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Spin polarization and g-factor enhancement in graphene nanoribbons in a magnetic field
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We provide a systematic quantitative description of spin polarization in armchair and zigzag graphene
nanoribbons (GNRs) in a perpendicular magnetic field. We first address spinless electrons within the Hartree
approximation, studying the evolution of the magnetoband structure and formation of the compressible strips.
We discuss the potential profile and the density distribution near the edges and the difference and similarities
between armchair and zigzag edges. Accounting for the Zeeman interaction and describing the spin effects via
the Hubbard term, we study the spin-resolved subband structure and relate the spin polarization of the system
at hand to the formation of the compressible strips for the case of spinless electrons. At high magnetic field the
calculated effective g factor varies around a value of 〈g∗〉 ≈ 2.25 for armchair GNRs and 〈g∗〉 ≈ 3 for zigzag
GNRs. An important finding is that in zigzag GNRs the zero-energy mode remains pinned to the Fermi energy
and becomes fully spin polarized for all magnetic fields, which, in turn, leads to a strong spin polarization of the
electron density near the zigzag edge. Because of this the effective g factor in zigzag GNRs is strongly enhanced
at low fields reaching values up to g∗ ≈ 30. This is in contrast to armchair GNRs, where the effective g factor at
low field is close to its bare value, g = 2.
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I. INTRODUCTION

Investigation of the effects of electron interaction and
spin in graphene at high magnetic field represents one
of the frontiers in graphene research. Even though many
aspects of the magnetoconductance of graphene related to
the formation of unconventional Landau level spectra and
the anomalous Hall effect are well understood theoretically
and confirmed experimentally,1–4 there are still a number of
questions awaiting resolution. One of these questions which
is extensively debated in the current literature is the origin of
the splitting of the lowest Landau level and the emergence
of the insulating state at the Dirac point.5–9 Even though the
precise origin of this state is under current debate, it is generally
believed that it is related to electron-electron interaction and
spin effects. The importance of electron interaction was also
outlined for higher Landau levels.6 Recently, spin splitting
in graphene and bilayer graphene in high magnetic field was
experimentally analyzed by Kurganova et al.,10 who found
that the g factor in graphene is enhanced and attributed this to
electron-electron interaction effects. The spin splitting of the
states in graphene11 and graphene quantum dots12 was also
studied in a parallel magnetic field.

Motivated by this interest in the electron interaction and
spin effects in graphene in the high magnetic field, in the
present paper we study the spin polarization and enhancement
of the g factor in graphene nanoribbons (GNRs). Note that
various aspects of electron and spin interactions in the high
magnetic field have been extensively studied in conventional
semiconducting quantum wires defined in a two-dimensional
electron gas (2DEG).13–21 One of the motivations for such
studies is related to advances in semiconductor spintronics
utilizing the spin degree of freedom for adding new function-
alities to electronic devices.22 Some proposed and investigated
devices for spintronics and quantum computation applications

operate in the edge-state regime,23,24 which obviously requires
a detailed knowledge of the structure of the states in a quantum
wire or at the edge of the 2DEG. The properties of and
detailed information about propagating states at the boundaries
are also essential for interpretation of experiments in various
electron interferometers in the quantum Hall regime.25–27

Because graphene represents a very promising system for
implementation of many devices and concepts for spintronics
and quantum information processing applications utilizing
the edge-state transport regime, a detailed knowledge of the
density and potential profiles near the edges as well as spin
properties is important for understanding and designing such
devices.

This paper is organized as follows. In Sec. II we present a
formulation of the problem, define the Hamiltonian, and briefly
outline the self-consistent computational scheme. The results
and discussion are presented in Sec. II. Section II A discusses
the potential profile and the charge accumulation near the
edges in ribbons of different widths and edge terminations.
Section II B is devoted to the case of spinless electrons,
focusing on the formation of compressible strips and the
evolution of the magnetoband structure. Finally, based on the
results of Sec. II B, Sec. II C discusses the spin splitting and
the enhancement of the g factor for the case of electrons with
spin. The conclusions of this work are presented in Sec. III.

II. MODEL

We consider an infinite GNR of width W , located in an
insulating substrate with relative permittivity εr and subjected
to perpendicular magnetic field B [see inset in Fig. 1(b)]. A
metallic back gate situated at a distance d from the ribbon
is used to tune the Fermi energy in order to change an
electron concentration in the GNR. The system is modeled by
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FIG. 1. (Color online) (a), (c) The self-consistent charge densities
and (b), (d) potentials for the armchair and zigzag ribbons of widths
W = 10, 30, and 50 nm calculated in the Hartree approximation at
zero magnetic field. Only half of the ribbon is shown. The insets in
(a) and (c) show the dispersion relation for nanoribbons of different
widths W = 10, 30, and 50 nm from left to right for several of the
lowest subbands. The inset in (b) shows the schematic geometry of
the device; d = 30 nm. EF = 5t , t = 2.7 eV, and a = 0.142 nm.

the p-orbital tight-binding Hubbard-type Hamiltonian in the
mean-field approximation, H = H ↑ + H ↓, which is shown to
describe carbon electron systems in good agreement with the
first-principles calculations,28,29

Hσ = −
∑
r,�

tr,r+�a+
rσ ar+�,σ

+
∑

r

[
V σ

Z + VH (r) + V σ ′
U (r)

]
a+

rσ arσ , (1)

where σ and σ ′ correspond to two opposite spin states, ↑
and ↓; the summation runs over all sites r = (x,y) of the
graphene lattice, and � includes the nearest neighbors only.
The magnetic field is included in a standard way via Pierel’s
substitution, tr,r+� = t0 exp(i2πφr,r+�/φ0), where φr,r+� =

∫ r+�

r A · dl, with A being the vector potential, φ0 = h/e

being the magnetic flux quantum, and t0 = 2.7 eV. [In our
calculations we use the Landau gauge, A = (−By,0).] The
first two terms in Eq. (1) correspond to the noninteracting part
of the Hamiltonian, with the first term describing the kinetic
energy of the electrons on a graphene lattice. The second term
describes the Zeeman energy triggering the spin splitting in
the magnetic field, V σ

Z = ± 1
2gμbB, where the + (−) sign

corresponds to the spin state ↑(↓); g = 2 is the bare g factor
of pristine graphene, and the Bohr magneton μb = eh̄/2me.

The last two terms in Eq. (1) describe the electron interaction.
The long-range Coulomb interaction between induced charges
in the GNR is given by the standard Hartree term,

VH (r) = e2

4πε0εr

∑
r′ 	=r

nr′

(
1

|r − r′| − 1√
|r − r′|2 + 4d2

)
,

(2)

where nr = nr↑ + nr↓ is the total electron density and the
second term corresponds to a contribution from the mirror
charges. The last term in Hamiltonian (1) corresponds to the
Hubbard energy,

V σ ′
U (r) = U

(
nσ ′

r − 1
2

)
, (3)

and describes repulsion between electrons of opposite spins on
the same site. The number of excess electrons at site r reads

nσ
r =

∫ ∞

−∞
ρσ (r,E)fFD(E,EF )dE − nions, (4)

where ρσ (r,E) = − 1
π

Im[Gσ (r,r,E)] is the energy-dependent
local density of states (LDOS) at zero temperature, Gσ (r,r,E)
is the Green’s function in the real-space representation of
an electron of spin σ residing on site r, EF = eVg is the
Fermi energy, which value is adjusted by the gate voltage,
and nions = 1/A0 = 3.8 × 1019 m−2 is the positive-charge
background of ions (A0 = 3

√
3

4 a2
0 is the area per one C atom

and a0 = 0.142 nm is the C-C distance). Equations (1)–(4) are
solved self-consistently using the Green’s function technique
in order to calculate the band structure, the charge density, and
the potential distribution.30–32 For a given potential distribution
we compute the conductance using the Landauer formula,

Gσ (EF ) = e2

h

∫
T σ (E)

[
−∂fFD(E − EF )

∂E

]
dE, (5)

where T σ (E) is the total transmission coefficient for electrons
with spin σ and fFD is the Fermi-Dirac distribution.

III. RESULTS AND DISCUSSION

A. Potential profile and the charge accumulation near the edges
in ribbons of different widths and edge terminations

In the present study we aim to describe spin polarization
in realistically wide GNRs. In current experiments33–36 the
widths of nanoribbons are W ∼ 100 nm, and the magnetic
field reaches B � 60 T, corresponding to the ratio W/lB ≈ 10,
with lB = √

h̄/eB being the magnetic length. At the same
time, because of computational limitations, it is difficult to
treat ribbons with widths exceeding 50 nm. Therefore in our
calculations we rescale the system using ribbons of smaller
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width W ∼ 30 nm subjected to higher fields (up to B ∼ 350 T)
in order to keep the ratio W/lB ≈ 10 in accordance with
typical experiments.33–36 In very narrow ribbons the quantum
confinement effects can dominate the ribbon’s electronic
properties. Thus, a concern might arise whether the obtained
results remain valid for realistically wide ribbons. In the
present section we investigate how a nanoribbon’s electronic
properties, such as the density distribution and the potential
profile in the vicinity of the edge, change with the increase
of the ribbon’s width and find that the width of W ≈ 30 nm
is already sufficient to capture all essential features of a wide
ribbon or even a semi-infinite graphene sheet.

In our study we consider both types of edges, armchair and
zigzag. We will demonstrate in subsequent sections that the
main features in the spin polarization of the electron density
and the enhancement of the g factor are rather similar for both
types of edges. There is, however, an important difference
between them which can be traced to the presence of the
zero-energy mode (ZEM) residing at the edge of the zigzag
GNRs.37 In the present section we will demonstrate that the
ZEM leads to different features in the potential and charge
density profiles near the edges for the cases of armchair and
zigzag ribbons.

Figure 1 shows the self-consistent charge density distri-
butions and potential profiles for the armchair and zigzag
nanoribbons of various widths W = 10, 30, 50 nm. In all
calculations the distance between the GNR and the gate is
d = 30 nm. The calculations are performed in the Hartree
approximation for spinless electrons at zero field [i.e., V σ

U and
V σ

Z are set to 0 in Hamiltonian (1)]. It is noteworthy that the
electron-density distribution obtained from the electrostatics
[i.e., due to the Hartree potential VH (r), Eq. (2)] is not altered
significantly by the magnetic field.38 The charge densities and
potentials stay qualitatively the same as the nanoribbon width
increases and exhibit practically no difference for 30- and
50-nm-wide nanoribbons. We thus conclude that the transverse
confinement does not change substantially for nanoribbons
wider than ∼30 nm, and the width W = 30 nm is sufficient
to describe realistically wide ribbons or even an edge of a
graphene sheet.

Let us now focus on a difference in the potential profiles
and the electron-density distributions in the vicinity of a
ribbon edge for armchair and zigzag ribbons. Both ribbons
show strong electron accumulation near the edges, but this
accumulation is stronger in the zigzag GNRs. The corre-
sponding potential profiles for armchair and zigzag ribbons
have different shapes near the edges. For the armchair ribbon,
the potential has a triangular shape [see Fig. 1(b)]. This was
predicted and explored previously.39,40 The triangular shape
of the potential is related to the hard-wall confinement. It is
noteworthy that a similar triangular shape of a potential is
exhibited by cleaved-edge overgrown quantum wires where
electrons also experience a hard-wall confinement.20,41

The potential profile for the case of zigzag ribbon exhibits
somehow different features. As in the case of the armchair
GNRs, it gradually decreases towards the boundaries to form
a well in the vicinity of the edges. However, in close proximity
to the edges, it raises up and crosses the Fermi energy [see
Fig. 1(d)]. We relate this feature to the ZEM that traps
charges. The zero-energy mode is manifested as a disperseless

energy level pinned to EF in the ranges k ∈ π√
3a

[ 2
3 ,1] and

k ∈ − π√
3a

[ 2
3 ,1]. It is these trapped charges that raise the

potential at the edges. They effectively repulse excess charges
induced in the ribbon by the gate and prevent the triangular well
from forming near the boundary. Therefore, the difference in
the charge accumulation and potential profiles in the armchair
and zigzag ribbons occurs due to the topological property of
the zigzag edge termination, supporting the zero-energy mode.
It is important to stress that this difference persists into the
high-field regime and cannot be addressed by semiclassical
approaches as in Ref. 39.

B. LDOS, magnetoband structure, and formation
of compressible strips for spinless electrons

Spin polarization in conventional quantum wires is related
to the formation of compressible strips38 in the case of
interacting spinless electrons.19–21 In this section we therefore
outline the electronic and transport properties of armchair
and zigzag nanoribbons in the Hartree approximation for
spinless electrons [i.e., disregarding the Hubbard and Zeeman
interactions, VZ = VU = 0, in Hamiltonian (1)], focusing on
the formation of the compressible strips.

Figures 2(a) and 2(b) show the local density of states
(LDOS), L(y) = − ∫

ρ(y,E) ∂fFD (E−EF )
∂E

dE, and the total den-
sity of states (DOS), D = ∑

y L(y), at the Fermi energy
as a function of the magnetic field for the armchair and
zigzag ribbons. (Note that LDOS is shown for one sublattice
only.) It is noteworthy that the DOS can be accessible
via magnetocapacitance or magnetoresistance measurements,
similar to conventional semiconductor structures defined in
2DEG.42,43 The structure of the LDOS and DOS can be
understood from an analysis of the magnetosubband structure.
We outline below the main features of the subband structure for
the armchair and zigzag ribbons, focusing on the differences
and similarities between them as well as on formation of the
compressible strips in the ribbons. (Note that the evolution
of the band structure for the case of the armchair GNRs was
discussed by Shylau et al.31)

The left panels of Figs. 3(a)–3(c) show the band structure of
armchair graphene nanoribbons for spinless Hartree electrons
for three representative magnetic fields. Flat regions in the band
diagrams correspond to the Landau levels in bulk graphene,
and dispersiveness states close to the GNRs boundaries
represent edge states corresponding to classical skipping
orbits. Figure 3(a) shows the band diagram for a magnetic
field B = 140 T when the two lowest Landau levels, LL0 and
LL1, are filled. The first Landau level, LL1, is pinned to the
Fermi energy, thus forming a compressible strip in the center
of the GNR. The strip is called compressible when the electron
density can be easily redistributed in order to effectively screen
the external potential. We define a compressible strip as a
region where the dispersion lies within the energy window
|E − EF | � 2πkBT (Refs. 18, 19, 31, and 44) because in this
energy window the states are partially filled, i.e., 0 < fFD < 1,
and thus the electron density can be easily changed.

Because a graphene ribbon has abrupt edges, the self-
consistent potential forms the triangular wells near the edges,
as discussed in the previous section. As a result the center
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FIG. 2. (Color online) (a), (d) The LDOS and (b), (e) the DOS at
the Fermi energy and (c), (f) the two-terminal conductance calculated
in the Hartree approximation for the (left) armchair and (right) zigzag
ribbons. The LDOS is shown for one graphene sublattice, say A. The
LDOS for sublattice B is symmetric with respect to the ribbon’s axis.
The regions with higher LDOS point to a higher probability of finding
an electron there and correspond to positions of the compressible
strip. Nc and Ne in (c) and (f) mark the number of occupied electron
subbands in the center and near the edge of the ribbon, respectively.
The width of ribbons is W = 30 nm, corresponding to 242 and 141
carbon atoms in the cross section of armchair and zigzag ribbons,
respectively. EF = 5t . Temperature T = 10 K.

of the ribbon and its edges depopulate in the magnetic
field differently. Namely, as the magnetic field increases, the
subbands first depopulate in the center and then near the edges.
For example, the second subband (i.e., LL1) is pinned to the
Fermi level in the ribbon center in the interval B ≈ 60–170 T.
Within this interval it forms the compressible strip, which
manifests as the enhanced LDOS and DOS in Figs. 2(a) and
2(b). However, the LL1 stays populated near the edges in a
wider magnetic field range, B ≈ 80–290 T. In the field interval
B ≈ 170–230 T the LL1 is depopulated in the center [see
Fig. 3(b)]. As a result the LDOS and DOS are practically zero
[see Figs. 2(a) and 2(b)]. When the magnetic field increases
to B ≈ 230 T, the lowest Landau level, LL0, is pushed up in
energy and gets pinned to the Fermi energy. This again leads
to the formation of the compressible strip in the middle of the
wire [see Fig. 3(b)] and to the enhancement of the LDOS and
DOS at the Fermi energy, as seen in Figs. 2(a) and 2(b). At
this B, two different LLs are at EF and contribute to electron
transport: LL0 in the center and LL1 near the edges.

The graphene ribbons with the zigzag edge termination
exhibit features of the magnetosubband structure similar to
those for the armchair-terminated ribbons. This is illustrated

in Figs. 3(d)–3(f), which show the band structure of the zigzag
GNRs for three representative magnetic fields, B = 90, 220,
and 300 T. As for the armchair GNRs, these fields correspond
respectively to the cases when the LL1 is pinned to EF in
the middle of the GNR [Fig. 3(d)], LL1 is depopulated in the
middle of the GNR [Fig. 3(e)], and LL0 is pinned to EF in
the middle of the GNR [Fig. 3(f)]. However, there are several
striking differences between the zigzag and armchair ribbons
manifested in their LDOS, DOS, and the subband structure.
First, strong electron accumulation and formation of the
compressible strip takes place near the ribbon’s boundaries
over the whole range of magnetic fields studied; see the
enhanced LDOS at y ∼ 0 in Fig. 2(d). Because of this the total
DOS in the zigzag GNR never drops to zero over the whole
range of magnetic fields [see Fig. 2(e)]. [Note that Fig. 2(d)
shows the LDOS for sublattice A, which is enhanced at one
edge of the ribbon. Sublattice B has the enhanced LDOS near
the opposite edge of the ribbon.]

Inspection of the magnetoband structure reveals that these
features are caused by the ZEM in the zigzag GNR discussed
in the previous section. This mode [marked ZEM in Figs. 3(d)–
3(f)] always stays pinned to the Fermi energy because of the
high density of states for electrons that this mode accommo-
dates. It is important to stress that the pinning of this mode
to E = EF is the result of the electron-electron interaction,
and the pinning effect is apparently absent in the one-electron
description where this mode is always situated at E = 0.37

Figures 2(c) and 2(f) show the evolution of the two-terminal
conductance as the magnetic field increases for the armchair
and zigzag ribbons. In contrast to the conventional semicon-
ductor quantum wires and quantum point contacts exhibiting
a steplike conductance,45 the conductance of GNRs reveals a
nonmonotonic decrease with bumps coexisting with quantized
plateau regions of multiples of 2e2

h
. Note that G changes by two

conductance quanta between plateaus due to valley degeneracy
of graphene. The origin of the bumps in the conductance
was discussed by Shylau et al.31 and was related to the
interaction-induced modifications of the band structure leading
to the formation of compressible strips in the middle of GNRs.

C. Spin splitting and the enhancement of the g factor

Let us now turn to the case of electrons with spin and ana-
lyze how the Hubbard and the Zeeman interactions modify the
magnetosubband structure of graphene nanoribbons, leading
to the spin polarization and enhancement of the g factor. For
the Hubbard constant we choose U = t , which corresponds to
the estimation of Refs. 29 and 46. Note that a recent work47

predicts a somehow larger value, U ≈ 3t. While the utilization
of a larger value of U leads to some quantitative differences
with the results presented below, they remain qualitatively the
same, and the conclusions are not affected. We also stress
that while the discussion below is focused on the case of high
magnetic field when the two lowest Landau levels, LL1 and
LL0, are occupied, the conclusion remains valid for lower
fields as well.

Let us start with the case of armchair ribbons. Figures
4(a)–4(c) show the local spin polarization of the charge
density, ζ (y) = n↑(y)−n↓(y)

n↑(y)+n↓(y) , spin-resolved densities, and the
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FIG. 3. (Color online) The dispersion relation for (a)–(c) the armchair and (d)–(f) zigzag ribbons. The left and right panels in each plot
correspond, respectively, to the Hartree and Hubbard approximations. Because of the symmetry, only half of the band diagram is shown. The
red and blue dotted lines show, respectively, the spin-up and spin-down components. Vertical dot-dashed lines in (d)–(f) mark the K and K ′

points of the first Brillouin zone of graphene in the zigzag ribbon. In the armchair ribbon, the K and K ′ points coincide at k = 0. In (d)–(f),
ZEM marks the zero-energy mode that stays pinned to the Fermi energy.

total spin polarization, P = n↑−n↓
n↑+n↓ [nσ = ∑

y nσ (y)], as a
function of magnetic field. The features in ζ (y) show a
striking similarity with the features of the LDOS, and the
behavior of P follows that of the DOS calculated in the
Hartree approximation [cf. Figs. 2(a) and 2(b)]. This similarity
is not coincidental. The regions with the enhanced LDOS
correspond to compressible strips, and it is the compressible
strips where the spin splitting of subbands takes place. Indeed,
in the compressible region the subbands are only partially
filled because fFD < 1 there, and therefore the population of
the spin-up and spin-down subbands can be easily changed.
This population difference triggered by Zeeman splitting is
enhanced by the Hubbard interaction, leading to different
effective potentials for spin-up and spin-down electrons and
eventually to the subband spin splitting.

For a more detailed analysis let us follow an evolution of the
band structure in Figs. 3(a)–3(c). The right panel of Fig. 3(a)
shows a spin-resolved magnetoband structure corresponding to
the case when LL1 forms a compressible strip in the middle of
the ribbon for the case of spinless electrons (cf. the left panel).
The Hubbard interaction pushes up the spin-down subbands
above the window |E − EF | ≈ 2kBT such that it becomes
depopulated, and the compressible strip in the middle is occu-
pied by spin-up electrons only. As a result, the DOS at EF of
the spin-up electrons is enhanced, while that of the spin-down

electrons is zero [see Fig. 4(d)]. All these lead to the difference
in the electron densities n↑ and n↓ and the spin polarization in
the ribbon, as shown in Figs. 4(b) and 4(c). When the magnetic
field increases such that the LL1 is pushed above EF , the
compressible strip in the middle disappears, the DOS at EF

for both spin species becomes equal to zero, and the spin polar-
ization vanishes. This is illustrated in the band diagram shown
in Fig. 3(b), corresponding to the case when EF is situated
between LL0 and LL1. With a further increase of the magnetic
field the LL0 is pushed up to EF . As this subband is pushed
from below, in this case, it is the higher-energy spin-down state
that gets pinned to EF , forming compressible strips, whereas
the spin-up subband in the middle of the ribbon remains
below |E − EF | ≈ 2kBT . As a result, for this case the DOS
at EF for the spin-down electrons is larger than that for the
spin-up electrons [Fig. 4(d)]. Note that despite this, n↑ > n↓
[see Fig. 4(b)] because the spin-up subband is fully occupied,
whereas the spin-down subband is occupied only partially.

Figure 4(e) shows the effective g∗ factor for the armchair
ribbon, defined according to

g∗ = 〈V ↑ − V ↓〉
μBB

, (6)

where the averaging is done over all carbon atoms. Because
the electron density is related to the potential, the features in
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FIG. 4. (Color online) (a), (g) The local spin polarization of the
charge density for sublattice A. The polarization for sublattice B (not
shown here) is symmetric with respect to the ribbon’s axis. (b), (h)
The unit cell occupancy, (c), (i) the spin polarization P , (d), (j) the
DOS, (e), (k) the effective g factor, and (f), (l) the conductance as a
function of magnetic field calculated in the Hubbard approximation
for the (left) armchair and (right) zigzag ribbons. The red lines with
solid dots show the spin-up component, and the blue lines with open
squares show the spin-down component. Arrows in (f) and (l) mark
magnetic fields for the band structures shown in Fig. 3.

the g∗ factor resemble those of the polarization P, showing
behavior reflecting successive population and depopulation of
the spin-up and spin-down subbands.

In high magnetic field, B � 50 T (corresponding to pop-
ulation of LL1 and LL0), the effective g factor varies in the
range 2.1 � g∗ � 2.7, with an average value of 〈g∗〉 ≈ 2.25,
which represents a rather modest enhancement in comparison
to the case of noninteracting electrons in pristine graphene
with g = 2. Note that in the bulk graphene the effective g∗
factor was reported to be g∗ ≈ 2.7.10

It is worth mentioning that the main features of the spin
polarization and the subband evolution in the magnetic field
resemble those in the cleaved-edge overgrown quantum wires
(CEOQW).20 This is because in both cases the potential
corresponds to the hard-wall confinement. The difference is
that in CEOQW, as well as in conventional GaAs split-gate
wires,18 the polarization and thus the effective g∗ factor are
enhanced by a factor of ∼10 compared to the Zeeman splitting,
whereas in the armchair ribbons this enhancement it is just
∼0.22. This can be explained by the fact that the bare g

factor in armchair GNRs is much larger than that in GaAs
(gGaAs/g graphene ≈ 0.022), such that the Zeeman interaction
in graphene remains dominant compared to the exchange
one.

One more important difference of the graphene ribbons
from the conventional GaAs quantum wires is in the character
of the spin-polarized edge states in the vicinity of the
boundaries. In the conventional quantum wires the edge states
of opposite spins are spatially separated.19 This is ultimately
related to the formation of the compressible strips near
the boundaries of the split-gate wire because of the soft
confinement due to the gates.19 In GNR due to the hard-wall
confinement the compressible strips do not form near the
boundaries, and hence the spatial separation of the edge states
of opposite spins does not occur. It is worth mentioning that
in this respect the GNRs are also similar to CEOQW.20

Let us now turn to the case of zigzag nanoribbons. The main
features of the spin polarization and the subband evolution
at high fields are rather similar to the armchair ones. There
are, however, important differences, especially at low fields,
related to the presence of the zero-energy mode residing
at the zigzag edges. In contrast to other modes exhibiting
successive population and depopulation of the Landau levels in
the middle of the ribbon, this mode always stays pinned to EF ,
thus forming a compressible strip with the enhanced density
of states at the edges for all magnetic fields. The Hubbard
interaction leads to a complete spin polarization such that
electrons in this mode are always in the spin-up state. This is
seen in the spatially resolved polarization shown in Fig. 4(g).
Because of this the total spin-up density is significantly larger
than the spin-down one for all magnetic fields, and the DOS
for spin-up electrons never drops to zero. This is in contrast
to the case of armchair GNRs, where electron densities for
opposite spin species can be equal when the Fermi energy lies
between two consecutive Landau levels and where both DOS
for spin ups and spin downs can drop to zero [cf. Fig. 4(d) with
Fig. 4(j)].

Figure 4(k) shows the effective g factor for the case of
zigzag GNRs. In contrast to the case of armchair GNRs, where
the effective g factor at low fields (B � 50 T) is not much dif-
ferent from the bare g factor of pristine graphene, the effective
g factor in zigzag GNRs is enhanced up to values of g∗ ≈ 30.
At higher fields it decreases to values of g∗ ≈ 3, comparable
to those in armchair GNRs. This striking feature is another
manifestation of the existence of the spin-polarized ZEM in the
zigzag GNR. Indeed, as seen in Fig. 2(d), the spin polarization
of the ZEM is rather constant over the entire range of the
magnetic fields studied. As a result, at low fields when the po-
larization of other states is rather low, the potential difference
〈V ↑ − V ↓〉 determining g∗ according to Eq. (6), is primarily
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due to the contribution from the ZEM and thus weakly depends
on B. At the same time, because the field B enters the denom-
inator of Eq. (6), the effective g factor gets strongly enhanced
when B is low. As B increases, other states become spin
polarized due to the Zeeman and Hubbard terms, and the con-
tribution of the ZEM in the overall spin polarization decreases.
As a result, 〈V ↑ − V ↓〉 becomes proportional to B, which leads
to stabilization of g∗ around a constant value (g∗ ≈ 3).

Figures 4(f) and 4(l) show the evolution of the two-
terminal conductance as the magnetic field increases for the
armchair and zigzag ribbons. The conductance is apparently
spin polarized with G↑ 	= G↓. This reflects the fact that at
a given magnetic field the numbers of propagating states
at EF accommodating spin-up and spin-down electrons are
different. As in the case of spinless electrons, the spin-resolved
conductance also exhibits a bumplike structure whose origin is
the same as for the case of spinless electrons. For zigzag GNRs
the spin-up conductance is larger than the spin-down one for
most fields because of the presence of a spin-polarized ZEM
that always contributes to the electrical conduction. While
being pinned to EF , it is only partly populated and therefore
gives rise to the conductance that deviates from multiples of the
conductance quanta. As a result, the conductance quantization
is less pronounced in zigzag GNRs compared to armchair ones.
Finally, we stress that Figs. 4(f) and 4(l) show the conductances
of ideal GNRs without defects. The defect scattering will
modify the GNR conductance, especially for the low-velocity
modes flowing in the middle of the ribbons. At the same time,
the edge states corresponding to the classical skipping orbits
are robust against the impurity scattering.31

Finally, we note that we also performed similar computa-
tions of the spin polarization for GNRs using the density func-
tional theory with the exchange functional proposed by Polini
et al.,48 including the spin degree of freedom as prescribed in
Ref. 49. Practically no spin polarization was observed that we
attribute to the positive sign of the exchange energy in Ref. 48.
More systematic studies of the spin polarization in GNRs using
different approaches (such as the spin DFT, Hartree-Fock, etc.)
would be very interesting. Note that spin polarization and the
enhancement of the g factor in bulk graphene in the presence
of impurities was recently studied by Volkov et al.50 within
the Thomas-Fermi approximation.

IV. CONCLUSIONS

We provided a systematic quantitative description of the
spin polarization, the subband structure, and the density
and potential profiles in the armchair and zigzag graphene
nanoribbons in a perpendicular magnetic field. In our study we
addressed realistically wide nanoribbons, and our conclusion
concerning the density and potential distributions near the edge
can also be applied for the case of a semi-infinite graphene
sheet. Our calculations are based on the self-consistent Green’s
function technique where electron interaction and spin effects
are included by the Hartree and Hubbard potentials.

We first focused on the case of spinless electrons and
found that the potential profile and the density distribution
are different near the edges of the armchair and zigzag
ribbons. For the armchair termination, the potential at the
edge has a triangular shape, whereas for the zigzag ribbons it

exhibits a well-type character. Both terminations show strong
electron accumulation near the edges, but this accumulation is
stronger at the zigzag edge. This difference is attributed to a
topological property of the zigzag edge termination supporting
the zero-energy mode.

Because the spin polarization in nanoribbons and conven-
tional quantum wires is ultimately related to the formation of
the compressible strips for the case of spinless electrons, we
studied the LDOS, DOS, and magnetosubband structure for
the armchair and zigzag ribbons, focusing on the differences
and similarities between them as well as on the formation
of the compressible strips in the ribbons. For both types
of nanoribbons we found that a compressible strip with the
enhanced DOS forms in the middle of the ribbon, in accordance
with the successive population and depopulation of the Landau
levels. For the case of zigzag edge termination we found a
strong electron accumulation and formation of a compressible
strip near the edges over the whole range of magnetic fields.
This is caused by the presence of the zero-energy mode that
always stays pinned to the Fermi energy because of the high
DOS that this mode accommodates.

Accounting for the Zeeman interaction and describing
the spin effects via the Hubbard potential, we discussed how
the spin-resolved subband structure evolves when an applied
magnetic field varies. We found that the local spin polarization
of the electron density and the total spin polarization exhibit
a behavior similar to that of the LDOS and DOS for spinless
electrons. This similarity is not coincidental and reflects the
fact that the regions with the enhanced DOS correspond to
compressible strips where the spin splitting of subbands takes
place. We found that for the armchair ribbons in high magnetic
field the effective g factor varies in the range 2.1 � g∗ � 2.7,
with an average value of 〈g∗〉 ≈ 2.25. For the zigzag
nanoribbons we found that the zero-energy mode remains
pinned to EF and becomes fully spin polarized for all magnetic
fields, which, in turn, leads to a strong spin polarization
of the electron density near the zigzag edge. Due to the
contribution of the fully spin-polarized zero-energy mode the
effective g∗ factor in zigzag GNRs is strongly enhanced at
low field, reaching values up to g∗ ≈ 30, and at higher fields it
decreases to values of g∗ ≈ 3, comparable to those in armchair
GNRs.

It is worth mentioning that the main features of the spin
polarization and the subband evolution in the magnetic field
resemble those in the cleaved-edge overgrown quantum wires.
This is because in both cases the potential corresponds to the
hard-wall confinement.

Finally, we stress the importance of accounting for the
global electrostatics in the system at hand to accurately
describe the spin polarization in GNRs. (In the present study it
is done by accounting for the long-range Coulomb interaction
by means of the self-consistent Hartree potential.) This is
because the global electrostatic is responsible for the formation
of the compressible strips, and it is the compressible strips
where the spin splitting of subbands takes place.
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