
PHYSICAL REVIEW B 86, 155402 (2012)

Experimental verification of contact-size estimates in point-contact spectroscopy on
superconductor/ferromagnet heterocontacts
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Nanostructured superconductor/ferromagnet heterocontacts are studied in the different transport regimes of
point-contact spectroscopy. Direct measurements of the nanocontact size by scanning electron microscopy allow
a comparison with theoretical models for contact-size estimates of heterocontacts. Our experimental data give
evidence that size estimates yield reasonable values for the point-contact diameter d as long as the samples are
carefully characterized with respect to the local electronic parameters.
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I. INTRODUCTION

Point-contact spectroscopy (PCS) has long been known as
a method to study the interactions of electrons with other
excitations in metals.1,2 The interpretation of the observed
characteristics in point-contact (PC) spectra is usually difficult
because most often contacts are made by the needle-anvil
or shear technique and are not microscopically well defined
with respect to contact size and geometry, structure, and
local electronic parameters. Recently, Andreev reflection at
point contacts was used to extract values of the transport
spin polarization P out of spectra measured on super-
conductor/ferromagnet (S/F) contacts.3–5 However, different
models3–8 used to describe the transport through S/F interfaces
yielded varying values for P , also depending on the contact
fabrication and the transport regime,9 an issue that is not yet
understood in detail.10 Therefore, a key issue in PCS is to
determine the PC parameters, such as the form and diameter
of the metallic nanobridge and the mean free path in the imme-
diate contact region, so that one is able to identify the relevant
transport regime. Usually Sharvin’s11 or Wexler’s12 formulas
for the ballistic and diffusive transport regime, respectively, are
used to infer the PC diameter from the measured PC resistance.
Only very few experimental studies deal with the question of
whether these formulas—especially the interpolation formula
in the diffusive regime—yield correct values for the PC
diameter.

In this paper, we employ e-beam lithography to structure
a nanometer-sized orifice into a free-standing insulating
Si3+xN4−x membrane followed by metallization of both sides
of the membrane to get a Pb/Fe contact with well defined
orifice size. A detailed characterization of heterocontacts
with respect to contact size and geometry, structure, and
local electronic parameters allows a direct comparison of the
measured PC parameters to different contact-size estimates.
We find that the theoretical approximation of the contact
size is appropriate if the measured electronic mean free
path of each individual contact region is used. The current
assignment of the contact regime is facilitated by the analysis
of the PC spectrum with features due to electron-phonon
interaction or the pair-breaking critical current through the
orifice.

II. CONTACT MODELS

When considering electron transport through a circular
microscopic constriction with diameter d between two equal
metallic reservoirs, different transport regimes have to be
distinguished. In the ballistic regime where d is much smaller
than the elastic and inelastic electron mean free paths lel and lin
(d � lin,lel), the electrons pass the constriction mostly without
scattering. The resistance of a PC can be calculated according
to Sharvin11 as

RSh = 16ρl

3πd2
, (1)

where ρl = mvF/ne2 is a material constant with Fermi
momentum mvF, elementary charge e, electron density n,
and the total mean free path l obtained using Matthiessen’s
rule. In the opposite case d � lin,lel known as the thermal
limit where elastic and inelastic scattering takes place in the
immediate contact region, the resistance can be calculated
after Maxwell13 as

RM = ρ

d
. (2)

When the transport is mainly diffusive with lel < d � √
linlel,

Wexler12 derived an interpolation formula between the two
regimes for the contact resistance,

RW = 16ρl

3πd2
+ γ

ρ

d
, (3)

where the Maxwell term (2) is weighted with a slowly varying,
nonanalytical function γ . This function can be approximated
by using the Padé fit.14

Based on these formulas, an estimate of the PC diameter d

can be obtained as long as the transport regime, the resistance
R, and the PC parameters of the individual contact such as
the local l, and the local resistivity ρ in the contact region
are known. Usually these parameters are not determined
experimentally but the bulk values found in literature are used
instead. For geometrically symmetric heterocontacts of two
different metals 1 and 2, ρ and ρl are replaced by (ρ1 + ρ2)/2
and by [(ρl)1 + (ρl)2]/2, respectively.15
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FIG. 1. (Color online) (a) Schematic representation of the hole in the silicon-nitride membrane. (b) Schematic representation of a Pb/Fe
point contact after Pt removal and metallization. (c), (d) SEM pictures of etched nanoholes in the membrane with d ∼ 38 and 16 nm respectively.

An alternative method to determine the local PC parameters
and transport regimes individually for each PC arises from
differentiation of Eq. (3). For a diffusive PC and under the
assumption of dominant phonon scattering, one gets

d = ∂ρPh(T )/∂T

∂RN/∂T
, (4)

valid in a region where both the PC resistance in the
normal-conducting state RN(T ) and the phonon contribution
to the resistivity ρPh(T ) have the same functional temperature
dependence. Under the further assumption that Wexler’s
formula (3) is valid and γ ≈ 1, we gain an estimate for the
elastic scattering length—dominant at low temperatures—in
the immediate contact region and therefore an independent
estimation of the spectroscopic regime:

lel ≈ ρl

d

[
RN(T = 0) − 16ρl

3πd2

]−1

. (5)

This approach should yield more reliable values for d and lel

than Eq. (3), where the intrinsic resistivity can differ from
that determined on reference samples.15 The method was
first experimentally verified by Akimenko et al.16 for Cu-Cu
homocontacts, and the values for d and lel obtained from
Eqs. (4) and (5) could reproduce the intensity of theoretical
phonon spectra.

III. EXPERIMENT

A. Fabrication and characterization of point contacts

We fabricate PCs by structuring nanobridges between the
two metallic reservoirs by means of e-beam lithography. This
technique—originally developed by Ralls17 and used in a
number of publications4–6—offers a variety of advantages
compared to standard PC techniques such as the needle-anvil
or the shear method. First, mechanically stable contacts with
small contact diameters down to a few nanometers can be
obtained. Furthermore, in situ preparation of the two metal
reservoirs yields clean metal interfaces without oxide barriers.
The main advantage is, however, that the geometry and size
of the contacts are well defined through the orifice size, which
can be measured by scanning electron microscopy (SEM).

In brief, we follow the process described in Ref. 17 to
fabricate Pb/Fe point contacts, including an additional experi-
mental characterization step. A bowl-shaped hole is structured
into a 50 nm thick insulating non-stoichiometric silicon-nitride
membrane (Si3+xN4−x) by using electron-beam lithography

followed by isotropic reactive ion etching with SF6. This leads
to a smaller orifice in the membrane than originally structured
into the polymethylmethacrylate (PMMA) resist mask.

The nanoholes in the membranes are analyzed prior to
the Pb/Fe metallization by scanning electron microscopy. An
approximately 10–20 nm thick Pt layer is sputtered onto
the membranes. This step is inevitable because charging
effects would otherwise destroy the insulating, free-standing
membrane and because of the necessary high resolution.
We measured the hole diameters in the membrane directly
by using a Zeiss Supra 55 VP SEM at small acceleration
voltages of 5 kV, a 10 μm aperture, and the secondary electron
in-lens detector for high surface resolution and contrast. The
silicon-nitride membranes are typically pierced for diameters
less than 20 nm, with the smallest orifices having a diameter
of ∼10 nm. Figures 1(c) and 1(d) show exemplarily two
nanoholes with diameters of 38 and 16 nm. In these SEM
pictures, we can clearly distinguish a border between Pt
covered areas showing a granular structure and the interior
part of the “bowl,” which we assume not to be Pt covered.
However, further investigations including a focused-ion-beam
(FIB) lateral cut through a smaller PC revealed that for smaller
nanoholes (d � 20–30 nm) Pt might reduce the original hole
diameter in the membrane by forming a ring of adsorbed
material close to the rim of the hole. Figure 2 shows a FIB
lateral cut through a PC with a nominal diameter in the
membrane of 24 nm, performed by successive 5 nm distance
lateral cuts with a Ga-ion FIB system. One can clearly see

FIG. 2. FIB lateral cut through a Pb/Fe point contact of a nominal
24 nm hole in the membrane. Recorded under 54◦ tilt with a secondary
electron detector and 3 kV acceleration voltage.
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the layer geometry with the continuous Pb layer, the “bowl”
in the membrane, and the corresponding Fe/Cu layer on the
back side of the membrane. In addition, one can identify the
possible effect of Pt in narrowing the original constriction
of the Si3+xN4−x membrane. Thus the Pt film is removed
completely prior to metallization by immersing the sample
in a T ∼ 120 ◦C hot bath of aqua regia for ∼1.5 h. Possible
organic residues are removed by using a commercial Diener O2

plasma cleaner. According to literature,18 neither the silicon
substrate nor the silicon-nitride membrane are etched by aqua
regia so that the size determination of the nanoholes remains
valid.

In a final step, a 200 nm thick Pb layer is deposited on
the bowl-shaped side of the membrane by e-beam evaporation
at room temperature under ultrahigh vacuum (∼10−9 mbar),
followed by a 180◦ in situ rotation of the sample and the
deposition of a 12 nm thick Fe layer, topped by a 188 nm
thick Cu layer for a good Ohmic contact on the flat side
of the membrane [see Fig. 1(b)]. Due to the evaporation at
room temperature, the high mobility of the Pb atoms leads to
a Stranski-Krastanov-like island-growth mode. Further SEM
analysis gave clear evidence for a continous Pb film with
average island sizes of 400–500 nm, i. e., much larger than the
typical PC size. Each sample was characterized by measuring
its resistance at room temperature in order to check whether
a conductive nanobridge was realized in the metallization
process. It turned out that a nanobridge was only established
in samples with hole diameters in the membrane larger than
20 nm reliably. Nine point contacts with hole diameters ranging
from 24 to 70 nm and resistances RN in the range of 1.5 to
34 � were investigated (see also Table I).

B. Reference samples

For an independent determination of the resistivity of
the two metallic layers that eventually form the metallic
nanobridge, we structured reference samples consisting of Pb
and Fe layers, respectively, in a usual four-point measurement
geometry by using optical lithography methods and a standard
lift-off process. Since the resistivity of thin metallic layers
strongly depends on the layer thickness and the growth condi-
tions, the same silicon-nitride substrate, identical evaporation
conditions, and layer thicknesses as for the PCs were chosen.
The reference samples had the form of meander-like bars
with the dimensions of ∼2.8 mm length, ∼11 μm width
(see the inset in Fig. 3), and 12 or 200 nm thickness for
the Fe and Pb layers, respectively. In addition, the Fe layer
was covered in situ with a 5 nm thick insulating SiO2 layer
to avoid surface oxidation in air. Resistance measurements
were performed instantly after fabrication to reduce oxidation.
Sample geometries were determined afterward by using SEM
for the width and length measurements and an Ambios
Technology XP-2 profilometer in combination with layer-
thickness monitors.

The resistance R of all samples was measured in the range
of room temperature down to T = 1.6 K in a 4He cryostat by
using a LR-700 resistance bridge. The differential resistance
Rd = dV/dI vs applied bias voltage V was recorded at
low temperatures between T ≈ 1.5 and 7.3 K via lock-in
technique. Some measurements were done in an external

FIG. 3. (Color online) Temperature dependence of resistance of
the point-contact sample 4 and of the resistivity of the Pb reference
sample, respectively. The inset shows a sketch of the reference sample.

magnetic field of μ0H ∼ 200 mT applied parallel to the
current through the PC to drive the superconducting Pb to
the normal-conducting state.

IV. RESULTS AND INTERPRETATION

A. Determination of the contact parameters

From the R(T ) measurements down to 1.6 K on the refer-
ence samples and PCs (shown in Fig. 3 exemplarily for the Pb
reference sample and the PC sample 4) one obtains all neces-
sary contact parameters. For the Pb reference sample we obtain
a residual resistance ratio RRR = R(300 K)/R(7.25 K) ∼ 57,
a critical temperature Tc ≈ 7.24 K, and the resistance in
the normal-conducting state RN = 4.020 � at T = 7.25 K.
With the known geometry of the sample, we calculate the
resistivity of our 200 nm thick Pb layer at T = 7.25 K as
ρN

Pb = RNA/l = (3.596 ± 0.180) × 10−9 �m. For our 12 nm
thick Fe layer we obtain RRR ∼ 1.37, the averaged resistance
RN = 7212 �, and hence ρN

Fe = (3.625 ± 0.363) × 10−7 �m
at T = 7.25 K. Both values agree well with those obtained
on similar samples in the literature.19,20 According to Ref. 15,
the resistivity of a geometrical symmetric Pb/Fe heterocontact
(HC) at T = 7.25 K is

ρN
HC = ρN

Pb + ρN
Fe

2
= (1.830 ± 0.182) × 10−7 �m . (6)

Of course, ρN
HC is chiefly determined by the highly resistive Fe

layer. For further analysis we also need the material constants
ρl for the corresponding metals. Here, we use the value
(ρl)Pb = 1.670 × 10−15 �m2 for Pb.21 From these values we
obtain an electron mean free path in the Pb layer of lPb =
(ρl)Pb/ρ

N
Pb ≈ 464 nm at T = 7.25 K, which is of the order of

the island structure of the Pb film. For Fe, (ρl)Fe = mvF/ne2 =
2.652 × 10−15 � m2 is calculated using the Drude model with
the charge carrier density22 n = 2.65 × 1028 m−3 obtained
from band-structure and de-Haas-van-Alphen measurements,
and the Fermi velocity23 vF = 1.98 × 106 m/s. The magnitude
of the electron mean free path lFe = (ρl)Fe/ρ

N
Fe ≈ 7.3 nm

clearly demonstrates that interface scattering plays the most
important role in the 12 nm thick Fe layer. With these values,
we calculate the arithmetic average of ρl for a heterocontact
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TABLE I. Calculated point-contact radii a according to Akimenko’s approach in comparison to the orifice radii am in the membranes
determined by scanning electron microscopy. For the allocation of the transport regimes (b = ballistic, d = diffusive, t = thermal) we used
the individual local elastic mean free path lel of the point contacts determined by Eq. (5). For the calculation of asc in the consistency check
we used the indicated resistance formulas with the individual lel and the parameters given in Sec. IV A.

Comparison SEM measurement Calculation with individual mean free path Consistency check

Sample no. RN (�) am (nm) a (nm) lel (nm) Transport regime asc (nm) Equation used

1 19.60 17.0 7.2 70.4 b 6.8 Sharvin
2 5.48 31.5 18.8 20.1 d 21.1 Wexler
3 1.671 33.5 25.3 178.8 b 23.4 Sharvin
4 1.575 35.0 26.2 171.3 b 24.1 Sharvin
5 33.48 12.0 5.6 40.6 b 5.2 Sharvin
6 24.95 20.0 5.5 b 6.1 Sharvin
7 15.67 12.0 6.7 b 7.7 Sharvin
8 12.62 19.5 10.7 22.1 d 11.6 Wexler
9 3.830 34.5 23.2 21.9 t 23.9 Maxwell

as

(ρl)HC = (ρl)Pb + (ρl)Fe

2
= 2.161 × 10−15 �m2 . (7)

Hence, the electron mean free path through the contact is
estimated as lHC = (ρl)HC/ρN

HC = 11.8 nm. These values are
usually used to allocate the transport regime.

To calculate PC diameters as suggested by Akimenko
et al.16 [cf. Eq. (4)] one needs additionally dRN/dT

and dρHC/dT of each individual PC as a function of
T . dρHC/dT is determined by a linear fit for T >

100 K to the resistance data of the two reference
samples, whence dρHC/dT = (dρPb/dT + dρFe/dT )/2 =
(7.070 + 6.048)/2 × 10−10 � m/K = 6.559 × 10−10 � m/K
in the range where ρ(T ) ∼ T . Similarly, dRN/dT was deter-
mined individually for each PC for T > 100 K where RN ∼ T

as well.

B. Comparison of the two different calculation methods with
experimental data

Using Eqs. (1)–(3) and the parameters given in Sec. IV A,
we can determine the contact radius a = d/2 and allocate
a transport regime to each individual contact. However, this
method is problematic because it is based on the assumption
of one universal electron mean free path lHC = 11.8 nm fixed
for all PCs. For example, the calculation would result in
much larger contact radii a = 55 and 58 nm for samples
3 and 4, respectively, than the measured upper limits am =
33.5 and 35 nm. In reality, the electron mean free path in
the immediate region of the nanobridge may differ from
sample to sample due to the granular structure of the films
and the growth process of the nanobridge, which usually
is not controlled on the atomic level. The advantage of the
second approach following Akimenko et al.16 is that the T

dependence of the contact resistance RN enters the calculation.
It provides a more realistic insight into the dominant scattering
processes that determine the PC resistance. We therefore
employ Akimenko’s16 approach using Eq. (4)—which can
be applied nearly independently for contacts in the diffusive
regime—and Eq. (5) to calculate the PC parameters a and lel

for each individual PC with the parameters given in Sec. IV A.
Table I summarizes those values and the allocated transport
regimes for all measured samples together with RN and the
measured hole radii am. In addition, the last column displays
the PC radii asc calculated by Eqs. (1)–(3) when taking the
correct contact regime and elastic mean free path lel determined
by Akimenko’s approach into account, which furnishes a
self-consistency check of the method. Indeed, the elastic mean
free path in the immediate contact region varies from sample
to sample and for some samples differs significantly from
lHC calculated in the former paragraph. The main reason for
the variation is probably a difference in grain structure of
the immediate contact region caused by the island growth
of the Pb film, which tends to increase the mean free path in
larger contacts. The analysis also shows that the low-resistive
Pb part of the heterocontact is decisive for the PC properties
and prevails over the highly resistive Fe part.

Most of our samples seem to belong to the diffusive (“d”)
regime with some being closer to the ballistic limit—labeled as
“b” in Table I—and some being closer to the thermal limit—
indicated as “t.” For very small a Wexler’s equation (3) is
no longer valid and Eq. (5) may yield unphysical negative
values of lel. The corresponding samples can be assigned to
the pure ballistic regime (samples 6 and 7). For these samples,
the Sharvin formula does indeed yield reliable values for a.

As can be seen from Fig. 4, the contact radii asc derived
from the self-consistency check yield nearly the same values
for the PC radius a when taking the correct transport regime
and the locally determined lel into account. The calculated
radii are always somewhat smaller than those of the holes
in the membranes, but do seem to follow the same general
experimental trend. When recalling the sample fabrication
process, it seems obvious that the metals will not completely
fill the holes in the membranes during the evaporation process,
thus leading to narrower metallic nanobridges. The SEM
measurement yields an upper limit for the effective PC radius.
Statistical variations of the contact size can be attributed to
the rather uncontrolled nature of the aggregation process at
the atomic level following the evaporation. Hence, the exact
geometry of establishing a nanobridge cannot be controlled.
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FIG. 4. (Color online) Comparison of the calculated PC radius a

according to Akimenko et al.16 and asc according to the consistency
check with the experimentally determined hole radius in the mem-
branes am. The dashed line indicates the “ideal” expectation a =
asc = am. The solid line presents a guide to the eye of experimental
data.

Finally, we want to emphasize that experimentally deter-
mined values only enter into the determination of the PC
radius. The very good agreement of those calculations with the
experimental trend shows directly for metallic heterocontacts
that frequently used size estimates for PC diameters do agree
with the experimental data and yield reasonable values for
those parameters. However, extreme care has to be taken when
characterizing the samples.

C. Additional supporting results

PC spectra have been recorded at different temperatures
and in an applied magnetic field μ0H ∼ 200 mT which

FIG. 5. Point-contact spectrum of sample 2 at T = 1.6 K. In
addition to the Andreev signature (1) in the middle part of the
spectrum, we observe a rise and change of slope (2) of Rd as well as
a sharp peak (3) on this rise.

FIG. 6. (Color online) Phonon spectra of samples 2 and 4 for T =
1.6 K and μ0H = 200 mT in the normal-conducting state, obtained
by numerical differentiation dRd/dV . Arrows indicate the position
of TA phonon peaks in Pb.

proved to be sufficient to drive the superconducting Pb into
the normal-conducting state at lowest T = 1.6 K. These
spectra reveal clear nonlinearities at voltages V > �/e in the
normal and superconducting states of Pb, where � denotes
the superconducting energy gap. Figure 5 displays a typical
spectrum with Pb in the superconducting state, where we have
marked the regimes of nonlinearities. Besides the well known
Andreev double-minimum structure (1) at |V | = �/e =
1.3 mV for Pb, we observe an overall rise in the differential
resistance and changing slopes, which can be interpreted as
being due to electron-phonon scattering in Pb (2), and a rather
sharp peak in the superconducting state of Pb at higher energies
eV � 2� that scales with temperature is attributed to the
current through the contact exceeding the pair-breaking critical
current (3). Features of Andreev reflection with the possibility
to extract � can be found even for rather ill defined PCs. The
nonlinearities caused by (2) and (3), on the other hand, depend
sensitively on the quality of the PC.

Figure 6 exemplarily shows the second derivative d2V/dI 2

vs V spectra of samples 2 and 4, recorded at T = 1.6 K and
μ0H = 200 mT, where Pb is in the normal state. d2V/dI 2

vs V spectra are obtained by numerical differentiation of
the measured dV/dI data. Typically, the data have to be
averaged over 20–30 data points to reduce the noise. The
second derivative d2V/dI 2 is proportional to the Eliashberg
function α2

PCF (ω), where for heterocontacts the spectrum is a
sum of contributions of both Pb and Fe.15 For low energies,
predominantly the phonon excitations of Pb are expected,
while the contributions of Fe will be significant at higher
energies eV � 15–20 meV only.24,25 Indeed, we identify
features indicated by arrows for sample 4 at |V | ≈ 4.5 mV,
which are ascribed to transverse acoustic (TA) phonons of
Pb.1 In contrast, only a broad feature is seen in the spectrum
of sample 2. The broadening is a direct consequence of the
reduced mean free path, corresponding to a Knudsen ratio
K = lel/a ≈ 1, of this particular sample. In the diffusive
regime, the intensity of the peaks depends on the Knudsen
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FIG. 7. (Color online) Critical current Ip as a function of point-
contact radius a at T = 1.6 K and temperature (inset). The dashed line
indicates the expected linear dependence according to Silsbee’s rule,
and the solid red line is a quadratic least-squares fit of the data of six
point contacts in the ballistic or diffusive limit. The inset compares
the temperature dependence of the peak current for four samples
with the BCS temperature dependence of the order parameter. The
experimental data point at lowest temperature of each sample has
been scaled on the BCS curve.

ratio.26 Indeed, for sample 4 which is closer to the ballistic
regime with much larger K ≈ 6.5, the phonon peak is much
more pronounced.

We note that we observe a shift of the peak positions to
higher energies on the order of the energy gap � ∼ 1.3 meV
and a peak intensity which is nearly independent of the contact
regime when Pb is in the superconducting state, in agreement
with theory27,28 and earlier experiments.29

The second feature which supports the allocation of
the transport regimes is the sharp peak in the differential
resistance spectra at higher bias |V | � �/e when Pb is in
the superconducting state [see Fig. 5, label (3)]. It is observed
for all our PCs. The dc current Ip(T ) at the peak position,
simultaneously recorded as a function of T , scales with the
superconducting order parameter in BCS theory (see the inset
in Fig. 7, where the T dependence is studied for samples 1–4).
Therefore, we identify the peak current Ip with the critical
current Icrit. The sharp peaks arise when the current through
the contact exceeds the pair-breaking critical current density
of Pb, leading to a sudden rise in the differential resistance.

The appearance of those peaks in the spectra of PCs with
a superconducting counterelectrode has been analyzed in a
number of publications.30–33 The peaks have been interpreted,
e. g., as being akin to PCs with large contact dimensions,32 i. e.,
contacts in the thermal regime. However, this is not necessarily
the case. The position Vp of the peaks varies depending on the
contact geometry and can often be found at voltages as high as
V ∼ 20 mV at lowest T . As discussed above, our fabrication
process results in a controlled PC geometry, where—in our
specific sample geometry—Pb establishing the contact grows
in a cylindrical shape into the nanohole (see Fig. 2).

According to Silsbee’s rule for a cylindrical supercon-
ductor with radius a � λL (λL is the London penetration

depth), superconductivity is destroyed if the self-field at the
surface produced by the current through the wire reaches
the thermodynamic critical field B th

c . It follows that Icrit =
(2πB th

c a)/μ0, where μ0 is the permeability of free space,
i. e., Icrit ∝ a (Ref. 34). For a < λL, which is the case for
our contacts, one would expect a geometry-independent and
constant pair-breaking current density jcrit. MacDonald and
Leavens35 showed that the current distribution through the
contact depends on the ratio a/lel. While for clean contacts
with a � lel the current density is practically constant over the
cross section, it increases abruptly at the periphery for dirty
contacts with a � lel. Indeed, several experimental studies30,33

have shown that the critical current for contacts in the thermal
transport regime scales as Icrit ∝ a, while for clean contacts
Icrit ∝ a2 was found in accordance with Ref. 35. Figure 7
shows the critical current Ip at T = 1.6 K vs the PC radius a

for six of our nearly ballistic or diffusive contacts. The critical
current of our contacts does not follow Silsbee’s rule, shown
as a dashed line,36 but rather shows a quadratic dependence.
A least-squares fit to the data via Ip(T = 1.6 K) = jcrit(T =
1.6 K)πa2 yields a universal critical current density for all
contacts of jcrit(T = 1.6 K) = (2.56 ± 0.09) × 108 A/cm2.
This value is of the same order of magnitude as the calculated36

BCS value for Pb j
theo,BCS
crit (T = 0) = (4B th

c )/(3
√

6μ0λL) =
8.9 × 107 A/cm2 and an experimentally determined value37 on
50 nm thick Pb layers of j

exp
crit (T = 0 K) = 5.26 × 107 A/cm2.

The observed behavior and the geometry-independent critical
current density for all contacts with a < lel confirms our
assumption that the observed peaks arise from reaching the
pair-breaking current in the immediate contact region and
supports our assignment of the transport regimes and the
calculated PC radii.

V. CONCLUSION

In conclusion, we have presented an experimental study
of size estimates for heterocontacts in PC spectroscopy in
the different transport regimes. A direct SEM measurement
of the nanocontact size allows a comparison with theoretical
models for contact-size estimates of heterocontacts in the
semiclassical approach. Due to the good agreement between
experimental and calculated values, we conclude that the
semiclassical models yield reasonable values for the PC
diameter d as long as the samples are carefully characterized
and the correct transport regime is determined taking the local
transport parameters of the individual contact into account.
Our assignment of the samples to different transport regimes is
corroborated by the analysis of further features in the spectra
such as phonon peaks and the critical pair-breaking current
of Pb.
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