length ζ which
parametrizes the geodesic curves that connect two end points
on each section of the surface. We choose ζ to be zero at the
end of the cylinder (i.e., at the boundary between regions A and
B as shown in Fig. 5). Note that on the cylinder it is equivalent
to the z variable we used before. In general we have

ζ ≡
⎧⎨
⎩

z (z � 0) ζ ∈ A

a0θ (0 � θ � π/2) ζ ∈ B

R0 + a0π/2 − ρ (0 � ρ � R0) ζ ∈ C

, (32)

where a0, R0 are the radii of the connecting torus and
the cylinder (a0 � R0), respectively. g(ζ ) and λ(ζ ) are two
functions that arise due to the curvature effects. They are
defined as

g(ζ ) = − 1

2ρ
×

{
0 ζ ∈ A,B

1 − (ρ/R0)2 ζ ∈ C
, (33)

and

λ(ζ ) = 1

2a0
×

{
0 ζ ∈ A,C

1 ζ ∈ B
. (34)

Assuming that the magnetic flux is narrower than the wire
cylindrical shaft we can neglect the Zeeman field in all regions
except region C. Therefore we consider the following profile
for it:

m(ζ ) =
{

0 ζ ∈ A,B

m0 ζ ∈ C
. (35)

As mentioned previously, we expect MF to exist near the end of
the wire irrespective of the details of the boundary condition.
For simplicity, therefore, (ζ ) is assumed to be nonzero and
uniform only in the range of ζ parametrizing the cylindrical
shaft of the wire and the rounded edge (ζ ∈ A,B). In region
C we assume (ζ ) = 0 in accord with the intuition that the
SC order will be suppressed here due to the magnetic field
piercing the surface and the presence of the vortex. Finally,
we consider a very long wire so that we can assume that the
overlap between localized states at the two ends is negligible.
This way we can look for solutions with zero energy and safely
exclude the solutions that grow exponentially towards the other
end. Thus, we seek the solutions of the following equation:

H(ζ )�(ζ ) = 0, (36)

and investigate whether there is a solution (localized near the
end) which satisfies the Majorana condition �̂

†
0 = �̂0.

The strategy for solving Eq. (36) is standard: We find the
general solutions in the three regions A, B, and C, we match
their wave functions at the boundaries and finally select the
physical (normalizable) solution. The technical details are
given in Appendix B. Up to a normalization constant the
solution is given by

�(ζ ) =

⎧⎪⎨
⎪⎩

�A(z) ζ ∈ A

�B(θ ) ζ ∈ B

�C(ρ) ζ ∈ C

, (37)
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FIG. 6. (Color online) The probability density of the Majorana
state (up to a normalization constant) close to one end of the
wire for 0 = h̄υ/R0 and a0 = 0.1R0. Note that |�|2 peaks at the
boundary between the toroidal region and the disklike end. It decays
exponentially into the bulk of the wire (region A as shown in Fig. 5)
and decays with a power law behavior toward the center of the disk
(region C).

where the wave functions are defined as

�A(z) = 1

2

⎛
⎜⎝

1
−1
1

−1

⎞
⎟⎠ e0z, (38)

�B(θ ) = 1

2

⎛
⎜⎜⎜⎜⎝

cos θ
2 + sin θ

2

sin θ
2 − cos θ

2

cos θ
2 + sin θ

2

sin θ
2 − cos θ

2

⎞
⎟⎟⎟⎟⎠ e0a0θ . (39)

Assuming that the Zeeman term is negligible and considering
only the solution which is well defined (i.e., no ambiguity in
the phase at the apex which implies that the wave function
should vanish at ρ = 0) we obtain

�C(ρ) =
√

ρ

2R0
exp

[
1

4

(
ρ2

R2
0

− 1 + 20a0π

)]⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ .

(40)

The probability density of the Majorana state is shown
in Fig. 6. Note that although the components of the wave
function change in the B region the absolute value follows
the same behavior as a function of length ζ . The peak of the
wave function is at the boundary between region B and C.
This way we obtain a solution to the Bogoliubov-de Gennes
Hamiltonian which is real (up to an overall phase) and it is
associated with a zero energy eigenvalue for a semi-infinite
wire. The wave function is localized at the end of the wire
in agreement with the numerical simulation and satisfies the
Majorana condition �̂

†
0 = �̂0.

IV. RESULTS ON STABILITY OF MAJORANA FERMIONS

A. Lattice model

We establish the stability of Majorana fermions in the
nanowire through a combination of additional analytical

insights and numerical studies using the same concrete lattice
model in Ref. 18 for the Bi2Se3 family of materials86 given
by Fu and Berg88 regularized on a simple cubic lattice. This
model is defined by a k-space Hamiltonian,

hk = Mkσ1 + λσ3(s2 sin kx − s1 sin ky) + λzσ2 sin kz, (41)

with Mk = ε − 2t
∑

α cos kα . Here σα represent the Pauli
matrices acting in the space of two independent orbitals per
lattice site. For λ,λz > 0 and 2t < ε < 6t the system described
by Hamiltonian (41) is a TI in Z2 class (1;000) (i.e., a strong
topological insulator). The magnetic field enters through
the Peierls substitution, replacing all hopping amplitudes
as tij → tij exp [−(2πi/�0)

∫ j

i
A · dl] and the Zeeman term

−gμBB · s/2 where μB = eh̄/2mec is the Bohr magneton. In
the SC state the BdG Hamiltonian takes the form of Eq. (7)
with k = 0is2 describing on-site spin singlet pairing.

In the subsequent calculations we consider the above
Hamiltonian on the real-space cubic lattice and in various
wire geometries with rectangular cross sections and both
periodic and open boundary conditions along the length of the
wire. We find eigenstates and energy eigenvalues by the exact
numerical diagonalization using standard LAPACK routines and
by sparse matrix techniques in cases where only low-lying
states are of interest. Unless explicitly stated otherwise we
use the following set of model parameters in our subsequent
calculations: λz = 2λ, t = λ, ε = 4λ. This places our model
into the Z2 class (1;000) and with λ = 150 meV produces a
bulk bandgap of 300 meV, as in Bi2Se3 crystals.

As an example of a calculation based on the lattice model
we show in Fig. 7 the probability density of Majorana end
states in a wire 100 lattice spacings long. We note that in any
finite-length wire there will always be an exponentially small
overlap between the two Majorana end states. Such an overlap
leads to the hybridization and a small nonzero energy δE for
the combined fermionic state which shows probability density
equally split between the two ends of the wire. An (unphysical)
state with equal probability density exists at energy −δE.
Figure 7 shows how the Majorana end states can be constructed
by taking the appropriate linear superpositions of the above
eigenstates. It is to be noted that for a finite-length wire the
Majorana end states are not true eigenstates of the system; they

0 20 40 60 80
z

0

0.1

|
(z

) |
2

Pa

Pb

Pa+b

P
a b

FIG. 7. (Color online) Probability densities of Majorana end
states. Pa/b(z) represents the particle component of the wave function
associated with ±E0 summed over x-y coordinates. Pa±b represent
the even/odd superpositions of these wave functions. The wire is
six lattice sites wide in both the x̂ and ŷ directions and 100 lattice
sites long in the ẑ direction. η = 0.49 in units of the fundamental
flux quantum, and the chemical potential μ = 0.09λ, where λ =
150 meV.
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FIG. 8. (Color online) Phase diagrams computed from a generalized Majorana number for the infinitely long, clean wire with a 10-lattice
site by 10-lattice site cross section. (a), (b), and (c) are each for a system with a vortex, while the system with phase diagram (d) lacks a
vortex. || is set to 0 and 0.04λ in (a) and (b), respectively, and 0.08λ in both (c) and (d). Chemical potential μ is in units of λ = 150 meV
and η is in units of the fundamental flux quantum. Blue and pink regions were created by computing the generalized Majorana number M in
steps of at most η = 0.02 and μ = 0.02, coloring these points blue (M = 1, nontopological phase, no Majorana zero modes in system) or
pink (M = −1, topological phase, Majorana zero modes present in system), respectively, and enlarging these data points to create regions of
solid color. As well, the phase boundaries were computed (white lines) via a more efficient algorithm, with error bars at most the size of the
symbols. White lines extend only up to μ = 1 as at larger μ the topological phase regions break up into small domains and the algorithm used
to compute the phase boundary is only effective for large, simply connected regions of the phase diagram.

will mix on a time scale h̄/δE which is, however, exponentially
long in the wire length L.

B. The Majorana number and the topological phase diagram

The existence of MFs at the ends of the wire depends on
whether or not the wire is in the topological phase. For a
1D system the presence of the topological phase is indicated
by Kitaev’s Majorana number24 M(H ). In Ref. 18 we have
computed M(H ) in the limit  → 0 where it reflects simply
the parity of the number of the Fermi points of the underlying
normal state in the right half of the Brillouin zone. The
resulting phase diagram in the η-μ plane, for μ inside the
bulk bandgap, consists of diamond-shaped topological regions
indicated in Fig. 8(a). In the limit  → 0 the individual
diamonds just touch at their apices yielding a continuous
topological phase for a specific value of magnetic flux η close
to 1

2 and for all values of μ inside the bandgap. This feature
underlies the key advantage of the present setup: The chemical
potential does not require fine tuning. However, it is also
true that when passing between individual diamond-shaped
regions, the system gets arbitrarily close to the phase boundary
and one thus expects topological order to be rather fragile in
these regions. On the other hand, away from the  → 0 limit

one intuitively expects the topological phase to become more
robust and indeed this was suggested by the numerical results
presented in Ref. 18. In the following we shall elucidate this
point and show that indeed for 0 > 0 the topological phase
becomes a compact region in the η-μ plane.

We consider a general definition of the Majorana number,24

M(H ) = sgn[PfB̃(k = 0)]sgn

[
PfB̃

(
k = π

a

)]
, (42)

where B̃(k) is the position-space Hamiltonian of the infinite-
length, lattice-model TI wire written in terms of Majorana
fermion operators and Fourier transformed in the ẑ direction.
a is the lattice spacing, implying that B̃(k) is evaluated here
at k = 0 and at the edge of the Brillouin zone. Equation (42)
simplifies to the previously given definition in Ref. 18 when
|| is sufficiently small.

We consider the phase diagram in two limiting situations:
When  winds in phase counterclockwise by 2π around the
circumference of the wire, corresponding to a vortex present
along the length of the TI nanowire, and when  does not
wind in phase, meaning there is no vortex in the system. These
two situations are expected to represent the ground state of the
system for the magnetic flux close to �0/2 and 0, respectively.
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The precise value of the flux at which the vortex enters will
depend on details but we show below that, remarkably, the
topological phase diagram is fairly insensitive to the presence
or absence of the vortex.

Figure 8 displays the phase diagram of a rectangular wire
with a 10 × 10 cross section based on Eq. (42). As || is
increased from zero, we see that the boundary of the region
corresponding to the topological phase smoothes out, with the
region centered close to η = 0.5 and extending through all
values of the chemical potential inside the bulk bandgap and
also up into the bulk conduction band. We remark that the topo-
logical phase here is centered near a value of the magnetic flux
that somewhat exceeds �0/2. This is because the surface state
penetrates slightly into the bulk of the wire and thus encloses
somewhat smaller amount of flux than the geometric surface
area of the wire. For thicker wires this shift will be negligible.

It is also interesting to note that according to Fig. 8 the topo-
logical phase persists for μ well into the conduction band (as
well as the valence band, which is not explicitly shown). This
finding is potentially important in view of the fact that most TI
crystals naturally grow with the chemical potential pinned in-
side the bulk conduction or valence band. We will show below,
however, that although MFs indeed appear in this regime, the
minigap protecting them quickly collapses as μ moves deeper
into the bulk band. Heuristically, one can understand this as
follows. With μ inside the conduction band the bulk of the
nanowire becomes metallic. In the presence of SC order and
with the magnetic field applied along its axis there will be
a vortex line running along its center. Such a vortex line will
host low-energy core states with the characteristic energy scale
2/EF which quickly becomes very small as EF increases
(here EF is the Fermi energy measured relative to the bottom
of the bulk conduction band). By contrast when the chemical
potential lies inside the bandgap the bulk of the wire remains
insulating and does not contribute any low-energy states.

From study of the phase diagram Fig. 8 at  > 0, we begin
to understand the robustness of the Majorana bound states.
Consider first the effect of nonmagnetic disorder, modeled by
introducing a spatially fluctuating component of the chemical
potential μ → μ̄ + δμ(r). Assume also that δμ(r) is slowly
varying in space so that only variation along the z direction
are meaningful and μ(z) can be thought of as defining a
phase of the wire in the vicinity of the coordinate z. If the
average chemical potential μ̄ and the flux η are such that
the system starts deep inside the topological phase then it is
clear that fluctuations in δμ will not drive the system out of
the topological phase unless they exceed the bulk bandgap.
Similarly, fluctuations in the total magnetic flux η, which can
occur, for example, in a wire with a nonuniform cross section,
will not drive the system out of the topological phase unless
they reach a significant fraction of �0/2. We demonstrate
below by explicit inclusion of disorder in the lattice model
that the heuristic argument given above remains valid even
when disorder potential varies rapidly on the lattice scale.

The smoothing out of the topological region’s boundary as
|| is increased can be understood by studying the low-energy
analytical theory again. We start from the Hamiltonian in
Eq. (8) and let μ = m = 0, studying how the phase diagram
changes for this value of the chemical potential as || is
increased from zero. If we now assume that η deviates from

1/2 by a small amount, that is, η = 1/2 + δη then the spectrum
for the l = 0 branch can be written as

Ek = ±
[
k2 +

(
δη

R
± 0

)2 ]1/2

. (43)

We know that the system will be in the topological phase
when δη = 0 and μ = 0±. To understand the smoothing out
of the topological region’s boundary, we identify when the
spectral gap closes for nonzero 0 as a function of δη,
since closing of the gap signifies a phase transition. We
notice that the gap in Eq. (43) remains as δη is moved away
from 0 until δη = ±R0/vh̄, where we have restored proper
units. Therefore, we see that at μ = 0, for nonzero 0, the
topological phase has widened from a point at η = 1/2 to an
interval (1/2 − R0/vh̄,1/2 + R0/vh̄), as observed in the
phase diagrams computed numerically using the more general
definition of the Majorana number.

The absence or presence of a vortex in the TI nanowire
makes negligible differences to the phase diagrams as seen
by comparing Figs. 8(c) and 8(d). However, the presence or
absence of a vortex does have a pronounced effect on the
quasiparticle excitation gap exc (shown in Fig. 9) in the
infinitely long wire. From Fig. 9, we see that exc remains
close in magnitude to || up until μ reaches the bottom of
the bulk conduction band if the SC order parameter winds
counterclockwise in phase by 2π , while without a vortex exc

can be seen to quickly decay with increasing μ. Clearly, near
η = 1/2 the former represents a more physical situation.

For experimental realization of the device, it is important
to know how large the minigap—the energy of the lowest
nonzero mode coming from bound states at the ends of the
wire which are absent when the wire is infinitely long—is as
well as studying the quasiparticle excitation gap, which is the
energy of the lowest nonzero mode for the infinitely long wire.
If we study this minigap as a function of chemical potential
with a vortex present, shown in Fig. 10, we see that, for μ

close to zero, the minigap starts with an amplitude close to
the SC gap , in accord with the analytical theory presented

0.0 0.5 1.0 1.5
μ

0.00

0.02

0.04

0.06

0.08

Δ
exc

Vortex present
Vortex absent

FIG. 9. (Color online) Quasiparticle excitation gap exc of an
infinitely long wire without disorder with a 14-lattice site by 14-lattice
site cross section as a function of chemical potential μ with vortex
present (black circles) and vortex absent (red diamonds). exc and μ

are expressed in units of λ = 150 meV. Here || = 0.08λ.
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FIG. 10. (Color online) Three lowest energy eigenvalues E2, E1,
and E0 of the finite-length wire, without disorder, with 14- by 14-
by 100-lattice sites as a function of chemical potential μ with vortex
present with || = 0.08λ. exc and μ are expressed in units of λ =
150 meV. Eigenvalues were computed via Lanczos method and failed
to converge for μ > 1.05, resulting in a nonphysical spike to the
nonconvergent next data point.

in Sec. III B. The minigap then continuously decreases with
increasing μ, retaining a respectable value ∼0.1 at the
edge of the bulk conduction band at μ = 1. As mentioned
previously, the minigap then quickly collapses as the bulk
bands are populated but nevertheless persists over a nonzero
range of μ > 1.

C. Robustness of Majorana fermions against disorder

As mentioned previously, we expect robustness of the
Majorana end states with respect to nonmagnetic disorder
in the proposed device. There are two related but logically
separate issues that pertain to this problem. First, we must
ensure that SC order induced in the wire is itself robust against
nonmagnetic disorder. Since the device can be operated at
(or very close to) the time-reversal invariant point and since
we consider a spin-singlet s-wave SC order we expect this
to be the case on the basis of Anderson’s theorem. Below,
we illustrate this aspect of the robustness by performing a
self-consistent numerical calculation on our model in the
presence of disorder. Second, we must show that Majorana end
states themselves remain stable in the presence of disorder.
To some extent this already follows from our arguments in
the previous subsection based on the study of the topological
phase diagram. In addition, stability of MFs follows from the
stability of the SC phase in the bulk of the wire argued above.
Nevertheless, to address this question directly, we perform
explicit numerical calculations for open-ended wires in the
presence of nonmagnetic disorder and in various physical
regimes. These calculations confirm the expected robustness of
MFs and yield additional insights into the quantitative aspects
of this robustness; specifically they provide information about
the minigap magnitude and the mechanism by which MFs are
eventually destroyed in the strong-disorder limit.

To study these questions, we add a term corresponding to
disorder in the on-site potential to the lattice Hamiltonian H0

of the clean system. The Hamiltonian for the system with
disorder, Hdis, is therefore

Hdis = H0 +
∑
iα

Uic
†
iαciα, (44)

where Ui , the random potential at lattice site i, is assigned a
value from a uniform, random distribution ranging from −U

2
to U

2 .
As a first step we compute the magnitude of the SC order

parameter self-consistently as described in Ref. 89 for different
disorder strengths and with periodic boundary conditions
along z (i.e., no Majorana end states). This calculation assumes
the existence of an intrinsic pairing potential V in the wire
and is therefore, strictly speaking, not directly relevant to the
proximity-induced SC state discussed in the rest of this paper.
It nevertheless illustrates very nicely the robustness of the SC
order with respect to disorder. The key point is that one would
expect SC order to be even more robust when induced by
proximity to the bulk superconductor. Figure 11 shows mean
SC order parameter magnitude vs U

2 computed for different
values of the pairing potential V . We observe that ||avg first
decreases slightly with increasing U , but at larger U the mean
SC order parameter increases in magnitude. We attribute this
increase to the buildup of the normal density of states at the
Fermi level, N (μ), due to disorder. Such a buildup is known
to occur in other 2D systems with a Dirac spectrum90 and it
should increase || according to the standard BCS formula,89

 = h̄ωce
−1/N(μ)V . (45)

Here ωc and V are constants. These results suggest the SC
order parameter is not only quite robust against nonmagnetic
disorder but the latter can actually enhance it when the
chemical potential is close to the Dirac point.
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FIG. 11. (Color online) Mean superconducting order parameter
magnitude ||avg for three different values of the pairing potential
(V = 1.310, V = 1.295, and V = 1.290) as a function of disorder
strength U

2 . ||avg is averaged over every lattice site in a 6 × 6 ×
6 lattice site nanowire with periodic boundary conditions in the ẑ

direction with random disorder in the chemical potential and also
further averaged over 10 such randomly disordered nanowires. The
mean chemical potential for all data points is μavg = 0.09λ. The
self-consistent calculation for each disordered nanowire proceeded
until the maximum difference in the superconducting order parameter
magnitude between the final iteration and the next-to-last iteration of
the calculation at any lattice site was 0.001λ.
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FIG. 12. (Color online) Three lowest positive energy eigenvalues
E0, E1, and E2 of a finite-length TI nanowire model with 6- by 6-
by 100-lattice sites obtained by the Lanczos method as a function of
disorder strength U

2 for mean chemical potential values of μ = 0.09
(a), μ = 0.4 (b), and μ = 0.8λ. || = 0.08λ for each. U

2 and energy
E are expressed in units of λ = 150 meV. The error bars reflect
averaging over 10 independent realizations of the random potential.

To address the robustness of Majorana end states we now
study the finite-length wires. Using sparse matrix techniques,
we solved for the average values of the three lowest, positive
eigenvalues of the spectrum, and plotted these for a range of
U , as shown in Fig. 12. These calculations are performed for
a constant value of the SC gap, having previously established
that disorder has only a weak effect on the latter. We see that
the energy of the Majorana bound state remains very close
to zero, with no observable fluctuations. The topological SC
is eventually destroyed by the collapse of the minigap (i.e.,
lowering of the excited states at some critical value of disorder
strength Uc). It is interesting to note that Uc is rather large,

being expressed in units of λ = 150 meV, exceeding the TI
bulk bandgap by more than a factor of 5. Furthermore, the MFs
are robust against disorder at a wide range of average chemical
potential in the bulk bandgap, although the minigap is largest
for values close to the middle of the bulk bandgap and smallest
for values near the edge of the bulk bandgap. We note that
the minigap is roughly the same for mean chemical potential
values of 0.09λ, 0.4λ, and 0.8λ if U

2 = λ, suggesting disorder
stabilizes the minigap in this regime. It is also interesting
to note that for two larger values of μ disorder initially
increases the minigap thus making the topological phase more
robust.

V. CONCLUSION AND DISCUSSION

The main goal of this work was to study the stability of
Majorana zero modes in the proposal introduced in Ref. 18,
which consists of a TI nanowire, proximity coupled to a bulk
s-wave superconductor, with a weak magnetic field applied
along the nanowire’s length. After reviewing the literature
to illustrate the importance of identifying a device in which
MFs emerge under a wide range of accessible conditions, and
reviewing the theory behind the proposed device in greater
detail than possible in Ref. 18, we studied the robustness of
the topological superconductor phase of the device against
disorder.

As a first step we computed the topological phase diagram
of the TI nanowire numerically in a semirealistic lattice
model. Using a general definition of Kitaev’s Majorana number
M(H ) we were able to show that for nonzero values of the SC
order parameter  the topological phase forms a set of compact
columnar regions in the plane spanned by the magnetic flux
η = �/�0 and the chemical potential μ, centered around
half-integer values of η, and covering about 50% of the phase
diagram (see Fig. 8). This form of the phase diagram confers
two principal advantages of our proposed device as regards
future experimental realizations and potential applications:
(i) Unlike in the semiconductor wire realizations15 where
significant fine-tuning of the chemical potential is required
to reach the topological phase, our proposed device produces
Majorana end states for μ anywhere inside the bulk bandgap of
the TI; and (ii) if the average chemical potential of the nanowire
is in the bulk bandgap, we can expect the entire nanowire
to remain in the topological phase even for large disorder
strengths, as even then any local chemical potential value will
remain in the topological region of the phase diagram. We also
observe from the phase diagram Fig. 8 that the topological
phase persists over a wide range in magnetic flux through
the cross section of the nanowire. This feature is less critical
because the magnetic field can be easily tuned in a laboratory.
Nevertheless understanding the magnetic phase boundary is
very useful since changing the magnetic field strength can be
used to tune the wire between topological and normal phases.

To explicitly ascertain the robustness of the MF with
respect to thermal fluctuations and nonmagnetic disorder we
studied the system’s minigap by both analytic and numerical
techniques. Minigap, defined as the smallest nonzero energy
level in the system, can be taken as a good proxy for the
robustness of the quantum information encoded in MFs since
uncontrolled excitations of quasiparticles out of the ground
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state into the low-lying excited states would obviously spoil
such encoding. In addition, large values of the minigap can
aid experimental detection of the Majorana zero mode using
various spectroscopic techniques. We use the low-energy, ana-
lytical theory of Ref. 18 to first show that excited states should
be close in energy to the magnitude of the superconducting
gap when the chemical potential is close to the middle of
the bulk bandgap of the TI nanowire, indicating Majorana
zero modes in the device should be protected by a sizable
minigap. We then employ the lattice model and compute the
three lowest eigenenergies of the TI nanowire with disorder to
show that the minigap remains significant even for the disorder
strength considerably exceeding the bulk bandgap of the TI.
Interestingly, we find that disorder strength comparable to
the magnitude of the bulk bandgap also appears to stabilize
the minigap at a sizable value over changes in the average
chemical potential in the nanowire, which might be useful in
future applications of the device.

Stability of MFs in our proposed device also follows from
the general periodic classification of topological insulators and
superconductors given by Schnyder et al.91 and by Kitaev.92

According to this classification Majorana bound states may
appear in one-dimensional systems of the D and DIII symmetry
classes. The former corresponds to the superconducting state
with broken time-reversal and spin symmetries while the
latter is a superconductor with only spin symmetry broken.
We found that MFs are most stable in our device with
exactly half flux quantum, corresponding to the T -preserving
DIII symmetry class. In this class all the states are doubly
degenerate according to the Kramers theorem. It is thus slightly
counterintuitive that we obtain isolated nondegenerate MFs in
this situation. To clarify this point we note that the device will
be in the DIII class only when the wire is considered infinitely
long (or else periodic along the z direction). MFs on the other
hand occur only in a finite wire where T is explicitly broken at
the wire ends by the magnetic flux lines entering and exiting
the wire.

The above considerations also suggest stability of the MFs
with respect to magnetic disorder which was not explicitly
studied in this paper. For one, magnetic impurities are much
less dangerous for proximity-induced SC than intrinsic SC.
Furthermore, magnetic impurities will not further violate the
class D symmetry possessed by this system when T is broken.

Before concluding we address the following question:
Do MFs predicted to exist in our device obey non-Abelian
exchange statistics? This property is obviously of paramount
importance for any future application in quantum information
processing. Alicea et al.23 clarified the sense in which
MFs in 1D wire networks exhibit non-Abelian statistics
upon exchange, considering semiconductor wires,13–15 and
showed how particle exchanges can be effected in such a
setting. Although superficially similar to these models13,14 our
proposal is more closely related to the original Fu-Kane vortex
at the interface between a TI and an ordinary superconductor.12

Indeed, consider a thought experiment in which we take
our wire and slowly increase its radius while simultaneously
reducing the applied magnetic field so that the total flux
through its cross section remains constant at �0/2. We also
assume that all the surfaces of the resulting disk remain covered
by a thin SC film. In the limit when the radius R becomes

B

2 3

1

(a) BB )(c)(b

FIG. 13. (Color online) Exchange of MFs in a trijunction device.
(a) The field B is tuned so that nanowire 1 has flux close to �0/2
through its cross section and is thus in the topological phase with
MFs localized near its ends. The flux through wires 2 and 3 is down
by the factor cos(2π/6) = 0.5 and they are thus in the trivial phase.
(b) Rotating the direction of B by 30◦ the flux through wires 1 and 2
becomes cos(2π/12)(�0/2) 
 0.866(�0/2) and is thus sufficiently
close to �0/2 for them both to be in the topological phase according
to the phase diagram in Fig. 8. As a result the MF previously located
at the junction (red circle) has now moved to the other end of wire
2 as indicated. Continuing this process by rotating B further in 30◦

increments it is easy to map out the motion of MFs and conclude that
after 180◦ rotation the system comes back to the original situation
with MFs localized on wire 1 but with their order exchanged as
illustrated in (c).

comparable to the wire length L we have a bulk disk-shaped
TI covered with an SC film. The presence of �0/2 flux and the
cylindrical symmetry dictates that a vortex must be present at
the center of each of the flat disk surfaces. Such vortices will
contain MFs12 and will obey non-Abelian exchange statistics
according to the standard arguments. MFs in our wires are
thus adiabatically connected to those residing in the cores
of Fu-Kane vortices and are therefore expected to obey the
same non-Abelian exchange statistics when organized into T
junctions or wire network geometries.23 In Fig. 13 we outline
a simple protocol that implements an exchange of two MFs in
a symmetric “trijunction” device formed by three nanowires
joined at a single point. The exchange of two MFs, initially
localized at the ends of one of the wires, is effected simply by
a 180o rotation of the applied magnetic field in the plane of the
device.

We conclude that unpaired Majorana zero modes are
exceptionally stable in our proposed device, being present over
a wide range in magnetic flux, chemical potential, and disorder
strength, with disorder even being expected to stabilize the
MFs to an extent. They obey non-Abelian exchange statistics
by virtue of being adiabatically connected to the Fu-Kane
vortex12 and, as illustrated above, can be easily manipulated
by changing the direction of the applied magnetic field. On
this basis we expect the device architecture discussed in this
work to be useful for future experimental study of MFs and
their potential applications.
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APPENDIX A: SURFACE STATE IN A THIN WIRE

To study the surface state in a thin wire we employ a
continuum version of the 3D lattice model defined in Eq. (41).
Focusing on the vicinity of the � point we thus write the
following 4 × 4 matrix Hamiltonian,

hk = −iσ3(s2πx − s1πy) + λzσ2kz + σ1m(r), (A1)

where πj = −i∂j − Aj is the gauge-invariant momentum
operator and m(r) is the gap at the � point which we take to
have a radial dependence to model an interface between a TI
(m > 0) and an ordinary insulator or vacuum (m < 0). We also
assume translational invariance along the wire, thus keeping
the kz quantum number (which we denote as k hereafter).

We start by considering a δ-function flux A = η�0(ẑ ×
r̂)/2πr for which we can find an analytic solution. Transform-
ing into the cylindrical coordinates we obtain

s2πx − s1πy

=
(

0 e−iϕ
( − ∂r + η

r
+ i

r
∂ϕ

)
eiϕ

(
∂r + η

r
+ i

r
∂ϕ

)
0

)
.

We now perform a unitary transformation in the spin space
defined by the matrix,

Ul(ϕ) =
(

eiϕl 0
0 eiϕ(l+1)

)
, (A2)

with l the integer angular momentum quantum number. This
leads to a decoupling in the angular variable with the individual
channels described by

hkl(r) = −σ3

[
is2

(
∂r + 1

2r

)
+ s1

1

r

(
l + 1

2
− η

)]
+σ2λzk + σ1m(r). (A3)

From our previous discussion of the surface state we expect
the gapless mode to occur for l = 0 and η = 1

2 . Furthermore,
the band crossing occurs at k = 0 so we focus on this value of
k and study

h00(r) = −iσ3s2

(
∂r + 1

2r

)
+ σ1m(r). (A4)

By performing a π rotation around σ1 and around s1 this
Hamiltonian can be brought into an off-diagonal form,

h00(r) =
(

0 −s3
(
∂r + 1

2r

) + m(r)
s3

(
∂r + 1

2r

) + m(r) 0

)
,

(A5)

suitable for identifying the possible zero modes. We now
describe the TI wire of radius R by the following configuration
of the gap function,

m(r) =
{

m0 r < R,

−m′
0 r > R,

(A6)

with m0, m′
0 positive constants. For a wire placed in vacuum

we take m′
0 → ∞. With this gap configuration it is easy to see

that exactly two zero modes exist,

ψα(r) = χαC

√
R

r
em0r , r < R, α = 1,2, (A7)

with C =
√

2m0/(e2m0R − 1)R the normalization constant and
χ1 = (0,1,0,0)T , χ2 = (0,0,1,0)T . Thus, we conclude that
exact zero modes exist for any radius R in the presence
of a δ-function flux. This implies that the gapless surface
modes also persist in this case even for a thin wire. We note,
however, that only when R � ζ = 1/m0 are the zero-mode
wave functions localized near the surface; for a thin wire they
permeate the entire bulk of the wire.

The above result can be understood based on a simple
general argument. With the δ-function half-flux the 3D
Hamiltonian (A1) remains T invariant. Therefore, Kramers
theorem protects the band crossing at k = 0, and the surface
mode must remain gapless for arbitrary R. This understanding
suggests that the degeneracy at k = 0 will be split by a
more general flux distribution (e.g., that corresponding to a
uniform B field), and the size of the gap will then reflect the
“amount” of T breaking present in the system. Unfortunately,
we were unable to find an exact solution for a more generic
flux distribution.

To test the above hypothesis we therefore proceed as fol-
lows. We start from the exact solution (A7) of the Hamiltonian
h00 and add to it magnetic field δB(r) as a perturbation. For
simplicity we take the form δB(r) = ẑ(ar − b) with constants
a and b chosen so that the total additional flux δ� vanishes.
The corresponding vector potential is of the form,

δA = η�0

πR2
(ẑ × r)

(
r

R
− 1

)
, (A8)

where the overall prefactor has been chosen so that δB(R) =
η�0/πR2, that is, the field strength at the surface of the
cylinder is the same as it would be in the case of a uniform
magnetic field.

Inclusion of the above vector potential leads to the following
additional term in the Hamiltonian,

δh = σ3s12η
r

R2

(
r

R
− 1

)
, (A9)

which we treat in the first-order perturbation theory. It
is straightforward to evaluate the requisite matrix element
〈ψ1|δh|ψ2〉. For η = 1

2 and in the limit of ζ � R this leads to
a correction to the energy of the form,

δE = ±1

2
m0

(
ζ

R

)2

. (A10)

The energy splitting is seen to be proportional to the ratio
between the cross-sectional areas of the surface wave function
and of the cylinder. Thus, we arrive at the conclusion that the
gap in the spectrum is indeed proportional to the amount of
the T breaking in the system as measured by the exposure of
the surface wave function to the magnetic field.

APPENDIX B: DIRAC HAMILTONIAN FOR A FINITE
WIRE CONFIGURATION

Any cylindrically shaped surface with slight rotationally
invariant deformations from the ideal cylinder can be described
by the function R = R(z) in which z is the distance from an
arbitrarily chosen origin on the z axis (the axis of the deformed
cylinder) and R(z) − R0 is the deviation from the ideal cylinder
with radius R0. One can use Eq. (1) to find the Hamiltonian
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for the surface electrons of a TI wire with such a configuration
if R(z) and its first derivative is continuous. In order to do so
it is convenient to use a parameter β, which is defined as the
angle between the normal vector ˆ̂n and the plane perpendicular
to the axis of the wire. Note that we have assumed that the
deformation from the ideal cylinder is such that the axis of
the initial ideal cylinder always remains inside the wire and
there is a rotational symmetry around that axis. This way we
can write the normal unit vector in the cylindrical coordinate
system,

n̂(ϕ,z) = cos β(z)ρ̂(ϕ) + sin β(z)ẑ, (B1)

for the ideal cylinder β(z) = 0 (region A as shown in Fig. 5). β
gradually goes to ±π/2 at the smooth ends of the wire. Using
Eq. (1) we can obtain the continuum real space representation
of the 2 × 2 Hamiltonian matrix for the surface states in the
presence of the magnetic flux,

1

h̄υ
h0 = μeff(z) + sϕD1(z) + sρD2(ϕ,z) + s3D3(ϕ,z),

(B2)

in which sϕ = −s1 sin ϕ + s2 cos ϕ and sρ = s1 cos ϕ +
s2 sin ϕ and the functions above are defined as

μeff(z) = 1

2

(
1

R(z)
+ dβ(z)

dz

)
cos β(z), (B3)

D1(z) = i cos β(z)∂z + 1

2
sin β(z)

(
1

R(z)
− dβ(z)

dz

)
, (B4)

D2(ϕ,z) = sin β(z)

R(z)
(i∂ϕ + η(z)), (B5)

D3(ϕ,z) = −cos β(z)

R(z)
(i∂ϕ + η(z)) − gsμB

h̄υ
B0. (B6)

η(z) is the fraction of the magnetic flux in the units of h/e that
is enclosed by the radius R(z).

The same unitary transformation that has been used in
defining the spinors given in Eq. (4) can transform (sρ,sϕ) to
(s1,s2) and therefore it can make the new Hamiltonian matrix
invariant under rotation ϕ → ϕ + 2π ,

U (ϕ) =
(

1 0
0 eiϕ

)
. (B7)

One has to be careful with the partial derivative with respect
to ϕ since it does not commute with the transformation matrix
U (ϕ). It is easy to check that it transforms asb follows:

iU †(ϕ)∂ϕU (ϕ) = s3

2
+ i∂ϕ. (B8)

This way the transformed Hamiltonian is invariant under
rotations about the axis of the wire with the associated quantum
number l. Therefore, similar to our treatment of the infinite
wire, for each l = 0,±1, . . . we obtain

1

h̄υ
h̃l(z) = μ̃eff(z) + s2D(z) + s1m1l(z) + s3m2l(z). (B9)

The functions used in the above expression are defined as

μ̃eff(z) = 1

2
cos β

dβ

dz
, (B10)

D̂(z) = i

2
(∂z cos β + cos β∂z), (B11)

m1l(z) = − sin β

R(z)

(
l + 1

2
− η(z)

)
, (B12)

m2l(z) = cos β

R(z)

(
l + 1

2
− η(z)

)
+ mZeeman. (B13)

One can recover the infinite cylinder Hamiltonian given
in Eq. (5) by replacing R(z) with R0 and putting β to zero.
Therefore in the region A and for η = 0.5 and l = 0 we get

hA(z) = is2∂z. (B14)

The region B Hamiltonian can be obtained similarly. Here we
have β = θ where θ is the angle that parametrizes the quarter
circle across the section of the surface in region B. It varies
from zero at the A/B boundary to π/2 at the B/C boundary.
We thus have

R(z) = R0 − a0(1 − cos θ ), (B15)

z = a0 sin θ. (B16)

Assuming that a0 � R0 and using θ as our new coordinate we
can obtain the Hamiltonian in this region for the case where
half-quantum magnetic flux is penetrating the interior of the
wire,

hB(θ ) = 1

2a0
+ 1

a0
is2∂θ . (B17)

To obtain the Hamiltonian in region C one has to start from
Eq. (1) again since R(z) is not well defined in this region.
Using polar coordinates (ρ,ϕ) the Hamiltonian takes a simple
form and one can use the same unitary transformation given in
Eq. (B8) to put it in a rotationally invariant form. For the case
where the half-quantum magnetic flux is uniformly distributed
over the disk surface the l = 0 Hamiltonian becomes

hC(ρ) = −is2∂ρ − s1
1

2ρ

(
1 − ρ2

R2
0

)
+ s3mZeeman. (B18)

Now since we assume that the SC order parameter vanishes
in the C region the zero-energy solutions to the BdG
Hamiltonian in this region are the same as solutions of the
above Hamiltonian. Assuming furthermore that the Zeeman
field is negligible, we obtain a first-order differential equation
for each component of the spinor which is easy to solve and it
leads to the solution of the form given in Eq. (40).

For regions A and B the presence of the SC gap leads to four
coupled linear differential equations which can be decoupled
by a linear unitary transformation. What remains is to match
the solutions at the two boundaries A/B and B/C and the
result of this straightforward but somewhat tedious procedure
is presented in Eqs. (38)–(40).
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