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Stabilization of single-electron pumps by high magnetic fields
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We demonstrate theoretically and experimentally how magnetic fields influence the single-electron tunneling
dynamics in electron pumps, giving a massively enhanced quantization accuracy and providing a route to a
quantum current standard based on the elementary charge. The field dependence is explained by two effects: field-
induced changes in the sensitivity of tunneling rates to the barrier potential and the suppression of nonadiabatic
excitations due to a reduced sensitivity of the Fock-Darwin states to the electrostatic potential. These effects
lead to a continued improvement in quantisation accuracy at high field which is important for applications in
metrology.

DOI: 10.1103/PhysRevB.86.155311 PACS number(s): 73.63.Kv

I. INTRODUCTION

Single-electron devices proposed for quantum information
technologies1–3 and quantum electrical metrology4,5 can be
used to capture, manipulate, and release electrons through a
series of gate pulses. To design such devices it is important to
understand the electronic response to a rapidly time-varying
electrostatic potential, often in the presence of externally
applied magnetic fields. The effects of magnetic confinement
on electronic states6,7 and on electron-electron interactions8

have been studied extensively. However, the effect of magnetic
fields on the electron dynamics in time-varying potentials is
less well established. Semiconductor single-electron pumps
in magnetic fields are an example of a system which requires
a consideration of these effects. It was found experimentally
that the accuracy of the quantized current produced by these
devices was strongly enhanced in a magnetic field.9,10 More
recently it has been shown how important this effect is for
providing a level of quantization accuracy (at the part per
million level and below) that makes these devices useful in
metrological applications.11 The origin of this magnetic field
dependence has not been explained.

We explain here how magnetic fields influence the
single-electron tunneling dynamics in electron pumps and
show how large magnetic fields reduce back-tunneling errors
by more than five orders of magnitude. We show that there
are two distinguishable components to the field dependence
of the pump accuracy. First, we show through numerical
calculations how magnetic fields change the back-tunneling
rates in the pump; magnetic fields enhance the sensitivity of
tunneling rates to the confinement barriers, which stabilizes
the number of pumped electrons. Second, we report that
the spillage of electrons through nonadiabatic processes,12

which appears only when pumping at high frequencies, has a
distinctive nonmonotonic field dependence. Intriguingly, there
is also a recovery of quantization accuracy at high field due
to the suppression of excitations. Both effects are important
in determining the ultimate current quantization accuracy in
these pumps at high field, which is a crucial factor for their
use in quantum metrology.11,13

II. ELECTRON PUMPS IN A MAGNETIC FIELD

Our pumps use a dynamically formed quantum dot defined
in a two-dimensional electron gas (2DEG) AlGaAs/GaAs
heterostructure14 by two surface gates [Fig. 1(a)]. The gates
cross an etch-defined wire terminated with Ohmic electrical
contacts [see Fig. 1(b)]. The potential on the entrance gate
(left) is modulated sinusoidally by Vrf around a constant
value VG1 while the exit gate (right) is held at constant
voltage VG2.15 Pump operation is illustrated in Figs. 1(c)(i)–
1(c)(iv): (i) Electrons from the source reservoir (left) are
loaded into a quantum dot formed in the space between
the gates. (ii) While the dot is progressively isolated by the
rising entrance barrier, some initially trapped electrons tunnel
back to the source before tunneling is eventually cut off.
(iii) The back-tunneling rate � depends strongly on the number
of trapped electrons n due to the charging energy, leading
to the same number of electrons being trapped in every
cycle. (iv) Electrons that remain trapped are forced over
the exit barrier into the drain lead, producing a quantized
current in an external circuit. The number of electrons
pumped can be changed by adjusting the values of VG1

and VG2, giving current plateaus at integer multiples of ef ,
where f is the operating frequency and e is the elementary
charge.

Figure 1(d) shows how the pump current I varies with
VG2, concentrating on the plateau at I = nef with n =
1 (one electron per cycle). Data are shown for a pump
frequency f = 0.4 GHz in perpendicular magnetic field B

up to 14 T. Measurements were performed in a 3He cryostat
with a base temperature of ∼300 mK. At higher fields
the current plateaus become markedly flatter and somewhat
longer, increasing the accuracy of current quantization, as
in previous studies.9,10 To allow for detailed comparison
with our model we have studied these effects in several
samples in detail. High-resolution measurements, using the
same experimental configuration as in Ref. 11, are shown
in Fig. 1(e). Measurements for B = 10–14 T indicate that
the pumped current gets continuously closer to the expected
value of ef at higher fields. Variations with magnetic field

155311-11098-0121/2012/86(15)/155311(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.155311


J. D. FLETCHER et al. PHYSICAL REVIEW B 86, 155311 (2012)

FIG. 1. (Color online) (a) Scanning electron microscope image
of a typical device. (b) Schematic electrical connections. Electrons
are pumped from left to right. (c) Potential profile during the pumping
cycle (offset vertically): (i) loading, (ii) back-tunneling, (iii) trapping,
and (iv) ejection. (d) Pump current at f = 0.4 GHz as a function of
VG2. Curves are offset vertically by a fixed amount as the magnetic
field is stepped in intervals of 2 T from 0 to 14 T. Data for B < 14 T
have been shifted horizontally to align the I = 1ef to 2ef transition.
(e) High-resolution scans at f = 0.4 GHz at B = 10,11, . . . ,14 T.
Scans are offset by 10 fA. Dashed line is ef for each field. (f)–(h)
dI/dVG2 on a color scale as a function of VG2 and B for f = 0.1,
0.4, and 1 GHz. The structure arising from the first excited state is
labeled L1.

at this level underline the significance of the magnetic field
effect.

Figures 1(f)–1(h) show dI/dVG2 as a function of VG2 and
B for f = 0.1, 0.4, and 1 GHz. All three data sets show the
movement of plateau boundaries in the magnetic field. Some
of this behavior has been linked to magnetic confinement.16

At high magnetic fields, where we expect tunneling rates to
be suppressed, it appears that a shift in VG2 is required to
recover the same current. This suggests that an overall change
of the back-tunnelling rates, induced by either magnetic field or
electrostatic confinement, can change the number of electrons
retained in the dot. This explanation does not give any clues as
to why the shapes of the plateaus change, which is also visible
in these data. In Fig. 1(f) where f = 0.1 GHz, sharpening
of the plateau boundaries and lengthening of the plateaus are
visible, massively enhancing the pump accuracy from a few
percent accuracy at zero field to the part per million level.11

We find that at higher frequency, for instance at f = 0.4 GHz
in Fig. 1(g), similar behavior is seen except in a certain field
range (near 4 T) where steplike features appear in the VG2

scans and broaden the plateau edge (labeled L1). This second
effect is identified as the nonadiabatic population of excited
dot states.12 On further increasing the frequency to 1 GHz,
these step features destroy plateau flatness over a wide field
range as seen in Fig. 1(h).

From detailed studies of several samples we have seen
that there are two field-dependent contributions to the pump
accuracy. At sufficiently low frequencies, where there is no
evidence for excitation effects, the pump current accuracy is
determined by the back-tunneling of excess electrons before
the dot is isolated from the leads during the time when
the entrance barrier is rising rapidly [Fig. 1(b)(ii)]. This
process can be described with time-dependent tunneling rates
�n(t) for the nth electron out of the dot, determined by the
confining geometry.5,17,18 The disparity in tunneling rates for
different numbers of electrons �n � �n+1, combined with
the increasing opacity of the tunneling barrier, gives a mean
number of electrons captured n̂ � an integer. To understand
the effect of the magnetic field on the accuracy of this process a
calculation of �n including the effects of magnetic confinement
is required.

Below we show a numerical calculation of back-tunneling
rates for a model of the pump, including the effect of
magnetic field. We use these to show how the back-tunneling
quantization process is improved in a magnetic field. We then
separately consider the field dependence of the nonadiabatic
excitation effect, which has a different origin.

III. NUMERICAL CALCULATIONS OF
THE BACK-TUNNELING RATE

Previous work has illustrated schematically the significance
of the time-dependent tunneling rates for single-parameter
pumping using a one-dimensional model.17,18 However, to
include a magnetic field a two-dimensional calculation
is required. We have calculated the tunnel coupling for
the two-dimensional Hamiltionian H = (ih̄∇ − eA)2/2m∗ −
eV (x,y), where m∗ is the effective mass, A the magnetic vector
potential, and V (x,y) the model potential

−eV (x,y) = 1

2
m∗ω2

yy
2 − e

∑
b=1,2

Vb exp

[−4(x − xb)2

d2

]

(1)

consisting of two Gaussian barriers of width d = 60 nm,
positioned x2 − x1 = 120 nm apart with amplitudes V1,V2,19

and with parabolic lateral confinement h̄ωy � 5 meV. This
potential, shown in Fig. 2(a), was chosen to approximate
the experimental geometry and gives an orbital energy level
spacing similar to that found in our pumps.12 The broadening
of the electron energy is calculated by the lattice Green’s
function method.20,21 The two-dimensional continuous system
is modeled by a discrete square lattice with a tight-binding
Hamiltonian.21 The on-site energies of the Hamiltonian
contain the position-dependent potential, while off-diagonal
elements, describing the hopping between neighboring sites,
include the Peierls phase factor from the magnetic field.22

The reservoir regions away from the pump are treated as
semi-infinite leads.

Figure 2(b) shows the calculated back-tunneling rate � as a
function of V1 for exit barrier height V2 = −50 mV at B = 0,
5, and 10 T. This shows the expected exponential variation
and a reduction in � at higher fields—the dot is increasingly
decoupled from the leads by magnetic confinement. However,
by fitting the data to the expression � = �0 exp(V1/ε) we can
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FIG. 2. (Color online) Model calculations: (a) Contour plot of the
model 2D potential well with a line cut along the pumping direction.
(b) Tunneling rate � from the potential well as a function of V1, the
entrance barrier for different values of B for a constant V2 = −50 mV.
Solid lines are fits to an exponential function. (c) Schematic diagram
indicating the relative tunneling rate for n = 1 and 2 (solid and dashed
lines, respectively) for states in zero and large field. �2 = eδ(B)�1 and
�2(eV1) = �1(eV1 + �c). See text for definition of δ. (d) Calculated
pump current as a function of control voltage in the back-tunneling
model. (e) Fit of experimental data to determine δ(B) at 100 MHz
(sample A). (f) Comparison of field-induced changes in δ found
experimentally in sample A (as in Fig. 1) alongside model predictions
(symbols). The shaded region indicates where nonadiabatic effects in-
fluence plateau flatness at f = 0.4 GHz. (g) Similar data for sample B.

see that the sensitivity of � to the barrier height is also strongly
enhanced in higher magnetic fields, with ε changing by a
factor �6. We show in the next section that this effect drives a
very large enhancement in quantization accuracy, but first we
discuss the origin of this effect. At low field the electronic wave
function is determined solely by the electrostatic confining
potential, with the penetration of the wave function into the
confining barrier determining the sensitivity of the tunneling
rate to barrier height. At high field, magnetic confinement
reduces the size of the electronic wave function, causing the
tunneling rate to drop. In our experiment this is compensated
by forcing the electron closer to the barrier, but the probability
density is then so concentrated that small variations in barrier
height change the tunnel coupling very rapidly.

IV. EFFECT ON PUMPING ACCURACY

According to Ref. 18, the accuracy of the back-tunneling
quantization mechanism process is determined by the disparity
in back-tunneling rates for different electron numbers. We
use the above calculation for a single electron occupying the
dot and use some simple approximations to deduce the effect
of the field on these relative tunneling rates. To estimate the

tunneling rate for a state with two electrons we assume that
the energy of this system E2 is increased by an amount �c

over the single-electron energy E1, effectively lowering the
barrier by �c/e. In this case �2 then has the same exponential
dependence on V1 as �1 but is shifted to higher tunneling rates
by a factor exp(δ) where δ = �c/εe, as shown in Fig. 2(c),
where ε is related to the slope of the exponential behavior in
Fig. 2(b). The ratio �2/�1, which determines the quantization
accuracy, can be enhanced either by increasing � (increasing
the charging energy) or by increasing the sensitivity of the
tunneling rate to V1 (decreasing ε). While the field dependence
of the charging energy is typically observed to be very
weak,7,23–25 the large changes in ε(B) seen in Fig. 2(b) will
give large enhancements in quantization accuracy.

We show in Fig. 2(d) the calculated pump current I (V2)
using a model based on the back-tunneling process5,18 but
including the field-dependent effects found above. The func-
tional form of I (V2) is given by

I = ef
∑
n=1,2

exp

[
− exp

(
− α(V2 − V0)

ε
+ (1 − n)δ

)]
, (2)

where V0 sets the position of the first plateau and δ sets the
plateau flatness (larger values correspond to more accurate
quantization). Equation (2) arises from the sensitivity of �1,2

to the exit barrier height, which can be used to select the
number of electrons trapped by increasing the dot energy and
increasing the tunneling rates.18 The parameter α is defined
as the proportionality constant between the exit barrier height
and the dot potential.

Figure 2(d) shows that, using the values of ε derived from
our numerical calculations, Eq. (2) predicts a pronounced
enhancement of plateau flatness like that seen experimentally.
One small difference is that while it reproduces the experi-
mentally observed sharpening of the plateau risers, the plateau
lengths are fixed. The change in plateau length suggests a
slight difference in the way that the magnetic field enhances
the sensitivity of �n to V2 compared to its effect on �(V1).
This would be equivalent to making α field dependent, which
would allow the plateau lengths to change with field as seen
experimentally [see Fig. 1(d)].

We fit our experimental data to Eq. (2) and extract an
effective value of δ as a function of field to compare with
our calculations.26 This is shown in Figs. 2(f) and 2(g) for two
samples (sample A is the same as in Fig. 1). At a frequency of
0.1 GHz, Eq. (2) fits the data well and there is no sign of any
excitation effects. In both samples there is a strong monotonic
increase in δ. This field-dependent enhancement is similar in
size to that estimated in our model.

In the next section we illustrate where the scale and field
dependence of this effect arises by a simple analytical estimate
using the WKB model, which serves to corroborate these
numerical calculations.

V. EFFECT OF MAGNETIC FIELD ON TUNNELING
RATES IN THE WKB MODEL

To complement the detailed numerical calculation we can
illustrate the qualitative origin of the relevant field scales
and how these relate to experimental dimensions. We take
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a one-dimensional (1D) WKB approximation27 applied to
the transmission coefficient for a particle tunneling through
a barrier with shape V (x) and length d. The transmission
coefficient is given by

T =
exp

(−2
∫ x2

x1
dx

√
2m∗
h̄2 [V (x) − E]

)
[
1 + 1

4 exp
(−2

∫ x2

x1
dx

√
2m∗
h̄2 [V (x) − E]

)]2
. (3)

In the case of a constant barrier potential V0 of width d,
and considering small transmission probabilities, this gives
a tunneling rate

� ∝ exp
−2d

√
2m∗(V0 − E)

h̄
, (4)

where an effective barrier height is defined by the quantity
Vb = (V0 − E). This effective barrier can be reduced by
lowering the potential barrier by an amount �V0, or increasing
the energy of the electron by a small amount �E, either of
which will increase the tunneling rate. We then write

� ∝ exp
−2d

√
2m∗(V0 + �V0 − E − �E)

h̄
, (5)

expand in �V0, and retain only the term that depends on �V0,
which gives us

� ∝ exp
−d

√
2m∗

h̄
√

(V0 − E)
�V0, (6)

showing that the sensitivity of tunneling rates to the effective
barrier height is determined by the thickness of the barrier.
Considering changes in energy �E gives an equivalent
expression. We can see qualitatively that any effect which
modifies this barrier thickness, in the present case a strong
magnetic confinement effect, can modify the sensitivity of
the tunneling rate to confinement parameters. In our model
of pump operation we are normally interested in the ratio
of tunneling rates �2/�1 = exp(δ) from two different energy
levels, corresponding to different numbers of electrons in the
dot. Within the above approximations we find that

δ = ln �2 − ln �1 = d
√

2m∗

h̄
√

(V0 − E)
�, (7)

where the charging energy �c = E2 − E1 gives rise to a large
difference in tunneling rates whose ratio depends on the barrier
geometry. To consider how the magnetic field changes the
tunneling rate we introduce an effective barrier thickness de(B)
which increases with magnetic field.28 This describes the fact
that, under a magnetic field, the spatial extent of the wave
function is reduced, decreasing the penetration into the barrier.
This will lead to an increase in the ratio of tunneling rates. In
our model of pump operation this will change the plateaus’
quality parameter δ according to

δ(B)

δ(0)
∼ de(B)

de(0)
. (8)

An estimate of the field dependence of this enhancement can
be found by taking the expected changes in magnetic length
�B(B) from the solution to the 2D harmonic potential well in a
perpendicular magnetic field24 with de = d0 − �B(B) + �B(0)
and �B(B) = (m∗√ω2

0 + ω2
c/4/h̄)−1/2,24 where ωc = eB/m∗

FIG. 3. (Color online) Field dependence of δ(B) assuming that it
is determined by the effective barrier thickness.

and h̄ω0 is the electrostatic confinement strength. There is
a gradual crossover from an electrostatic- to a magnetic-
dominated regime, for example, for h̄ω0 = 2 meV, �B shrinks
from ∼25 nm at B = 0 T to ∼10 nm at B = 14 T. The result
is an increase in δ(B) at high field by an amount given by the
relative change in �B(B) compared to the zero-field length d0.
The onset field of the effect is determined by the ratio h̄ω0/h̄ωc.

Figure 3 shows this enhancement for a range of values of
h̄ω0 similar to those expected12 and an effective value of d0 = 4
nm. Choosing a larger or smaller value of d0 simply magnifies
or weakens the enhancement effect, without changing the re-
sult qualitatively. This simple model reproduces the qualitative
effects that are more accurately probed by the above numerical
calculations.

VI. NONADIABATIC EFFECTS

Figure 2(f) shows that at 0.4 GHz (sample A) there is also
a strong increase in δ with field, although there is a difference
in the maximum value of δ reached. This effect may be due
to the slightly different confinement potential shape at these
higher frequencies, as the values of VG2 at which the plateaus
appear are different. The deterioration of pump accuracy at
these higher frequencies can be overcome by the use of
a specially tailored wave form,11 which gives an effective
fivefold increase in frequency for the same pump accuracy.
A very distinctive frequency-dependent effect is visible in the
form of a dip in plateau flatness around 4 T. This departure
from a monotonic field dependence is associated with the onset
of nonadiabatic effects. In this regime δ is strongly suppressed
by excitation features, which appear as “shoulder” features in
the VG2 scans.12 Data at 1 GHz show further suppression of δ

over a wide field range, but with a recovery at high field.
In these devices rapid changes in the electrostatic con-

finement potential can populate excited states of the dot by
nonadiabatic processes,12 as observed in Fig. 2 and in Fig. 4.
Tunneling rates out of excited states are larger so electrons
“spill” out of the pump and the current plateaus are eroded into
a number of unquantized steps. Figure 4(a) shows I (VG2) and
dI/dVG2 for f = 1 GHz (sample B), high enough to induce
nonadiabatic excitations of the dot. Excitation features emerge
above a few tesla12 but as the field is increased above 12 T these
features (peaks in the derivative) become significantly weaker.
Figures 4(b) and 4(c) show this effect in more detail. This leads
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FIG. 4. (Color online) (a) Current plateaus at 1 GHz for fields of
6, 10, and 14 T along with dI/dVG2 (offset vertically, VG1 = −0.4 V).
Voltage changes �VG2 are measured from the rising edge of the first
plateau. All data in this figure are from sample B. The arrows indicate
excitation features. (b) Maps of dI/dVG2 (color scale) as a function
of both VG2 and VG1 for 6, 10, and 14 T at 1 GHz. (c) Color map
of dI/dVG2(�VG2) as a function of field up to 14 T. The excitation
gap �ε = ε1 − ε0 is indicated. (d) Fock-Darwin state probability
density for different combinations of B and h̄ω0. The open curves
are for h̄ω0 = 8 meV and the filled curves are for h̄ω0 = 2 meV.
(e) Eigenenergy of the ground-state solution of the Fock-Darwin
confinement potential (Ref. 7) for different combinations of B and
electrostatic confinement energy h̄ω0. (f) Field dependence of the first
excitation gap between (n,l) = (0,0) and (n,l) = (0,1) states, where
n,l are the radial quantum number and orbital angular momentum,
respectively, for h̄ω0 = 2,4,8 meV.

to the recovery of δ seen in Fig. 2(g). According to Ref. 18, the
recovery of a δ � 18 is sufficient to give a quantization accu-
racy of �3 parts in 107. This represents an enhancement of 105

over the zero-field case, where δ ∼ 5 gives only ∼5% accuracy.
The observation of a limited field range where nonadiabatic

effects are visible can be explained by a competition between
magnetic and electrostatic effects on the electronic wave

function. Nonadiabatic transition rates depend on both the
strength and rapidity of the perturbation of the wave function.12

At high field h̄ωc (1.7 meV/T) can exceed h̄ω0 ∼ a few meV in
our system. The relative contribution of the electrostatic com-
ponent is diminished and the magnetic field determines the size
of the wave function. As a result, changes in the confinement
potential during pumping have a weaker effect on the dot
wave function and nonadiabatic transition rates are reduced.
Figures 4(d) and 4(e) show, for example, that the probabil-
ity density |ψ |2 and eigenenergy ε0 of the lowest-energy-
orbital Fock-Darwin state29 become increasingly insensitive to
changes in ω0 at higher field, consistent with the disappearance
of the excitation features.

At lower fields the excitation features become weaker
due to the significant increase in the excitation gap between
ground and excited states. This field-dependent gap can
be seen directly in the spectrum of excitation features in
Fig. 4(c).12 The excitation gap between the ground and first
excited orbital energy levels, ε1 − ε0, is reduced strongly
with field, which may be sufficient to suppress excitations at
low field. However, the magnitude of this field dependence is
sensitive to ω0 [see Fig. 4(f)], which is time dependent in our
case. Excitation processes happening earlier in the pumping
cycle, when the dot confinement is smaller, would be more
sensitive to magnetic fields.

VII. SUMMARY

In summary, we have shown that electron dynamics in
single-electron tunable-barrier pumps are sensitive to magnetic
fields via two mechanisms. First, the increased sensitivity
of tunneling rates to the confining barriers enhances the
separation of back-tunneling times that is relevant for ensuring
stability in the number of electrons trapped. Second, the
magnetic field plays a role in suppressing excitations of
the quantum dot, which would otherwise lead to unwanted
spillage of trapped electrons. These effects are both important
in allowing pumps to operate at high speed with error rates
smaller than one part per million in high fields.11
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