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Manifestation of chiral tunneling at a tilted graphene p-n junction
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Electrons in graphene follow unconventional trajectories at p-n junctions, driven by their pseudospintronic
degree of freedom. The prominent angular dependence of transmission is significant, capturing the chiral nature
of the electrons and culminating in unit transmission at normal incidence (Klein tunneling). We theoretically
show that such chiral tunneling can be directly observed from the junction resistance of a tilted interface
probed with separate split gates. The junction resistance is shown to increase with tilt, in agreement with recent
experimental evidence. The tilt dependence arises because of the misalignment between modal density and the
anisotropic transmission lobe oriented perpendicular to the tilt. A critical determinant is the presence of specular
edge scattering events that can completely reverse the angle dependence. The absence of such reversals in the
experiments indicates that these edge effects are not overwhelmingly deleterious, making the premise of transport
governed by electron “optics” in graphene an exciting possibility.
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I. INTRODUCTION

A striking feature of electron flow in graphene, gated
uniformly or electrostatically “doped” into junctions, is the
nontrivial dynamics of its pseudospins arising from its or-
thogonal dimer basis sets. The overall photon-like dispersion
propels electrons along trajectories intuitive of Snell’s law,
conserving quasimomentum components transverse to the
interface. However, the corresponding “Fresnel equations”
are qualitatively different from their optical counterpart,
determined by conservation of pseudospins. In particular,
graphene electrons are chiral in nature, meaning the pseu-
dospin components are related to the direction of momentum.
This results in perfect transmission at normal incidence,1

regardless of voltage gradients across the junction (Klein
tunneling). For other incident angles, the spinor mismatch
leads to a unique angle dependent transmission across the
junction. Thus, while conventional electronics in graphene
faces possibly steep challenges,2 the dynamics of pseudospin-
tronics can usher in novel concepts such as electronic Veselago
lens,3 subthermal switches driven by a geometry induced
metal-insulator transition,4 and Andreev reflections.5

Despite the exciting physics of chiral electron flow, its
measurable signatures have so far been sparse and indirect.
Signatures of Klein tunneling were seen6,7 in the preferential
transmission of normally incident carriers predicted in Ref. 8.
A more direct measurement was the conductance oscillation
in an n-p-n structure.9 The reflection amplitude undergoes a
phase shift of π at normal incidence under the action of a
magnetic field, due to the cyclotron bending of the carriers.10

However, the main underlying physics of the angle dependent
electron transmission needs to be explicitly measured. A
proper model that can capture both the quantum mismatch
of spinors over different doping regimes is lacking, as well as
diffusive scattering to explore their robustness to impurity and
edge scattering events.

In this paper we focus on a tilted graphene p-n junction
(GPNJ) (i) to show that it serves as an explicit signature
of chiral tunneling. We show that the junction resistance

(similar to the odd resistance shown in other experiments6,7)
is higher than the nontilted device (Fig. 1). We argue that this
enhancement originates from the chiral nature of graphene
electrons which manifests itself through the highly angle
dependent transmission characteristics of GPNJ (Fig. 2).
The angular transmission lobe, oriented perpendicular to the
interface, is rotated with the tilt, where fewer transmitting
modes exist. Therefore the conductance modulation would not
happen for nonchiral, nonrelativistic electrons with isotropic
transmission. The results follow closely with our recent
transport measurements of a tilted GPNJ in a structure that
has separately controlled split-gate voltages.11 (ii) We present
an analytical solution to the spinor mismatch problem (Sec. II)
as well as a nonequilibrium Green’s function (NEGF) based
atomistic numerical calculation (Sec. III). An efficient matrix
inversion algorithm is employed to reach near experimental
dimensions and capture both quantum mechanical and dif-
fusive contributions to the overall resistance. We find that
charged impurity scattering dilutes but does not eliminate
the modulation in conductance (Figs. 1 and 3) (Sec. IV).
(iii) Notably, we demonstrate that specular scattering events
at edges can reverse the trend in modulation (Sec. V), giving
an interfacial resistance that decreases with tilt (Fig. 4). Such
a decrease has been seen in the past,12 but its physical origin
needs to be identified. The absence of such a reversal in experi-
ments surprisingly points to their elimination, possibly through
incoherent scattering processes dominant at the strained
edges.

II. ANALYTICAL MODEL

The conductance of a GPNJ can be written as G =
G0

∑M
i T (θi), where G0 = 4q2/h is the conductance quantum

including spin and valley degeneracies and T (θi) is the
incident angle dependent transmission probability with θi =
tan−1(ky/kx). M is the number of modes from the incident side
for a given Fermi energy EF relative to its Dirac point and can
be approximated as M ≈ W |EF |/πh̄vF over the linear E-k
regime. The angle dependent transmission T is obtained by
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FIG. 1. (Color online) (a) False color scanning electron mi-
croscopy (SEM) image (Ref. 11) and (b) device schematic.
Two split gates, separated by a distance d , create a p-n junc-
tion with a linear potential variation across the junction. The
gates are placed at an angle δ with respect to the trans-
port direction. (c) Experimental (Ref. 11) and (d) theoretical
junction resistance (RJ ) vs voltage and energy respectively for
δ = 0.45◦. In (d), we plot RJ vs EF = h̄vF

√
παGCG|VG1|/q

from an atomistic calculation for a 100 nm wide graphene
sheet.

pseudospin conservation across the junction,4

T (EF ,θi) =
[

cos θi cos θr

cos2
(

θi+θr

2

)
]

e−πh̄vF k2
F d sin2 θi/V0 , (1)

for incident angles above the critical angle as defined below.
Equation (1) is a general form of the transmission expression in
Refs. 8 and 13 and works for the entire voltage range from the
p-n to n+-n junction. The incident and refracted angles θi and
θr are related by Snell’s law,3 EF sin θi = (EF − V0) sin θr ,
with V0 (Fig. 1) being the voltage barrier across the junction,
and kF = EF /h̄vF . The Snell’s law arises from transverse
quasimomentum (ky) conservation [the energy band diagram
in Fig. 1(b)]. For incident angles above the critical angle,
θC = sin−1 |EF −V0

EF
|, ky cannot be conserved and T becomes

zero.
For a tilted junction, the incoming mode angles are

modified, so that the conductance becomes

G(EF ) = G0

M(EF )∑
i

T (EF ,θi + δ), (2)

where δ is the tilt angle as shown in Fig. 1. In Eq. (2) the
effective split between the two gates is d/ cos δ. As a result
of the angle dependence, the transmission lobe at a particular
energy will rotate by the tilt angle [Fig. 2(a)]. The transverse
wave vector ky = k sin θ gives �θ = �ky/(k cos θ ), thus the
angular spacing between modes [the total number of modes
at θ is N (θ ) = Wk

π
sin θ ] increases at higher angles relative to

FIG. 2. (Color online) (a) Angular transmission for various tilt
angles. (b) With tilt, the transmission lobe moves into a low
angular mode density (∼cos θ ) area, giving (c) a gradual decrease
in transmission [Eq. (3)] for a symmetric p-n junction. (d) Junction
resistance at 0 K predicted from Eq. (4). We see resonances which
become more pronounced as we go into smaller systems.

the transport axis, resulting in lower angular mode density,
dN
dθ

= 1
�θ

. A tilt at the junction thus shifts the transmission
window onto a high angle region where the mode density is
less, decreasing the overall transmission [Fig. 2(c)]. In the
limit when the number of modes is very few, the experiment
will give the mode resolved angle dependent transmission
properties [Fig. 2(a)]. For an abrupt, symmetric p-n junction,
the transmission expression reduces to cos2 θ from Eq. (1) and
it is easy to see the impact of tilt,

G ≈ G0

∫ π/2−δ

−π/2

T (θ + δ)

�θ
dθ = G0

[
2

3
cos4

(
δ

2

)]
M. (3)

The factor 2/3 arises from the wave-function mismatch across
the junction and the tilt introduces an additional scaling
factor, which further reduces conductance. We define average
transmission over all modes as Tav = G/(G0M). The gradual
decrease of Tav with δ in Fig. 2(c) constitutes a direct
manifestation of chiral tunneling in graphene.

To connect with experimental measurements, we next
analyze the variation of the junction resistance in presence
of an intrinsic background doping (VDP ) in the graphene sheet
[Fig. 2(d)]. We vary the gate voltages so that VG1 = −VG2 but
a nonzero VDP makes it an asymmetric GPNJ. The effective
gate voltages on the graphene sheet are αG(VG1 + VDP ) and
αG(VG2 + VDP ), where αG is the capacitive gate transfer
factor. The junction resistance can be written as14

RJ =
(

4q2

h

)−1 [
1 − Tav

MTav

]
. (4)

Figure 2(d) plots RJ against EF = h̄vF

√
(π )αGCG|VG1|/q,

the amount of shift in the Dirac point by VG1, for a 100 nm
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wide graphene sheet with a split gate separation d = 200 nm.
For the voltage range |VG1| < VDP , we are in the n+-n regime
for positive VDP and p+-p for negative. Under these near
homogeneous conditions, the junction resistance predicted by
Eqs. (1)–(4) is small, because the pseudospin states match and
there is no Wentzel-Kramers-Brillouin (WKB) tunneling term
in Eq. (1). When |VG1| > VDP , we are in the p-n junction
regime and resistance jumps to a high value, primarily due to
the WKB factor in Eq. (1) (a similar trend was seen in Refs. 6
and 7). The rate of change in RJ with VG1 is determined by d.
For the 45◦ tilted junction, the junction resistance is higher than
the nontilted resistance. We see oscillation in the resistance
[Fig. 2(d)] for the single n-p junction. This is different
from the interference oscillation in Ref. 9 for the resonant
cavity formed in an n-p-n structure. This can be under-
stood from the conductance in the p-n junction regime,
simplified as G(kF ) ≈ G0

∑M
i exp(−πkF d sin2 θi/2) for large

d. With increasing gate voltage (higher kF ) we have more
modes (M) in the summation with each mode transmitting
with an exponentially reduced magnitude. The two opposing
effects generate a sequence of peaks and valleys and dominate
when we sum over few modes (either with quantization or tilt)
at low temperature.

III. NEGF BASED NUMERICAL MODEL

An atomistic, numerical calculation of the junction resis-
tance is shown in Fig. 1(d) at 80 K temperature. We use NEGF
formalism for a 100 nm wide graphene sheet with d = 200 nm,
close to experimental dimensions (width ∼200–300 nm). A
single pz orbital basis for each carbon atom is used to compute
the Hamiltonian H , while the contact self-energies �1,2 are
calculated using an iterative technique.15 The retarded Green’s
function is calculated as

GR = (EF I − H + V − �1 − �2)−1 (5)

using the recursive algorithm in Ref. 16, where V is the
electrostatic potential inside the device. In units of 2q2/h,
the conductance is

G = �1G
R�2G

A, (6)

where the contact broadening functions � are the anti-
Hermitian components of �. For ballistic transport, G equals
M , the number of modes for a uniformly gated sheet, and
MTav for a p-n junction. Combining these two, we calculate
Tav and RJ from Eq. (4), which shows a jump with tilt in the
p-n junction regime, very similar to the experiment.

IV. IMPACT OF CHARGED IMPURITY SCATTERING

The experimental device is on a SiO2 substrate and the
transport is diffusive with a mobility varying from 700 to
3000 cm2/V s. It is natural to inquire how the theoretical
model, which so far had no scattering, corresponds to exper-
iments. To explore this feature, we included the impact of
charged impurity scattering in our model. We use a sequence
of screened Gaussian potential profiles for the impurity scatter-
ing centers,17–19 U (r) = ∑Nimp

n=1 Un exp (−|r − rn|2/2ζ 2), that
specifies the strength of the impurity potential at atomic site
r , with rn being the positions of the impurity atoms and

FIG. 3. (Color online) Impact of charged impurity scattering. (a)
Conductance asymmetry is diluted due to impurity potentials, and
the ballistic resistance is normalized for comparison. (b) Reduced
asymmetry results in a lower junction resistance for both tilted and
nontilted devices, thus retaining their difference.

ζ the screening length (≈8 times the C-C bond for long
range scatterers). The amplitudes Un lie in the range [−δ,δ]
(≈0.5 times the C-C coupling parameter) and Nimp is the
impurity concentration (∼5 × 1011 cm−2). Note that the purely
diffusive model discussed in Refs. 6,7, and 20 ignores the
quantum mechanical spinor mismatch and WKB scaling and
therefore underestimates the junction resistance for cleaner
samples. Our NEGF based numerical model, on the other hand,
captures both the quantum mechanical and impurity limited
resistance contributions simultaneously. The junction resis-
tance is now calculated by eliminating the contact and device
resistance,11

RJ = [R(VG1,VG2) + R(VG2,VG1)

−R(VG1,VG1) − R(VG2,VG2]/2, (7)

where the first two terms contain the junction resistance, while
the last two do not.

Figure 3(a) shows the impact of the impurity scatterings on
the total resistance and Fig. 3(b) on the junction resistance. We
take the average resistance over many impurity configurations.
This puts a constraint on the computation size, so we show
calculations this time for a smaller device (50 nm wide).
We find that both tilted and nontilted junction resistances are
suppressed, thereby retaining the difference between the two.
This reduction in junction resistance with scattering is quite
consistent with the experiment [Fig. 1(c), the red line is for a
45◦ device with mobility 2270 cm2/V s, while the blue triangle
is for 45◦ with lower mobility, 700 cm2/V s].

The reduction in the junction resistance from ballistic to
diffusive transport can be understood from the trend in total
resistance, shown in Fig. 3(a). Now we keep VG1 fixed and
vary VG2 so that we go from an n+-n to n-p junction. We see
a clear asymmetry in the R-VG (Refs. 7 and 13) [the purple
line normalized to the orange line in Fig. 3(a) for comparison].
The asymmetry confirms the presence of a p-n junction, which
reduces the conductance due to spinor mismatch. The presence
of impurity scattering reduces this asymmetry while increasing
the overall resistance (the red line). The impurity potentials
create a random potential variation throughout the graphene
sheet on top of the applied gate voltages, thus blurring the
presence of a p-n junction. Therefore the resistance due to
spinor mismatch becomes less noticeable [Fig. 3(b)]. Indeed,
the experimental data of the total resistance indicates an
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FIG. 4. (Color online) (a) Increase in conductance in a tilted
GPNJ due to edge scattering (ES) in contrast with Fig. 2(c).
(b) Corresponding decrease in junction resistance due to tilt.
(c) Mechanism of edge enhanced conductance for a tilted junction
from an atomistic NEGF calculation. We put a small source (bright
red spot)—some reflected electrons are incident at the junction again
after edge reflection.

increase in asymmetry in the tilted junction,11 signifying an
increase in the junction resistance.

V. REVERSAL OF TILT DEPENDENCE
WITH SPECULAR EDGE SCATTERING

A striking feature of the experimental results is their
agreement with Eq. (3). This match is remarkable, considering
that the equation was derived assuming no edge reflections and
the fact that a past numerical study12 showed in fact an increase
in conductance with tilt. We argue that the above reversal of
junction conductance with tilt is entirely due to specular edge
scattering events. Indeed, from an atomistic NEGF calculation
with shorter widths than lengths, we find that the transmission
now shows a pronounced local maximum [Fig. 4(a), orange
line], in agreement with Ref. 12, thereby increasing the
junction resistance. We summarize this in Fig. 4(b), where
an increasing tilt makes the resistance increase for the short
channel 125 nm × 50 nm device (a transition from the purple
circle to the black diamond), but a decrease for the longer
200 nm × 50 nm device (the orange square to the red triangle).
Bearing in mind that the gate split is 100 nm, the short channel
device significantly reduces edge scatterings.

To better understand the origin of such a resistance reversal,
we inject electrons with a small contact at the left edge [the
bright red spot in Fig. 4(c)] and plot the spatial current density
under a small drain bias. The numerically computed electron
trajectories show how a tilt can enhance forward scattering
events at the edge and thus an increase in conductance. The

enhancement arises from simple “geometrical optics” dictated
by Snell’s law. We can identify the incident wide angle modes
(θ > π/4 − δ), for which the reflected “ray” hits the upper
edge with a positive x directed velocity. Such a mode will
reflect back towards the junction again. The contribution from
the positively directed edge scattering event is given by

Gedge = G0

∫ π/2−δ

π/2−3δ

T (π − 3δ − θ )

�θ
dθ

= G0[2 sin4 δ cos δ]M. (8)

Note that only the incident angles below the critical angle are
considered while setting the limits of the integration.

With the added contribution from edge scattering, the net
mode-averaged transmission is given by

Ttotal ≈ Tav + (1 − Tav)Tedgeη, (9)

where the T ’s are extracted from the corresponding G/(G0M)
ratios and η is a parameter that describes the efficiency of
specular edge scattering. In the absence of edge scattering (η =
0), Ttotal = Tav and decreases with tilt [Fig. 2(c)]. However,
in the presence of strong edge scattering (η = 1), the added
forward edge scattering term in Eq. (9) closely reproduces the
NEGF result with the local transmission maximum [Fig. 4(a),
black dotted line]. Comparing these results with experiments
indicates that such edge scattering events are clearly minor.
We conjecture that the coherent forward scattering processes
captured by NEGF can be diluted down in the experiments
by the presence of incoherent and non-specular scattering
processes arising at the strained and rough edges of the
graphene samples that tend to dephase, randomize or perhaps
even trap the electrons.

VI. CONCLUSION

We have presented the theory of a tilted graphene p-n
junction showing that it provides an explicit signature of
chiral tunneling in graphene. The tilted device shows con-
siderably higher junction resistance, in agreement with our
recent measurements, as a result of the mismatch between
angular mode distribution and the anisotropic transmission
lobe. The trend in resistance gets reversed in the presence of
specular edge scattering, but survives in impurity scattering.
Experimental results match with the theoretical results when
edge scatterings are removed, indicating their absence in
the measured device. The experimental observation of chiral
tunneling, particularly in the face of impurity and edge
scattering, opens up the possibility of graphene’s “geometric
optics” based applications, e.g., lens, switches.3,4 Analogous
results are expected in bilayer graphene, but not in achiral
materials such as two-dimensional hexagonal boron nitride.
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