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Disorder effects on resonant tunneling transport in GaAs/(Ga,Mn)As heterostructures
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Recent experiments on resonant tunneling structures comprising (Ga,Mn)As quantum wells [Ohya et al.,
Nature Physics 7, 342 (2011)] have evoked a strong debate regarding their interpretation as resonant tunneling
features and the near absences of ferromagnetic order observed in these structures. Here, we present a related
theoretical study of a GaAs/(Ga,Mn)As double barrier structure based on a Green’s-function approach, studying
the self-consistent interplay between ferromagnetic order, structural defects (disorder), and the hole tunnel
current under conditions similar to those in experiment. We show that disorder has a strong influence on the
current-voltage characteristics in efficiently reducing or even washing out negative differential conductance,
offering an explanation for the experimental results. We find that for the Be lead doping levels used in experiment
the resulting spin-density polarization in the quantum well is too small to produce a sizable exchange splitting.
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I. INTRODUCTION

Dilute magnetic semiconductors (DMS) are produced by
doping of semiconductors with transition-metal elements,
which provide local magnetic moments arising from open
electronic d or f shells.1,2 Bulk Ga1−xMnxAs may be regarded
as the prototype: Mn residing on the Ga site (MnGa) donates
a hole, associated with valence-band p orbitals, and provides
a local magnetic moment associated with partly filled Mn d

orbitals. MnGa is a moderately deep acceptor with the energy
levels lying about 100 meV above the valence-band edge.3 By
increasing the Mn density the acceptor levels become more
and more broadened, developing into an impurity band which
allows hole propagation and, for sufficiently high doping level,
is believed to merge with the valence band.4 At the same time,
Mn more and more takes unwanted lattice positions, such as
the antisite and interstitial position in the fcc lattice, or may
even form Mn clusters, all leading to strong electron-hole com-
pensation which eventually destroys ferromagnetic ordering.
There is some debate as to the order in which these events
occur as the Mn concentration is increased. Probably due to
the presence of unintentional defects in (Ga,Mn)As samples,
depending on growth conditions, experimental evidence has
led to somewhat conflicting conclusions about the precise
position of the Fermi level in ferromagnetic bulk (Ga,Mn)As.2

Some experiments can be interpreted by placing it into the
top of a GaAs-like valence-band edge which is broadened by
disorder.1 Others suggest the existence of an isolated impurity
band in the ferromagnetic state.5–8

Recently a systematic series of experiments in the form
of nonequilibrium tunneling spectroscopy on double barrier
resonant tunneling structures with a (Ga,Mn)As quantum
well7,9,10 were conducted to provide a deeper insight into this
question. The group reported a near absence of ferromagnetic
order in the well under bias and obtained weak signatures of
resonant tunneling, observable only in the second derivative
of the current-voltage (IV) characteristic. Their conclusion
that the Fermi energy lies in the impurity band has evoked
strong debates and an alternative explanation has been given,
which proposes that the resonant tunneling signature is caused
merely by the confined states in a potential pouch formed at
the contact-barrier heterointerface.11 In this explanation the

observed dependence of the peak positions on the quantum
well width is completely attributed to the increased series
resistance which, however, seems to be insufficient to account
for all well-width-dependent trends in the experimental results,
as discussed in detail in a reply by Ohya et al. which again
emphasizes the existence of quantized levels in the (Ga,Mn)As
quantum wells.12

Indeed, quantization effects can be expected in (Ga,Mn)As
for a layer thickness of about �3 nm since in a recent
scanning tunneling microscopy experiment the radius of the
Mn acceptor wave function has been determined to be about 2
nm5 and one can expect that near the band edge Bloch-like and
delocalized eigenstates will coexist in the picture of merging
impurity and valence bands.13 Tunneling spectroscopic exper-
iments of (Ga,Mn)As quantum-well structures have indicated
such effects.7 However, the signatures in the current-voltage
characteristics appear to be rather weak and no regions of
negative differential resistance due to resonances associated
with (Ga,Mn)As well layers have been observed as of yet, with
the notable exception of an asymmetric magnetoresistance
resonant tunneling structure.14 This suggests that a significant
concentration of unwanted defects and/or disorder may be
present, depending on growth conditions, as it is known to be
the case in thin layers of amorphous Si, in which similarly weak
signatures have been found.15,16 The density of imperfections
due to the presence of Mn interstitial or antisite defects
can be as high as 20% of the nominal Mn doping, which
makes (Ga,Mn)As a heavily compensated system.17,18 Even
lower structural quality for (Ga,Mn)As must be expected at
heterointerfaces since the need of low-temperature epitaxy
for growing the (Ga,Mn)As layers is harmful to forming
clean interfaces with other materials. Moreover, the interstitial
defects may be trapped near the interfaces in postgrowth
annealing procedures which have been found successful for
bulk (Ga,Mn)As.8 This suggests that transport through thin
layers of (Ga,Mn)As is influenced by disorder and defects
more severely than in annealed bulk structures.

The growth of heterostructures, on the other hand, provides
the appealing opportunity to drive (Ga,Mn)As layers into a
genuine nonequilibrium situation by means of an external bias
which modifies their local hole density, possibly leading to

155427-11098-0121/2012/86(15)/155427(6) ©2012 American Physical Society

http://dx.doi.org/10.1038/nphys1905
http://dx.doi.org/10.1103/PhysRevB.86.155427
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bias-dependent ferromagnetic behavior.19,20 However, draw-
ing conclusions from the physics of a thin (Ga,Mn)As layer
regarding the Fermi-energy position in the bulk is an intricate
problem, since a Fermi energy in a (Ga,Mn)As quantum well
under bias conditions is not well defined.

For spintronic applications usually active device regions
with an existing spin splitting are needed, often regardless of
where the splitting actually originates from. Several device
schemes based on DMS heterostructures have been proposed,
as reviewed in Ref. 21. For instance, magnetic resonant
tunneling structures can operate as efficient spin filtering
and detection devices10,22–24 or magnetic bipolar transistors
provide the possibility of a magnetoamplification of the
spin-polarized current.25–27

In a recent series of studies we have investigated the ferro-
magnetic bias anomaly in (Ga,Mn)As-based heterostructures
and reached the conclusion that, for sufficiently high hole
densities in the thin (Ga,Mn)As quantum wells, ferromagnetic
ordering becomes bias dependent leading to variable spin-
polarized currents.19,20 Here, we study the low doping regime
(relative to the Mn concentration) and use a refined model for
the valence-band states which accounts for both heavy- and
light-hole states. This, as will be shown, enhances the effect
of disorder on suppressing a resonant tunneling signature in
the IV characteristic. Based on a four band Kohn-Luttinger
Hamiltonian the transport properties are investigated within
a self-consistent nonequilibrium Green’s-function method
which accounts for space-charge effects and a hole-density-
dependent exchange splitting. We show that disorder reduces
or even completely washes out regions of negative differential
conductance in the IV curve. We find that, for the Be lead
doping levels as used in experiment, the resulting spin-density
polarization in the quantum well is low and thus leads to
almost vanishing ferromagnetic order. Our theoretical model is
presented in Sec. II and the results and relevance to experiment
are discussed in Sec. III. Summary and conclusions are given
in Sec. IV.

II. PHYSICAL MODEL

Here we describe our transport model for heterostructures
composed of layers of GaAs, GaAlAs, and (Ga,Mn)As grown
along the z axis. In this study the band structure at and slightly
above the top of the valence-band edge is modeled by the
4 × 4 Kohn-Luttinger Hamiltonian,28 which allows us to take
into account the mixing of heavy-hole (HH) and light-hole
(LH) bands, which is of crucial importance for getting a
realistic transmission function for holes tunneling through a
double barrier structure as shown in Ref. 29. For ordering the
four spin-3/2 basis vectors at the � point as uσ = | 3

2 ,mσ 〉
with mσ = { 3

2 , 1
2 ,− 1

2 ,− 3
2 }, the wave-vector-dependent Kohn-

Luttinger Hamiltonian reads

H (k) =

⎛
⎜⎜⎜⎝

P + Q −S R 0

−S† P − Q 0 R

R† 0 P − Q S

0 R† S† P + Q

⎞
⎟⎟⎟⎠ . (1)

The matrix elements can be expressed in terms of the
dimensionless Luttinger parameters γ1,γ2, and γ3:

P (k) = h̄2

2m
γ1k

2,

Q(k) = h̄2

2m
γ2

(
k2
x + k2

y − 2k2
z

)
, (2)

S(k) = h̄2

2m
2
√

3γ3(kx − iky)kz,

R(k) = h̄2

2m

√
3
[−γ2

(
k2
x − k2

y

) + 2iγ3kxky

]
,

where m is the free-electron mass. In order to considerably
simplify the numerical demands for the calculation of macro-
scopic quantities, such as the current density, which require the
summation over the in-plane momentum, we apply the axial
approximation in which the constant energy surface in the k

space becomes cylindrically symmetric but for which HH-LH
band mixing is still included.30 Within the axial approximation
the transmission function only depends on the absolute value
of the in-plane momentum k2

ρ = k2
x + k2

y . Space-dependent
(in z direction) potentials are taken into account within the
envelope function approximation, which effectively leads to
replacing kz → by −i∂z. By approximating the introduced
spatial derivatives on a finite grid of spacing a one ends up
with an effective nearest-neighbor tight-binding Hamiltonian
of tridiagonal form:

H =
∑
l,σσ ′

ε
(l)
σσ ′c

†
l,σ cl,σ ′ +

∑
l,σσ ′

tσσ ′c
†
l+1,σ cl,σ ′ + H.c., (3)

with c
†
l,σ denoting the creation operator for site l and orbital σ .

The onsite and hopping matrices, respectively, take the form

εσσ ′ =

⎛
⎜⎜⎜⎝

C1 0 −B 0

0 C2 0 −B

−B 0 C2 0

0 −B 0 C1

⎞
⎟⎟⎟⎠ , (4)

tσσ ′ =

⎛
⎜⎜⎜⎝

D1 −iE 0 0

−iE D2 0 0

0 0 D2 iE

0 0 iE D1

⎞
⎟⎟⎟⎠ . (5)

Here, the matrix elements are given by

C1 = h̄2

2m

[
k2
ρ(γ1 + γ2) + 2(γ1 − 2γ2)/a2],

C2 = h̄2

2m

[
k2
ρ(γ1 − γ2) + 2(γ1 + 2γ2)/a2

]
,

B = h̄2

2m

√
3γ k2

ρ, (6)

D1 = h̄2

2m
[−(γ1 − 2γ2)/a2],

D2 = h̄2

2m
[−(γ1 + 2γ2)/a2],

E = − h̄2

2m
γ3kρ

√
3/a,
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with γ = (γ2 + γ3)/2. This effective tight-binding model
has the advantage that space-dependent potentials, exchange
splittings in magnetic layers, and structural imperfections can
be readily included in the orbital onsite energies of the model,
i.e., the diagonal elements of the onsite matrix using

ε(l)
σσ = εσσ + Ul − eφ − σ

2
	l + εrand, (7)

where Ul denotes the intrinsic hole band profile due to the
band offset between different materials, φ is the electrostatic
potential, e is the elementary charge, 	l denotes the local
exchange splitting in the magnetic materials with σ = ±1, and
εrand labels a random shift due to disorder, as will be detailed
below.

With the ferromagnetic order being mediated by the
itinerant carriers the exchange splitting of the hole bands
self-consistently depends on the local spin density of the holes.
It can be derived within an effective mean-field model taking
into account two correlated mean magnetic fields stemming
from the ions’ d-electron spin polarization 〈Sz〉 and the hole
spin density 〈sz〉 = (n↑ − n↓)/2.21,31,32 The exchange splitting
of the hole bands is then given by

	(z) = −Jpdnimp(z)〈Sz〉(z), (8)

where z is the longitudinal (growth) direction of the structure,
Jpd > 0 is the exchange coupling between the p-like holes
and the d-like impurity electrons, and nimp(z) is the impurity
density profile of magnetically active ions. The effective
impurity spin polarization 〈Sz〉 is induced by the magnetic
field caused by the mean hole spin polarization, yielding

〈Sz〉 = −SBS

(
SJpd〈sz〉

kBT

)
, (9)

where kB is the Boltzmann constant, T is the lattice temper-
ature, and BS is the Brillouin function of order S, here with
S = 5/2 for the Mn impurity spin. Combining the last two
expressions gives the desired result:

	(z) = Jpdnimp(z)SBS

{
SJpd[n↑(z) − n↓(z)]

2kBT

}
. (10)

Since the hole spin density 〈sz〉 is changed by the in- and
out-tunneling holes, the magnetic and transport properties of
the system are coupled self-consistently.

To obtain realistic potential drops between the two leads,
space-charge effects have to be taken into account. In the
Hartree approximation the electric potential is determined by
the Poisson equation:

d

dz
ε

d

dz
φ = e [Na(z) − n(z)] , (11)

where ε and Na , respectively, denote the dielectric constant
and the acceptor density. The local hole density at site |l〉 can
be obtained from the nonequilibrium “lesser” Green’s function
G<:

n(l) = −i

Aa

∑
k‖,σ

∫
dE

2π
G<(E; lσ,lσ ), (12)

with A and k‖, respectively, being the in-plane cross-sectional
area of the structure and the in-plane momentum. The lesser

Green’s function is determined by the equation of motion

G< = GR�<GA, (13)

where GR and GA = [GR]+ denote the retarded and advanced
Green’s function, respectively. The scattering function �< =
�<

l + �<
r describes the particle inflow from the left (l) and

right (r) reservoirs33 with

�<
l,r = f0(E − μl,r )

(
�A

l,r − �R
l,r

)
, (14)

where f0(x) = [1 + exp(x/kBT )]−1 is the Fermi distribution
function and μl and μr , respectively, denote the quasi-Fermi-
energies in the contacts. The retarded and advanced self-energy
terms �R = �R

l + �R
r and �A = [�R]+, respectively, couple

the simulated system region to the left and right contacts. The
surface Green’s function of the leads is needed to obtain the
contact self-energy �R and is calculated by using the algorithm
of López-Sancho et al.34 The retarded Green’s function of the
system, finally, is given by

GR = [E + iη − Hs − �R]−1, (15)

which we calculate by consecutively adding one layer of the
system after another which, in our case, solely requires the
inversion of a 4 × 4 matrix for each additional layer.

The transport equations Eqs. (13) and (15) couple via the
spin-resolved hole density to the exchange splitting of the hole
bands Eq. (10) and the Poisson equation Eq. (11). For a given
applied voltage this system of equations is solved in a self-
consistent loop until convergence of the electrostatic potential
and the exchange field is reached. A small external magnetic
field is applied initially to aid spontaneous symmetry breaking.
For the next bias iteration, the self-consistent solution from
the previous bias value is used for an initial guess. Having
obtained the self-consistent potential profile the transmission
probability T (E,k‖) from the left to the right reservoir is
calculated by

T (E,k‖) = Tr[�lG
R�rG

A], (16)

with Tr[·] denoting the trace operation and the lead coupling
functions being defined by �(l,r) = i[�R

(l,r) − �A
(l,r)].

The steady-state current density is obtained by an integra-
tion over all incoming k‖ states and the total energy E:

j = e

2πh̄

∑
k‖

∫
dE T (E,k‖)[fl(E,μl) − fr (E,μr )], (17)

with the applied bias V = (μl − μr )/e being defined as the
difference in quasi-Fermi-levels of the contacts.

We model disorder effects in the (Ga,Mn)As layers by
performing a configurational average over structures with
randomly chosen diagonal elements of the onsite matrix
resulting in an ensemble of tight-binding Hamiltonians. The
diagonal onsite matrix elements are sampled according to a
Gaussian distribution around εrand = 0 in Eq. (7) for increasing
standard deviations (σdis = 20, 40, 60, and 80 meV). For each
specific structure (and Hamiltonian) the current-voltage (IV)
curve is solved self-consistently for an upsweep of the applied
voltage. This effective one-dimensional modeling of disorder
must be viewed as a limited estimate since it corresponds
to a cross-sectional average of transport though uncorrelated
effective linear chains. As such, any disorder correlations
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parallel to the interface are neglected. Such correlations in
disorder will play a role in the establishing of ferromagnetic
order in real structures relative to the idealized homogeneous
mean-field model adopted here, since both ferromagnetic
order and disorder effects are highly dependent upon spatial
dimensionality.35,36 Also, this type of averaging cannot model
the effects of Mn clusters. Additional types of disorder such as
Mn clustering and Mn interstitials, however, may be present
in real structures, but their type and concentration may differ
from sample to sample.

III. RESULTS

We investigate a double barrier structure consisting of Be
doped GaAs leads and a (Ga,Mn)As quantum well, similar
to the experimental setups presented in Refs. 9,10. The
structural similarity of the layer materials allows one to use
the same valence-band model for the whole structure, which
considerably simplifies the theoretical description. In recent
resonant tunneling spectroscopic experiments of the group of
Tanaka,7 however, a Schottky barrier contact with Au at one
side and a GaAs:Be contact with an AlAs barrier on the other
side of the (Ga,Mn)As quantum well was used. If the transport
is primarily determined by the resonant levels in the well, our
results obtained for a completely zinc-blende structure will be
relevant also for the Schottky barrier system investigated in
experiment.

For the simulations we assume the following parameters,
comparable to the experimental values of Ref. 9: barrier
thickness dbar = 4 layers (≈2 nm), quantum well width dw =
10 layers (≈5 nm), barrier height Vbar = 300 meV, relative
permittivity of GaAs εr = 12.9, exchange coupling constant
Jpd = 0.06 eV nm 3, 5% Mn doping, and lead temperature
T = 4.2 K. The Fermi level in the GaAs leads is chosen
to μl = 10 meV, which corresponds to a Be doping of
about 1018cm−3 as used in experiment. The dimensionless
Luttinger parameters are set to standard values for GaAs:
γ1 = 6.85,γ2 = 2.1, and γ3 = 2.9.

While (Ga,Mn)As inevitably is a disordered system, our
starting point is an idealized system for which the valence-band
edge is identical to that of GaAs. Subsequently, valence-band
disorder is added in increasing steps, allowing for a systematic
qualitative account of its consequences on the IV curve. For
convenience we use an inverted hole energy scale but retain
positively charged holes. In order to simulate the presence of
MnGa impurity band levels, partially populated by holes, we
use a positive (repulsive) charge background of 1018 cm−3 in
the (Ga,Mn)As layer leading to an upward shift of the potential
profile in the well region, as shown in Fig. 1. The local density
of states of the ideal double barrier structure (in the absence
of disorder) at zero bias and V = 0.1 V, corresponding to
the dominant current peak of the IV curve (see Fig. 5), is
shown in Figs. 1 and 2, respectively. The resonant levels in
the well are clearly visible and the solid line indicates the
self-consistent potential profile of the structure. At zero bias
the valence-band edge of (Ga,Mn)As is lifted relative to that
of the contact GaAs layers by about 30 meV, thus partially
aligning the MnGa levels [indicated schematically by the bold
(white) solid line] with the chemical potential which, in turn,
lies about 10 meV above the valence-band edge of the GaAs

z 

E
ne

rg
y 

(e
V

)

log(LDOS) at V= 0

 

 

1 20 40 60 80

0.1

0.2

0.3

−5

−4

−3

−2

−1

0

FIG. 1. (Color online) Logarithm of the local density of states
(LDOS) at zero bias for the perfect structure (no disorder) using an
inverted energy scale. The self-consistent potential profile is indicated
by the (red) solid line, whereas the Fermi-energy position of the leads
is plotted as the (red) dashed line. The position of the impurity band
in the well is indicated schematically by the (white) bold solid line
below the valence-band edge.

leads. Therefore, when a bias greater than about 10 mV is
applied the MnGa levels can no longer be filled resonantly from
the emitter side or, beyond about 30 mV, from either the emitter
or the collector. The latter situation is shown schematically in
Fig. 2. This loss of holes from the MnGa levels in the well region
and the insufficient resupply of holes from the GaAs emitter
into the resonant valence-band levels lead to a breakdown of
ferromagnetic order in the (Ga,Mn)As well under small bias,
i.e., to a zero-bias anomaly.

The transmission function and local density of states in the
center of the Ga1−xMnxAs quantum-well region are plotted
for increasing degree of disorder in Figs. 3 and 4, respectively.
Disorder leads to defect level in the band gap and a significant
spectral broadening of the resonant levels associated with
the lowest valence-band resonances. Note also the strong
increase of transmission probability in the low-bias regime
from disorder, opened by resonances for tunneling.

As a key difference compared to the bulk (Ga,Mn)As
situation, the hole density inside a (Ga,Mn)As quantum
well is established by forming a steady-state situation with
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FIG. 2. (Color online) Logarithm of the local density of states
(LDOS) at the bias V = 0.1 V for the perfect structure (no disorder)
using an inverted energy scale. The self-consistent potential profile
is indicated by the (red) solid line. The Fermi-energy positions of the
left and right leads are plotted as the (red) dashed and dotted lines,
respectively. Holes of the impurity band [indicated schematically by
the bold (white) solid line below the valence-band edge] can tunnel
out to the collector reservoir.
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FIG. 3. (Color online) The transmission function at zero bias for
the perfect structure (solid line), for moderate disorder σdis = 20 meV
(dashed line), and for stronger disorder σdis = 60 meV (dotted line)
by sampling over 3 × 104 configurations.

the external leads. Since the Be doping level in the GaAs
contacts is significantly lower than the Mn concentration this
leads to a strongly reduced hole concentration (over bulk) in
the (Ga,Mn)As wells under bias. Even under favorable bias
conditions, in which resonant levels in the quantum well can
be populated from the external leads, the quantum-well hole
density remains on the order of the hole density in the GaAs
leads (in our case ≈1018 cm−3), which is at least two orders
of magnitude smaller than in bulk (Ga,Mn)As. Therefore, in
our simulations we find practically vanishing ferromagnetism
(exchange splitting) for all bias values. In previous studies
we have shown that for higher hole doping of the leads a
bias-dependent ferromagnetic state with a maximum exchange
splitting of the order of tens of meV can be expected, being
detectable by a significant spin polarization of the collector
current.19,20 In this earlier study we focused on the transport
through the first HH sub-band using a simpler effective mass
band model. The picture that the quantum-well hole density is
determined by the coupling to the leads surely applies to the
case when the impurity band merges with the valence band,
leading at most to a broadening and shift of the valence-band
edge. In the presence of an isolated impurity band loosely
bound holes may exist (at least at low voltages) in the confined
impurity bands lying energetically below the first valence
two-dimensional sub-band (on the inverted energy scale).

The main result of the paper is given in Fig. 5, which
shows the IV characteristics for increasing degree of disorder.
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FIG. 4. (Color online) Local density of states (LDOS) in the
middle of the quantum well at zero bias for the perfect structure
(solid line), for moderate disorder σdis = 20 meV (dashed line), and
for stronger disorder σdis = 60 meV (dotted line) by sampling over
3 × 104 configurations.
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FIG. 5. (Color online) IV characteristic of a magnetic double
barrier structure for increasing degree of disorder measured by the
standard deviation σdis of the Gaussian distribution of the randomly
chosen diagonal onsite matrix elements εrand.

Using a parallelized code typically 240 configurations are
used for each characteristic, which needs about four days
of computation on a 12-node Opteron server for a single IV
curve. For increasing disorder the resonances in the IV curve
become more and more broadened and start to overlap until
they are almost washed out. Here a model which takes into
account the HH-LH band mixing in the well is essential in
order to see this effect. If ignored, the LH resonances would
dominate the current magnitude compared to the HH peaks
and regions of pronounced negative differential resistance
would persist even for unphysically high degrees of disorder.
For the low doping regime of the leads (relative to the Mn
concentration in the quantum well), as considered here, we
find an almost vanishing ferromagnetism (	 < 10−2 meV) in
the well leading to a vanishing current spin polarization. These
results also suggest that, for a given (small) degree of disorder,
enhancing the confinement, e.g., by using a thinner quantum
well and/or higher barriers, should lead to smaller overlap
between the sub-bands, thus enhancing resonant tunneling
features of the IV curve. Alternative external pressure may
be used to enhance the splitting between the lowest HH and
LH sub-bands.

IV. CONCLUSIONS

In summary, we have shown that two factors can be relevant
to understand the experimental findings of weak resonant
tunneling features and an absence of ferromagnetic order
arising from thin (Ga,Mn)As quantum-well layers:

(i) The presence of considerable disorder in thin layers
of (Ga,Mn)As conspires with HH-LH band mixing in the
quantum well to efficiently weaken any signatures of resonant
tunneling in the IV characteristics. Clearly, our account of
disorder and defects is of a qualitative nature. However, a
growth-specific detailed account of disorder, interstitials, and
antisite and defect complexes, while desirable, is a formidable
task.

(ii) The observed (almost) vanishing of ferromagnetic
order in the (Ga,Mn)As quantum well can be understood
by finding orders of magnitude lower hole densities in the
well as compared to the bulk (Ga,Mn)As case of equal Mn
concentration.
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We thus find the original interpretation of observing
quantum size effects in a (Ga,Mn)As quantum well by the
group of Tanaka7,9,10 to be plausible and consistent with our
numerical results.
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