
PHYSICAL REVIEW B 86, 155306 (2012)

Two-dimensional Fourier spectroscopy applied to electron-phonon correlations in quantum
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Two-dimensional photon echo spectroscopy allows one to track relaxation and correlation processes in optically
excited nanostructures. We analyze such spectra for intersubband transitions in an n-doped GaAs/Al0.35Ga0.65As
single quantum well. Focusing on electron-longitudinal optical phonon interaction in a non-Markovian treatment,
the carrier dynamics in the conduction subbands are investigated in the low density regime. Our results provide
detailed information about the temporal evolution of electron-phonon correlations in the two-dimensional
frequency spectrum.
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Semiconductor quantum well (QW) devices based on the
dynamics in the intersubband (ISB) regime are the foundation
for various optoelectronic applications.1–3 In order to gain a
deeper understanding of the underlying microscopic processes
that drive the performance of such devices, ISB systems
have been widely investigated experimentally as well as
theoretically.4–10 There, clear signatures of electron-electron
(el-el) and electron-phonon (el-ph) scattering can be observed
in the linear excitation regime as line shape broadening and
satellite peaks in absorption spectra.11–13 In the nonlinear
regime, a large variety of coherent spectroscopy schemes, for
example, pump-probe or four wave mixing experiments, have
been used to investigate complex many-body interactions in
semiconductor nanostructures.14 In standard transient exper-
iments the ultrafast dynamics are observed as a change of
transmission or absorption,15–17 yielding indirect information
about the electronic population. Another, more complex access
to the investigation of many-body interactions was developed
in nuclear magnetic resonance (NMR),18 where multiple
quantum transitions (i.e., pathways), whose analysis provide
a more detailed information on correlated induced excitation
frequencies, are selectively detected in two-dimensional (2D)
Fourier transform spectroscopy.19,20 The extraction of these
pathways requires a multipulse setup, where in the experiment
the time delays between the different pulses is varied. The
signal is then Fourier transformed with respect to the time
delays, leading to a 2D frequency spectrum. The development
of ultrashort laser pulses up to the visible spectrum21,22

allowed for this method to be applied to a wide range of
biological systems and semiconductor nanostructures,23–27

giving access to detailed structural information of the inves-
tigated system.28–32 For example, 2D spectroscopy has been
performed experimentally on coupled ISB QWs by Kuehn
et al. recently, detecting strong polaronic signatures in the
nonlinear response.33 To separate different blocks of quantum
pathways, common experiments use a noncollinear setup
(incoming pulses propagate in different directions),34 where
different quantum pathways are emitted in different directions
of the wave vector. Another approach is to use a collinear setup,
where the superposed quantum pathways can be separated
by the so-called phase cycling (PC) technique.35–37 Here the
phases of the incoming time-ordered pulses are varied for each

repetition of the experiment. When combining the outcoming
response signals, multiple quantum pathways can be extracted.
If no Fourier transform is applied, PC can also be used to
extract certain quantum pathways from simulations in the time
domain.38

In this paper we present a microscopic 2D photon echo
signal study, applied to the ISB dynamics of an n-doped
GaAs/Al0.35Ga0.65As single QW and discuss its benefits for
detecting many-body interactions in ISB systems. In the
simulation a collinear three pulse setup excites the sample and a
PC protocol will be used to extract the photon echo signal.39 To
correctly model the 2D Fourier transform experiments we will
address the following topics in the article: After introducing
the theoretical background of the coherent 2D spectroscopy,
the PC method will be described. Next, the investigated QW
model based on a microscopic Heisenberg equation of motion
approach is derived. Finally, the results are presented in
Sec. IV, where an in-depth interpretation of the 2D frequency
spectrum reveals the signatures of electronic correlations by
means of a direct mapping of excitation and response in the
2D frequency spectrum. It will be shown that the spectra give
detailed information about the quantum kinetics and relaxation
processes of electrons due to their interaction with longitudinal
optical (LO) phonons.

I. COHERENT 2D SPECTROSCOPY

At first it is necessary to investigate the dependence of the
material response on the incoming optical pulses. Here we
assume an electromagnetic field consisting of three collinear,
temporally separated pulses:40

E(t) = 1

2

3∑
n=1

En(t − tn)ei[ωn(t−tn)−φn] + c.c., (1)

with the Gaussian envelope function En(t − tn) =
A0/σ exp[−(t − tn)2/2σ 2] centered around tn, the carrier
frequencies ωn, and the phases φn, see also Fig. 1(a). For a
heterodyne detection scheme, a local oscillator pulse is added
in addition to the fields in Eq. (1), allowing us to separate
real and imaginary parts of the signal.41 The incoming
pulse train interacts with the sample with a signal phase
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FIG. 1. (Color online) (a) Incoming pulse sequence: The re-
sulting polarization P contains multiple orders in the electron-
electromagnetic field interaction. (b) Left: Schematic band diagram
of the many-particle state in the χ3 limit: ground state g, first
excited state e, double excited state f. The arrows show the allowed
dipole transitions between the states. Right: Two possible electron
distributions for the respective many-particle states g/g′, e/e′, f/f′.

φs = kφ1 + lφ2 + mφ3, {k,l,m} ∈ Z, representing all possible
phase combinations due to nonlinear wave mixing. Thus, the
resulting material response of the sample, the macroscopic
polarization P (derived in Sec. III) contains multiple sets of
Liouville pathways, representing different interactions of the
sample with the three incoming pulses which can be classified
by the corresponding phase combination. Details are given
in the next section. The nonlinear polarization radiates a
signal field S which can be detected by either phase sensitive
(heterodyne) or phase insensitive (homodyne) schemes.
The electric field [Eq. (1)] (and therefore the resulting
signal) can be described as a function with respect to the
different delay times between the pulses: E(t) → E(τ,T ,ts),
with τ = t2 − t1, T = t3 − t2, ts = τs − t3 as shown in
Fig. 1(a).39,42 For instance, in the heterodyne detection
scheme the signal S is given by38

S(τ,T ,ts) =
∫ ∞

−∞
dt P (t)E∗

loc(t − τs)e
iωs (t−τs ), (2)

with the local oscillator field envelope Eloc at the signal time τs

and with the frequency ωs of the fourth applied pulse to detect
the emitted nonlinear polarization P (t). The 2D spectrum is
then obtained by Fourier transforming S with respect to the
delay times τ and ts but fixed T , contained in the nonlinear
polarization P (t).

For our purpose, the signal phase of interest is the
third-order photon echo signal �I = −φ1 + φ2 + φ3 since
it allows us to track relaxation processes.38 Restricting our
investigations to the χ3 response, the electrons in the system
are limited to three possible sets of many-particle states with
the field: No excitation of the system ground states (g), single
excitation (e), and double excitation (f) of the many particle
system, all cases shown in Fig. 1(b). For the investigated
two-band ISB system, the corresponding subband states are
depicted on the right.

(a)

(b)

FIG. 2. (Color online) Relevant double-sided Feynman diagrams
for the photon echo signal: (a) Intrasubband and (b) intersubband
processes for ESE (excited state emission), GSB (ground state bleach-
ing), and ESA (excited state absorption). The dotted arrows represent
the temporal evolution of the densities due to relaxation processes.

The physical processes contributing to the �I signal
can be interpreted with the relevant double-sided Feynman
diagrams38 of the corresponding Liouville pathways, see
Fig. 2. The ket and the bra of the corresponding density
matrix are represented by vertical lines (left for ket, right for
bra), where, after each time interval, one pulse creates a new
state, see Fig. 2. The time evolution goes from bottom to
top. An arrow pointing towards the vertical lines symbolizes
the transition to a higher excited state and vice versa. If the
arrow points to the right, the field comes in with the positive
phase, while pointing to the left indicates the interaction
with a negative phase. |g〉〈g| and |g〉〈g′| describe the density
distribution in the ground state, |e〉〈e| and |e′〉〈e′| is the density
distribution in the first excited state. |g(′)〉〈e(′)|, |e(′)〉〈g(′)|
(|f 〉〈e′|) characterize the coherence between the ground and
excited state (first and second excited state). The physical
processes at each time can be constructed with the help of
double-sided Feynman diagrams. A detailed description for
the interpretation of double-sided Feynman diagrams is given
in Ref. 38.

For the investigated system we assume spatial homogeneity.
Here ISB coherence terms in the form of |g〉〈g′| and |e〉〈e′|,
which correspond to the coupling of the bra and the ket
with different momenta (〈a†

i,kai,k′ 〉), vanish.43 Under this
assumption, six main resonant Liouville pathways remain as
contributions to the photon echo signal, which are depicted in
Fig. 2, including in the upper panel (a) intrasubband and in
the lower panel (b) intersubband relaxation during the waiting
time T . The possible intersubband relaxation corresponding to
a double excited state absorption, that is, relaxation from |e〉〈e|
to |f〉〈f| during T is unlikely and hence not depicted. As an
explicit example, the excited state emission (ESE) process for
intrasubband relaxation will be interpreted [Fig. 2(a)]: The first
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pulse with phase −φ1 comes in and excites the ground state
|g〉〈g| of the system to |g〉〈e|. Subsequently, this coherence
is destroyed after the delay time τ , where the second pulse
with φ2 creates a population |e〉〈e| in the excited state. This
population relaxes during the waiting time T , changing to
|e′〉〈e′|. The third pulse with φ3 again creates a coherence
|e′〉〈g′| after ts . By Fourier transforming with respect to the first
(τ ) and the third coherence time (ts), the frequency dependent
correlations between the two time delays as a function of the
waiting time T can be monitored. As the detected signal field is
proportional to the macroscopic polarization in Fourier space28

[i.e., S(ωτ ,T ,ωts ) ∝ P (ωτ ,T ,ωts )], we will now introduce the
process for the extraction of the specific quantum pathways
inherent to the �I signal from P . Since P is uniquely
dependent on the phases of the incoming pulses, the selection
can be done by a series of experiments, each time with different
phases for the pulse sequence. This so called PC technique will
be explained in the next section.

II. PHASE CYCLING

As stated in the previous section, the sample can interact
multiple times with the three separate pulses of the electric
field, each pulse marked by its phase φi . Each combination
of interaction with the field, visible in the signal phase φs

[see Fig. 1(a)], reflects different combinations of quantum
pathways. To select the specific �I signal, that is, the case
where −k = l = m = 1 for φs , the material response must
be decomposed. The nonlinear polarization P (t̃) (t̃ := τ,T ,ts)
can be written as a superposition of all directional polarizations
Pk,l,m(t̃) of these different quantum pathway blocks:44

P (t̃ ,φ1,φ2,φ3) =
∑
k,l,m

Pk,l,m(t̃)ei(kφ1+lφ2+mφ3) + c.c.

= P(t̃ ,φ1,φ2,φ3) + P∗(t̃ ,φ1,φ2,φ3), (3)

with the particular phases of φi originating from the exciting
three pulse sequence. The indices k,l,m indicate the least
order of interaction with the respective pulses En [Eq. (1)].
For noncollinear pulse propagation, the different Pk,l,m(t̃) can
be selected by phase matching in different spatial directions.
This is not possible for a collinear setup since the pulses are
propagating in the same direction. Here, to extract specific
directional polarizations one has to repeat the experiment N

times, where N is the number of possible combinations of
k,l,m. For each experiment the excitation is accompanied by a
different set of phase combinations �s = (φ1s ,φ2s ,φ3s), where
the first index of φns indicates the phase of the pulse En and
the second index corresponds to the sth experiment. Using
the abbreviation cs,u = ei�s ·u with the interaction order u of
the three incoming pulses u = (k,l,m)T and �s = �T

s , we can
rewrite Eq. (3) into a matrix form44:

⎛
⎜⎜⎜⎜⎝

c1,1 c1,2 . . . c1,N

c2,1 c2,2 . . . c2,N

...
...

. . .
...

cN,1 cN,2 . . . cN,N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

P{1}(t̃)
P{2}(t̃)

. . .

. . .

P{N}(t̃)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

P(t̃ ,�1)

P(t̃ ,�2)

. . .

. . .

P(t̃ ,�N )

⎞
⎟⎟⎟⎟⎟⎠

,

(4)

TABLE I. One possible choice for the set of phase combinations
of the exciting field (to be multiplied by π ).

s 1 2 3 4 5 6 7 8 9 10 11

φ1s 0 0 0.5 0.5 1 1 1.5 0 0 0.5 1.5
φ2s 0 0 0 0 0 0 0 0 0 0 0
φ3s 0 0.5 1 0.5 0 0.5 1.5 1.5 1 1.5 1

s 12 13 14 15 16 17 18 19 20 21 22
φ1s 1.5 0 0 0.5 1 1 1.5 0 0 0.5 1.5
φ2s 0 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
φ3s 0.5 0 0.5 1 0 0.5 1.5 1.5 1 1.5 1

where P{u} = Pk,l,m. The combination of phases �s can be
chosen arbitrarily. Still, the values for φ1s , φ2s , and φ3s should
be chosen in order to make cs,u invertible. Corresponding to
the number of experiments, N sets of phase combinations are
needed. A nonzero determinant of the matrix in Eq. (4) is
the only prerequisite for the phase combinations. Inverting
this matrix gives the desired directional polarization as a
linear combination of the phase-dependent total polarizations
Pk,l,m(t̃) = ∑N

i=1 c∗
i P(t̃ ,�i).

The number of possible combinations N is limited by
the respective order of the excitation fields En. Within this
paper the response is restricted to the third-order interaction
with the sample. Due to the dipole selection rules of our
system, even-order interactions vanish. Thus, 22 possible
combinations remain:39

(φ1),(φ2),(φ3),(3φ1),(3φ2),(3φ3),

(2φ1 − φ2),(2φ1 − φ3),(2φ2 − φ1),

(2φ2 − φ3),(2φ3 − φ1),(2φ3 − φ2),

(2φ1 + φ2),(2φ1 + φ3),(2φ2 + φ1), (5)

(2φ2 + φ3),(2φ3 + φ1),(2φ3 + φ2),

(φ1 + φ2 − φ3),(φ1 − φ2 + φ3),(−φ1 + φ2 + φ3),

(φ1 + φ2 + φ3).

Accordingly, 22 sets of phase combinations are needed. One
possible choice, which has been used for our calculations, is
presented in Table I. Since we are interested in the photon echo
�I signal, that is, the corresponding directional polarization
P−1,1,1(t̃), the phase combinations in Table I were chosen in
that manner that only 12 PC steps remain for the extraction of
the �I signal P−1,1,1(t̃).

To demonstrate this technique, the 2D spectroscopy with PC
is applied to a QW model system. The material response P (t̃)
to the exciting pulse sequence arises from the ISB dynamics of
the QW. Here the macroscopic polarization is a superposition
of the respective dipole transition matrix elements dij with
the microscopic polarizations ρij,k. In order to analyze the
ISB el-ph quantum kinetics, the model system is described
microscopically in the following section.

III. MICROSCOPIC QW MODEL

We investigate an n-doped GaAs/Al0.35Ga0.65As single
QW where the dynamics of the lowest two conduction
subbands is considered. Nonparabolicity effects are included
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(a) (b)

FIG. 3. (Color online) (a) Sketch of the model system showing
the transition of an electron from the lower to the upper subband
under emission of one phonon. (b) Transition energy 
ε between
the two subbands. The energy is decreasing for higher momentum
state.

via different effective subband masses mi .45 A sketch of the
in-plane band structure is given in Fig. 3(a). In our discussion
we focus on the coupling of the electrons with a bath of
LO bulk phonons. This is a reasonable assumption since the
competing el-el interaction is weak for low doping electron
densities.14 Thus, the Hamiltonian of the system consists of
the noninteracting 2D confined electrons and bulk phonons
(H0,el,ph), the el-LO phonon interaction (Hel-ph), and the
electron-electromagnetic (em) field dipole coupling (Hem):

H0,el,ph =
∑
i,k

εi,ka
†
i,kai,k +

∑
q

h̄ωLOb†qbq, (6)

Hel-ph =
∑
q,k

(
gij

q a
†
i,kbqaj,k−q‖ + gij∗

q a
†
j,k−q‖b

†
qai,k

)
, (7)

Hem = −
∑
i,j,k

dijE(t)a†
i,kaj,k, (8)

where a
†
ik (aik) is the creation (annihilation) operator of an

electron with an in-plane 2D wave vector k in subband i and
energy εi,k = εi,0 + (h̄2k2/2mi), with the subband energies
at the � point εi,0. The different ISB subband masses mi

lead to decreasing transition energies between the subbands
ε2,k − ε1,k = 
εk for increasing wave numbers, see Fig 3(b),
which will be an important feature for the interpretation of the
2D spectra. b

†
q ( bq) labels the creation (annihilation) operator

of an LO phonon with the three-dimensional wave vector q
and energy h̄ωLO. The in-plane projection of q is denoted
as q‖. Furthermore, g

ij
q (gji∗

q ) is the Fröhlich coupling matrix
element46 which describes the transition of an electron from
band j to band i under absorption (emission) of an LO phonon.
The semiclassical interaction of the system with an external
electromagnetic field E(t) is determined by the dipole matrix
element dij .

The polarization P (t) is the source of the signal detected
within this spectroscopy scheme and is calculated from the
microscopic polarizations ρij,k: P = 1/A

∑
ij,k dijρij,k (i �=

j ).47 The dynamics for the microscopic polarization ρij,k =
〈a†

i,kaj,k〉, i �= j and the occupation densities ρii,k = 〈a†
i,kai,k〉

is calculated within the density matrix formalism using the
Heisenberg equation of motion.48,49 Spatial inhomogeneities
are not excited (i.e., k = k′). The overall equations, which

determine P (t), read50

ρ̇ij,k = iωij,kρij,k − iE(t)

h̄

∑
m

(dmiρmj,k − djmρim,k)

+ i

h̄

∑
o,q

(
goi

q σ
oj

k+q‖,q,k + gio
q

∗
σ jo∗

k,q,k−q‖

− gjo
q σ io

k,q,k−q‖ − goj
q

∗
σoi∗

k+q‖,q,k

)
, (9)

with the transition frequency ωij,k = (εi,k − εj,k)/h̄ and the
phonon-assisted density matrix elements (PADs) σ

ij

k′,q,k =
〈a†

i,k′bqaj,k〉. The dynamics of coherent phonons (〈b†〉,〈b〉) is
neglected since their contribution is much smaller compared
to the dynamics of the PADs.51 To truncate the system, a
second-order Born approximation in g

ij
q is applied,52 where

correlated quantities like 〈a†ab†b〉 decouple into phononic
and electronic expectation values. This leads to the following
equation for the PADs:

−ih̄σ̇
ij

k′,q,k = (εi,k′ − εj,k − h̄ωLO)σ ij

k′,q,k

−
∑
mo

gmo
q

∗[(1 + nq)(δoj − ρoj,k)ρim,k′

−nq(δim − ρim,k′ )ρoj,k] + ih̄γphσ
ij

k′,q,k, (10)

where the occupation of phonon mode q, nq = 〈b†qbq〉, is
given by the Bose-Einstein distribution function, that is,
the bulk phonons are treated as a bath.50 The occurring
four-particle electron operators in the PAD’s like 〈a†a†aa〉 are
decoupled into electronic expectation values via 〈a†

i a
†
j aman〉 =

〈a†
i an〉〈a†

j am〉 − 〈a†
i am〉〈a†

j an〉. Higher order correlations53 are
included as a phenomenological dephasing constant γph.54

To briefly recap the previous sections: A sequence of
pulses E(t) is applied to the introduced microscopic ISB
model, which responses with a macroscopic polarization P .
This polarization emits a coherent signal arising from a
superposition of all possible quantum pathways. To extract
the desired pathways, for example, the photon echo signal �I ,
we use the PC technique. The resulting dynamics are presented
in the following section.

IV. RESULTS

A. Absorption and population dynamics

The calculation for the ISB dynamics is done for a
10 nm GaAs/Al0.35Ga0.65As quantum well with a gap energy
of εgap = ε2,k=0 − ε1,k=0 = 98.54 meV using a bath temper-
ature of T = 100 K.55 The initial population is assumed to
be in thermal equilibrium and occupying the lower subband
while the upper subband is empty. In order to interpret the
2D spectra, it is useful to study the underlying ISB processes
via the conventional absorption spectra and under different
excitation pulses, first.

In the linear regime, the most prominent feature of ISB
transitions is already visible in the absorption spectrum, see
Fig. 4. Similar to the 2D free carrier spectra in the following
subsection, the absorption spectrum is calculated for free elec-
trons, obeying the Pauli principle, with a phenomenological
dephasing, that is, the electron-phonon coupling in Eq. (9)
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FIG. 4. (Color online) Absorption spectrum for a 10 nm ISB
QW for equal subband masses (dark line) and for different subband
masses (light line). The spectrum including different subband masses
is asymmetrically broadened (low energy tail).

is set to zero. Instead, a dephasing term −h̄γρij,k is added
to Eq. (9) for the calculation of the microscopic polarization
with h̄γ = 1 meV for i �= j . Thus, the system is reduced to a
set of uncoupled two-level systems with fermionic statistics
and has in this case an inherent nonlinearity which is in
contrast to the case of an anharmonic oscillator. The spectrum
is plotted for equal subband masses (dark line) and different
subband masses (light line). For equal subband masses the
spectrum has a symmetric line shape around the gap energy
εgap, similar to a homogeneously broadened two-level system.
When considering different subband masses, the maximum of
the spectrum is shifted to lower energies, combined with a low
energy tail. This reflects the density of states as well as the
band dispersion since the transition energy 
ε decreases for
higher wave numbers k, see also Fig. 3.

Under stronger excitation, nonlinear effects such as
nonequilibrium electron occupation and their subsequent
relaxation due to el-LO phonon interaction take place. As
later used for the 2D spectra, we study the situation where the
sample is excited with three Gaussian shaped 0.1π pulses with
a standard deviation of σ = 20 fs, which relates to a FWHM of
≈77 meV in the frequency domain. Their frequency is centered
around the ISB QW band gap ωgap. In Fig. 5 we analyze the re-
sulting population dynamics. Here, only the first two pulses are
applied, separated by a delay time of τ = 0.1 ps. We plot the
angle-integrated population distribution for different waiting
times T after the second pulse. This situation corresponds to
one specific delay time tracked in the photon echo experiment
by the third pulse. The upper plot in Fig. 5(a) shows the
population distribution of the upper subband ρ22,k. The lower
plot displays the change of the population distribution in the
lower subband ρ11,k, compared to the distribution before pulse
excitation ρ0

11,k: ρ11,k − ρ0
11,k. In both graphs two x-axis labels

are given: The energy (ki) of the subband i and the correspond-
ing momentum ki in subband i with energy (ki) = h̄2k2/2mi .

Comparing the different waiting times, the electron dis-
tribution in the upper subband ρ22,k decreases for increasing
waiting times. This is due to relaxation out of the initially
excited nonequilibrium distribution, caused by the exciting
pulses with a mean frequency ωL at the subband gap frequency.
The main process is ISB relaxation, which leads to a decrease
of ρ22,k via transfer of electrons with small momentum
numbers to the lower subband. The dominant relaxation

ρ 1
1,

k 
- ρ

0 11
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FIG. 5. (Color online) (a) Population distribution of the upper
subband ρ22,k (upper panel) and differential population distribution
of the lower subband ρ11,k − ρ0

11,k (lower panel) for three different
waiting times T . ρ0

11,k is the population distribution in the lower
subband before the excitation with the pulses. The delay time τ is set
to 0.1 ps. The distributions are plotted after excitation with the first
two pulses. (b) Band dispersion of the lower subband 1 and the upper
subband 2. The gray arrows mark the electron relaxation processes
from the upper subband minimum under emission of one LO phonon.
The dotted lines are spaced with a distance of one LO phonon energy
h̄ωLO = 36 meV.

channel is pictured in Fig. 5(b), where the energy dispersion
of the subbands is displayed: First, the excited electrons relax
from the upper subband minimum to the lower subband at
k ≈ 0.35 nm−1 [dark arrow in Fig. 5(b)], due to approximate
energy conservation (one LO phonon energy). This leads to
the slightly increased occupation ρ11,k with k ≈ 0.35 nm−1 in
Fig. 5(a) for T = 0.5 ps. Then, electrons can further relax
within the lower subband to around k ≈ 0.22 nm−1. These
processes take place under emission of one LO phonon with
an approximate energy transfer of εLO = 36 meV, indicated
in Fig. 5(b) as horizontal dotted lines. Since the momentum
state k ≈ 0.22 nm−1 is less than one LO phonon energy above
the lower subband minimum, the distribution ρ11,k≈0.22 nm−1

increases for higher waiting times T , see also the lower graph in
Fig. 5(a). Under excitation with more spectrally sharp pulses,
these phonon replica would be more pronounced, similar to
observations in intraband systems.53,56 In our case the replica
are broadened due to the large spectral pulses.

Next, the 2D photon echo signal will be investigated. For
comparison, we start the analysis with the spectrum for the free
carrier dynamics (Sec. IV B). Subsequently, the el-LO phonon
interaction is included and their effects onto the 2D spectrum
will be discussed for different waiting times T (Sec. IV C).
The �I = −φ1 + φ2 + φ3 signal P−1,1,1(τ,T ,ts) is extracted
with the 12-step PC protocol explained in Sec. II. By Fourier
transforming with respect to τ and ts, the 2D photon echo
signal P−1,1,1(h̄ωτ ,T ,h̄ωts ) is obtained.
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FIG. 6. (Color online) 2D free carrier spectra of the photon echo
signal P−1,1,1 in a 10 nm ISB QW including equal subband masses
(left column) and different subband masses (right column) for T =
0.5 ps. From top to bottom are shown the imaginary, real, and absolute
parts of the signal. The contour lines of the absolute parts are equally
spaced with a distance of 1/6 of the maximum strength.

B. 2D free carrier spectra

Figure 6 shows P−1,1,1(h̄ωτ ,T ,h̄ωts ) for a free carrier
system with equal (left column) and different subband masses
(right column). Their imaginary, real, and absolute parts are
shown from top to bottom. The color bar determines the
signal strength over the energies h̄ωτ along the horizontal
axis and h̄ωts along the vertical axis. In terms of the �I

signal, ωτ is called excitation frequency since τ is the time
after the first pulse exciting the initial population. The signal
time ts after the third pulse provides information about the
development of the excited system, hence ωts is denoted as
response frequency. Thus, the 2D spectra present a mapping
of excitation and response. In standard photon echo spectra,57

only the signal along one frequency axis is resolved. In the
case of 2D spectroscopy, more detailed information can be
gained by comparing excitation and response frequencies. This
allows us to study the development of the population through
the correlation of excitation and response frequencies during
fixed waiting times T : If the population remains unchanged
during T , the spectrum shows a diamond-shaped symmetry
along the −h̄ωτ = h̄ωts axis since the excitation and response

populations do not alter. Population changes on the other hand
are visible as asymmetries in the spectra. The different signs
of these two axes originate from the opposing phases of the
first and the third exciting pulse.

The free carrier spectrum with equal subband masses
exhibits strong symmetries: The real and imaginary spectra
are symmetric along and perpendicular to the diagonal. Hence,
the absolute, diamond-shaped signal (Fig. 6 bottom left)
has diagonal and antidiagonal symmetry as known from
2D spectra of a two-level system.58 For different subband
masses (Fig. 6, right column), the imaginary and real spectra
become asymmetric along the antidiagonal and the spectrum
is stretched towards lower energies along the diagonal. Also,
the maximum of the signal is shifted to lower energies.
Still, since no population relaxation occurs, the signal is
symmetric along the diagonal. The signal along −h̄ωτ = h̄ωts

reflects the density of states for different subband masses as
explained in Fig. 4 and leads to a slender elongation along the
dotted diagonal: The width of the signal along h̄ωts = const
is determined by the homogeneous linewidth due to photon
echo, while the width along −h̄ωτ = h̄ωts is inhomogeneously
broadened by the possible transition energies made available
by the electron occupation.59 Therefore, since every transition
energy can be assigned to one specific wave number, the �I

signal enables the sampling of the subbands.
The underlying physical process causing the symmetric

shape of the free carrier spectra is best understood in terms of
the double-sided Feynman diagrams, Fig. 2: Lacking many-
particle interactions in the free carrier spectrum, the density
distributions |g〉〈g| and |e〉〈e| do not alter during any waiting
time T , which is equivalent to sampling the same available
transition energies after the first and the third pulse. As an
example, the occupation probability along h̄ωτ = −97 meV
will be compared with the one at h̄ωts = 97 meV at the contour
of 1/3 of the signal strength, see arrows in Fig. 6 bottom left:
In the spectrum including equal subband masses, the response
occupation probability along one excitation energy (dark
vertical arrow) equals the excitation occupation probability
along the appropriate response energy (light horizontal arrow).
This is also the case for the free carrier spectrum with different
subband masses (arrows in Fig. 6 bottom right). Thus, the
2D spectra give the same information about the occupation
probability in the momentum space for the initial population
along the h̄ωts axis as well as for the population after the
waiting time T along h̄ωτ .

C. 2D el-ph interaction dominated spectra

In the next step we include the el-LO phonon interaction,
Eqs. (9) and (10). Now, when a coherence is created by
a pulse, the coupling to the phonon bath will lead to a
dephasing and relaxation, which alters the dynamics for
different waiting times, as already seen in Fig. 5. The
typical time scale of the el-ph interaction is on the scale of
τint ∼ 1 ps.60 Therefore, we expect typical effects for T → τint.
Figure 7, left column, shows the absolute P−1,1,1 2D spectrum
including el-LO phonon interaction for three different waiting
times of T = 0.1, 0.5, and 1.5 ps from top to bottom. To
follow the development of the population of the carriers, the
response signal is displayed as 1D cuts for three different
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FIG. 7. (Color online) Left column: Absolute 2D photon echo
spectra including el-LO phonon interaction for three different waiting
times, showing the mapping of excitation and response energy for top:
T = 0.1 ps, middle: T = 0.5 ps, bottom: T = 1.5 ps. Right column:
Occupation probability (colored cuts) of the response energy for three
different excitation energies (along the dotted lines in the 2D spectra).
The gray lines in the right column are the appropriate cuts for the
noninteracting system. For longer waiting times, electron relaxation
takes place, visible as an increasing signal at h̄ωts ≈ 94 meV. The
contour lines are equally spaced with a distance of 1/6 of the
maximum strength.

excitation energies at h̄ωτ = (a) −99 meV, (b) −97.5 meV, and
(c) −96 meV, colored lines in Fig. 7, right column. For
comparison we also added the appropriate cuts for the
noninteracting system (gray lines), taken from Fig. 6, bottom
right. One clearly recognizes that the el-LO phonon interaction
induced occupation probability strongly alter for different T .
The phases of the refractive (Re) and the absorptive (Im)
signal (not shown here) do not change in sign for different
T , indicating that relaxation processes related to varying T

are phase insensitive. For larger waiting times, the spectrum
becomes asymmetric regarding the diagonal, visible as a shift
of the signal to lower energies along h̄ωts . This increasing
asymmetry is the result of the redistribution of the electrons

within and between the subbands due to ISB relaxation, for
example, the pathway |e〉〈e| → |g′〉〈g′| (the GSB process in
the lower panel) and the pathways with the states |e′〉〈e′| at
the end of T (ESE and ESA processes in Fig. 2). Since the
electron-phonon interaction is responsible for the dephasing,
the homogeneous linewidth (along h̄ωts = const) of the 2D
spectra in Fig. 7 is determined by the T2 time.

For T = 0.1 ps (Fig. 7, top left), similar to the free carrier
model a low energy tail along the diagonal is visible which
is comparable to the free carrier spectrum with different
subband masses (Fig. 6, bottom right). This low energy tail
is also present at the different response signals for different
excitation energies (Fig. 7, top right). Also, the signal is still
quite symmetric along the diagonal. This almost symmetric
signal shape indicates that the population of the subbands has
hardly changed during T = 0.1 ps. As in the case of the free
carrier dynamics, the first and third pulse sample nearly the
same available transition energies, leading to the conclusion
that during a waiting time of T = 0.1 ps, almost no relaxation
occurred.

Comparing the 1D cuts for T = 0.1 ps (Fig. 7, top right)
and T = 0.5 ps (Fig. 7, middle right), a reduction in the signal
strength is visible for increasing T . This is a result of the
relaxation between subbands with LO phonons of presumably
high parallel momentum. A signal reduction for decreasing
density in the upper subband occurs since the spectra show the
difference of the present population to the initial ground state
distribution |g〉〈g|.59 For T = 0.1 and 0.5 ps the maximum of
the 2D signal strength lies around the shifted gap energy with
monotonic signal decrease, corresponding to the change of
the subband populations ρ22,k and ρ11,k around the subband
minima, see the dark lines in Fig. 5(a) in the lower and
the upper graph. A slight asymmetry along the diagonal can
already be seen in the 2D spectrum for T = 0.5 ps since
there is a small low energy shift along the response energy
h̄ωts axis. This indicates the beginning of ISB relaxation; the
comparison of response and the excitation probability for the
respective excitation and response energies does not lead to
the same occupation probability (cf. dark and light arrow in
Fig. 7, middle). Note, that besides the signal reduction, the
line shapes in the 1D cuts do not visibly change for different
T = 0.1 ps and T = 0.5 ps. However, the 2D spectrum for
T = 0.5 ps already reveals electron relaxation when mapping
the excitation and response energy.

For T = 1.5 ps, the asymmetry of the 2D spectrum
(Fig. 7, bottom left) further increases, exposing a very clear
difference between the excitation and response occupation
probabilities as denoted with the light and dark arrow. The
comparison between the spectra for different T approve that
the el-LO phonon scattering time lies in the well-known
picosecond range.60 The 1D cuts for T = 1.5 ps (Fig. 7,
bottom right) show an increased signal around the energy
of h̄ωts ≈ 94 meV, suggesting ISB relaxation. Comparing
this with the population distributions at T = 1.5 ps [light
lines in Fig. 5(a)], the increased signal along the response
energy h̄ωts ≈ 94 meV in Fig. 7, bottom, corresponds to the
increased occupation of ρ11,k at k ≈ 0.22 nm−1 in Fig. 5(a).
The equivalence is shown in Fig. 3(b), where the transition
energy is plotted over the momentum number. Consequently,
the 2D spectrum for T = 1.5 ps reproduces the dynamics of
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the population distributions. As already discussed in Sec. IV A,
this increase is due to a two-step electron relaxation from
the upper subband minimum to the lower subband. Note that
the absolute value of the increased population distribution at
ρ11,k≈0.22 nm−1 is very small compared to the initial ground state
population distribution ρ0

11,k. But since the 2D photon echo
samples the difference between the present distribution and the
initial distribution, even small changes in the system can be
detected.

Hence, the main feature of the temporal development of
the population, namely the electronic ISB relaxation which
results in an increased population in the lower subband at
k ≈ 0.22 nm−1, can be clearly resolved in the 2D photon echo
signal. Thus we conclude, that the presented technique is very
well suited for the detection of many-body interactions in ISB
systems. To summarize: The relaxation of the population can
be followed in the Fourier transform 2D spectra for different
waiting times by monitoring the excitation and response
occupation probabilities over a broad spectral range.

V. CONCLUSIONS

In conclusion, we studied the 2D photon echo signal for a
single intersubband quantum well. We simulated a collinear
three pulse setup and applied a phase cycling protocol for
the extraction of different quantum pathways. The resulting

response of the intersubband system was analyzed in the
frequency domain for different waiting times. The comparison
between the different 2D spectra gives direct information
about the development of the occupation probability. While
for earlier waiting times the electron distribution has hardly
changed, the 2D spectrum for T = 1.5 ps shows strong
asymmetries along the excitation and response frequency
diagonal, which indicates electronic intersubband relaxation
due to the electron-phonon coupling. Hereby it is possible
to map excitation and response frequencies independently
and thus to get accurate information about the dynamics
of the electronic occupation probability. The simulations
demonstrate that the 2D Fourier spectroscopy is a powerful
tool for the detection of many-body correlations and electronic
dynamics. Furthermore, the technique is capable of the
extraction of other signals, such as the antiphoton echo and
double quantum coherence, which will be interesting aspects
for further investigations.
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