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Transient noise spectra in resonant tunneling setups: Exactly solvable models
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We investigate the transient evolution of finite-frequency current noise after the abrupt switching on of the
tunneling coupling in two paradigmatic, exactly solvable models of mesoscopic physics: the resonant level model
and the Majorana resonant level model, which emerges as an effective model for a Kondo quantum dot at the
Toulouse point. We find a parameter window in which the transient noise can become negative, a property it
shares with the transient current. However, in contrast to the transient current, which approaches the steady state
exponentially fast, we observe an algebraic decay in time of the transient noise for a system at zero temperature.
This behavior is dominant for characteristic parameter regimes in both models. At finite temperature the decay
is altered from an algebraic to an exponential one with a damping constant proportional to temperature.
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I. INTRODUCTION

One central issue of mesoscopic physics focuses on the
transport of charge carriers through nanometer-sized structures
where quantum effects play an essential role. In past decades,
this research field experienced a tremendous growth. Not only
the electric current but also the shot noise, which is associated
with the charge quantization of current carrying excitations,
can reveal valuable information about their actual charge.
For instance, the fractional charge of quasiparticles in the
fractional quantum Hall regime or the charge of Cooper pairs
in superconductors can be recovered in the Fano factor, which
is the ratio of the shot noise to electric current. Nowadays, in
addition to the measurement of current-voltage characteristics
and noise (current autocorrelation function), in many cases
even higher cumulants in a nonequilibrium steady state situa-
tion can be accessed as well.1,2 The corresponding theoretical
tool to gain the information about all current cumulants is
referred to as full counting statistics (FCS) and was developed
and successfully tested on many free as well as interacting
systems during the last 20 years.3–5 However, in preparative
nonequilibrium, where certain parameters are changed rapidly,
only the current has been extensively addressed so far both
experimentally and theoretically.6,7 A notable exception has
been work8 on transient current fluctuations at equal times. At
the moment, much effort is invested to access the FCS in these
situations, but has not been successful even for the simplest
models available. Instead of following this route, we directly
calculate the transient finite-frequency noise for two exactly
solvable models. In particular, we provide a comprehensive
analysis of the zero-temperature case to extract the effects
due to shot noise only. In addition, the influence of thermal
fluctuations is addressed for one of the models. Moreover, our
calculations may serve as a benchmark for various numerical
simulational methods such as the density-matrix renormal-
ization group (DMRG), the functional renormalization group
(FRG), or the Monte Carlo technique, which have already been
applied to some models closely related to those to be treated
below.7,9–11

Our paper is structured as follows. In the next section we
present our models and the observables of interest. Sections III
and IV are devoted to our main results, namely the analysis of
transient noise in the respective models. Section V summarizes

our findings. The Appendices offer details of several lengthy
computations.

II. MODELS AND OBSERVABLES

The two models of interest are the resonant level model
(RLM), which is equivalent to the noninteracting Anderson
impurity model (AIM),12 and the Majorana resonant level
model (MRLM), which corresponds to a special parameter
constellation of the interacting resonant level model (IRLM)
and can be mapped onto the Kondo model at the Toulouse
point.13 These two models are rare examples of exactly
solvable systems in nonequilibrium.14,15 We consider them in
a two-terminal setup describing a quantum dot that consists of
one single electronic level coupled to two electronic reservoirs
at different chemical potentials. In the RLM, the lead electrons
are treated as noninteracting fermions (Fermi liquids), whereas
in the MRLM, depending on the system realization, they are
one-dimensional (1D) interacting fermions (Luttinger liquids)
and, in addition, perceive a Coulomb repulsion with an electron
on the dot if one starts with a resonant level in a Luttinger
liquid,16 and noninteracting Fermi liquids in the case of the
Toulouse point of the Kondo model.17 A typical realization of
the RLM is a quantum dot on the basis of a semiconductor het-
erostructure in the regime in which electronic correlations on
the dot are negligible. Alternatively, one can think of quantum
dots in the deep Kondo limit, the transport properties of which
are dominated by the resonant level physics.18–20 In contrast,
the MRLM can be relevant in dot-lead structures composed of
single-wall carbon nanotubes, in which the conduction elec-
trons are strongly correlated and form Luttinger liquids.21,22

A. Resonant level model

In this case the system under consideration is purely
noninteracting (i.e., charge carriers are noninteracting both
in the leads and the dot region). Consequently, the spin
degree of freedom is irrelevant and therefore we suppress
the corresponding index of fermion operators. Moreover, we
assume that the dot region can only be occupied by one single
electron. In real setups, this is justified if the quantum dot is
sufficiently small and the spin degeneracy of the energy levels
is lifted, for instance by applying a strong external magnetic
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field so that transport can occur effectively only through one
level. The Hamiltonian then reads

ĤRLM = Ĥ0 + ĤD + ĤT , (1)

where Ĥ0 specifies the contribution of the free lead electrons

Ĥ0 =
∑

k,α=L,R

εk,αc
†
k,αck,α (2)

with ck,α denoting the annihilation operator of an electron in
lead α with momentum k. The second ingredient is the dot
Hamiltonian given by

ĤD = �d†d. (3)

In addition, we consider tunneling processes between the
leads and the dot region, represented by the corresponding
Hamiltonian

ĤT =
∑

α=L,R

γα(t)[ψ†
α(x = 0)d + H.c.], (4)

where d and ψα are the annihilation operators of the dot and
lead electrons, respectively. We define the operator of the total
current through the constriction as

Î (t) = ÎL(t) − ÎR(t)

2
, (5)

where the operator for the current between an individual lead
α and the dot is given by

Îα(t) = iγα(t)[ψ†
α(t)d(t) − H.c.]. (6)

Anticipating the sudden switching of tunneling we consider
later, we already included an explicitly time-dependent tunnel-
ing amplitude γ (t). For reasons of clarity, we always assume
a symmetric coupling γL(t) = γR(t) = γ (t). The asymmetric
case can be treated as well, but the main physical effects to be
discussed in this paper are unaffected by its concrete choice.

B. Majorana resonant level model

We now turn to an extension of the RLM that effectively
describes interacting systems. One interesting realization of
this model is an interacting resonant level sandwiched between
two electrodes in the Luttinger liquid phase at the interaction
parameter g = 1/2 (Refs. 16 and 23). In addition it takes into
account the Coulomb repulsion between the resonant level and
the leads. The Hamiltonian is given by

ĤIRLM = ĤK + ĤT + ĤC, (7)

where

ĤK = �d†d +
∑

α=L,R

Ĥ0[ψα] (8)

is again the kinetic part describing the localized dot level and
1D interacting fermions modeled by the Luttinger liquids, and

ĤT =
∑

α=L,R

γα(t)[ψ†
α(x = 0)d + H.c.] (9)

is the usual tunneling part. The additional term16,23,24

ĤC = λCd†d
∑

α=L,R

ψ†
α(x = 0)ψα(x = 0) (10)

is responsible for the Coulomb repulsion. In a general nonequi-
librium setting, this model has not been solved exactly so far.
However, it has been shown that the special choice λC = 2π

(=2πvF if the Fermi velocity of the lead electrons vF �= 1)
leads to a Hamiltonian quadratic in fermionic operators after
some transformation steps, namely bosonization followed by a
unitary transformation and re-fermionization.13 The resulting
model, which can be mapped onto the Kondo model at the
Toulouse point25 is called the Majorana resonant level model
(MRLM) and possesses an exact solution.17,26 After the series
of transformations mentioned above its Hamiltonian can be
written down in the following way

ĤMRLM = ĤK [ξ,η,a,b] + Ĥ ′
T [ξ,η,a,b], (11)

where

ĤK [ξ,η,a,b] = i�ab + i

∫
dx[η(x)∂xη(x) + ξ (x)∂xξ (x)

+V ξ (x)η(x)] (12)

governs the dynamics of the free lead Majorana fields η(x)
and ξ (x) and local dot Majorana fermions a and b, which
are related to the original dot operator by d = (a + ib)/

√
2,

whereas

Ĥ ′
T [ξ,η,a,b] = −i[γ+bξ (x = 0) − γ−aη(x = 0)] (13)

is an interaction term modeling couplings between lead
and local dot Majorana fermions. Here, we introduced the
coupling constants γ± = γL ± γR . We take our operator for
the total current through the constriction in Majorana fermion
representation24

Î (t) = − i

2
[γ+(t)b(t)η(t) + γ−(t)a(t)ξ (t)], (14)

with special emphasis on the time dependence of the tunneling
coupling. For the rest of this paper, we also specialize to
symmetric coupling in this case and therefore have γ−(t) = 0
and define γ+(t) = γ (t). It has to be noticed that the splitting of
the current into left and right contributions is only reasonable
in our derivation starting from the resonant tunneling setup
between Luttinger liquids. In the Kondo picture this is
not meaningful since this model describes the scattering of
conduction electrons off a local impurity, in which tunneling
between the electrodes is a single-stage process (electrode-
electrode with a spin-flip of the impurity), while electron
transmission in the Luttinger setup is a two-stage process
(electrode-dot-electrode). One further difference concerns the
interpretation of the dot energy in the Kondo case as a local
magnetic field. Thus the dot magnetization in the Kondo
picture corresponds to the dot occupation in the Luttinger
setup. In most of the calculations presented below only fields
at the tunneling point are involved (which means x = 0),
therefore we suppress the spatial coordinate.

C. Noise and current fluctuations

In contrast to the intuitive nature of current flowing through
a conductor, one has a certain degree of freedom in defining the
time-dependent current noise spectrum S(�) in a full quantum
treatment of a transient problem. We use the following, rather
general definition which is directly related to the conventional
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noise definition in the steady state27

S(�) =
∫



d(t − t ′)ei�(t−t ′)S(t,t ′), (15)

with the irreducible current-current correlation function

S(t,t ′) = 〈Î (t)Î (t ′)〉 − 〈Î (t)〉〈Î (t ′)〉, (16)

which quantifies the fluctuations accompanying the current
flow.  denotes the domain in the space of time differences
t − t ′ in which information about the current correlations
is available. In the most obvious case of stationary state
 = (−∞,∞) and the current correlation function depends on
t − t ′ only. Therefore the noise as defined in Eq. (15) is time
independent. In general S(�) is a time-dependent quantity
though, as we shall see later. We can express Eq. (16) in terms
of current cross correlators between different leads α and β

Sαβ(t,t ′) = 〈Îα(t)Îβ(t ′)〉 − 〈Îα(t)〉〈Îβ(t ′)〉 (17)

so that we obtain the decomposition

S(t,t ′) = 1

4

∑
α,β=L,R=±

(αβ)Sαβ(t,t ′). (18)

Throughout this article, we consider the sudden switching on
of the tunneling of the form γ (t) = γ θ (t), where θ (t) is the
Heaviside step function. The substitution of new variables
τ ≡ t − t ′ and T ≡ t + t ′ effectively restricts the integration
range from −T to T and finally leads to the transient noise
formula (emphasizing the explicit time dependence)

S(�,T ) =
∫ +T

−T

dτei�τS(τ,T ) , (19)

which has to be evaluated for our two cases. In a steady
state, all Green’s functions only exhibit a dependence on the
time difference τ . Thus, we can immediately carry out the τ

integration to access the stationary solution, which has to be
equal to the transient noise in the limit of infinite time T

Sstat(�) = lim
T →∞

∫ +T

−T

dτei�τS(τ,T ). (20)

This relation serves as a consistency check of our results.
The unit of current noise is given by π2�G2

0, where G0 =
2e2/h is the conductance quantum and � is the hybridization
constant expressible in terms of the tunneling amplitude γ

and the electronic density of states of the leads ρ0, which
is assumed to be energy independent for the rest of this
article. This seemingly crude approximation is often called
the wide flat band limit. For the RLM, we take the convention
� = 2πρ0γ

2, whereas for the MRLM, we define � = γ 2/2
using ρ0 = 1/(2π ) which is required by the transformation
procedure. One particular advantage of the definition (19) is
that it can be easily applied to the experimental data in the
form of time-dependent current traces as presented in Ref. 6.
Nonetheless, the solution of the transient problem as shown
below can be very efficiently adopted to any other definition
of the transient current as well.

III. NOISE IN THE RLM

A. Adiabatic noise and transient current evolution

Before approaching the problem rigorously, we attempt an
approximate calculation of the zero-temperature current noise
by assuming that it follows the transient current adiabatically.
This ad hoc approach can only work well when the correspond-
ing switch-on time τsw is much larger than the typical time
scale of the current evolution, which is proportional to 1/�.
Nonetheless, we would like to look into the sudden switching
case τsw = 0 to obtain a qualitative picture of what might
happen to the transient noise. To achieve our goal, we insert
the effective time-dependent transmission coefficient for the
initially empty dot

T (ω,t)

= �2 − �e−�t (� cos[(ω − �)t] − (ω−�) sin[(ω − �)t])

(ω − �)2 + �2

(21)

from the transient current formula given in Ref. 7 into the
generalization of the Schottky formula28 for zero-temperature,
zero-frequency (shot) noise in a steady state with an energy-
dependent transmission coefficient,29,30 which is nothing more
than the second cumulant of the corresponding charge transfer
probability distribution. Then we obtain the adiabatic noise
evolution as

Sadia(� = 0,t) =
∫ +V/2

−V/2

dω

2π
T (ω,t)[1 − T (ω,t)]. (22)

The function Sadia(t) is symmetric with respect to both voltage
and dot level energy � and contains only the difference
between the left and right Fermi functions. In general, the time
dependence shows up oscillatory behavior with frequencies
V/2 ± �. On the contrary, the envelope is exponential in time
so that the stationary value is reached after a time proportional
to 1/�. Of course, this might be just an artifact of our
approximation. That is why we would like to attempt an exact
analytical solution of the problem below. An important point
is that for a large enough absolute value of the detuning |�|,
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FIG. 1. (Color online) Adiabatic noise evolution at fixed voltage
V/� = 1 and zero frequency �/� = 0 for varying |�|/� =
0,1,2,5,10 (red solid, orange long-dashed, green short-dashed, blue
dot-dashed, and black dotted curves).
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FIG. 2. (Color online) Transient current at voltage V/� = 1
for various detunings |�|/� = 0,1,2,4,8,10 (red solid, orange
long-dashed, green short-dashed, cyan dot-dashed, blue double-dot-
dashed, and black dotted curves).

the current noise according to our definition becomes negative,
which is depicted in Fig. 1. This peculiar feature, which persists
for the transient case to be studied below, has not been reported
in the literature so far. We briefly want to turn our attention to
the total transient current which shares this property, illustrated
in Fig. 2. It is due to the fact that the transmission coefficient
T (ω,t), in spite of being properly normalized, can become
negative. Although a net charge backflow at intermediate times
seems to be counterintuitive at first sight, it can be made
plausible since both Fermi levels appear to be almost at the
same height in the case of strong detuning (i.e., when � repre-
sents the largest energy scale of all adjustable parameters). Of
course, this property also applies individually to both the left
and the right currents. Just after switching on of tunneling the
electrons of both leads start to populate the initially empty dot
and at the very beginning both IR and IL have the same sign.
Due to the very high energy difference |�| on very short time
scales an overpopulation occurs. After that the current signs
change and a negative net current can be observed for a rather
short time interval. Negative transient current has already been
discussed by the authors of Refs. 31 and 32, but in these works,
it arises only if the bandwidth of the leads is small enough,
whereas in our case, the bandwidth is taken to be infinite.

B. Transient noise evolution

We now want to study the transient behavior of current
noise at finite frequency in its most general form. We compare
our results with a steady state calculation at finite frequency
(corroborated by an FCS calculation at zero frequency).33 In
addition, we provide compact formulas for various limiting
cases at zero temperature. The method of choice is the
nonequilibrium Keldysh Green’s function technique as it pro-
vides an intuitive physical picture for every single constituent
of relevant equations. As a cross check we performed the
same computation using the functional integration technique
and obtained precisely the same results. The substitution of

our current operator Eq. (6) into Eq. (17) and assigning times
t and t ′ to different branches of the Keldysh contour, followed
by the application of Wick’s theorem yields34,35

Sαβ(t+,t ′−) = γ (t)γ (t ′)[G−+
dd (t ′,t)G+−

αβ (t,t ′)

+G−+
βα (t ′,t)G+−

dd (t,t ′) − G−+
dα (t ′,t)G+−

dβ (t,t ′)

−G−+
βd (t ′,t)G+−

αd (t,t ′)] (23)

with the general definition of the Keldysh time-ordered
Green’s functions

Gζζ ′(t,t ′) = −i〈TCψζ (t)ψ†
ζ ′(t ′)〉 (24)

= −i〈TCψζ (t)ψ†
ζ ′(t ′)Ŝ〉0 (25)

and the definition of the S matrix

Ŝ = TCe−i
∫
C

dtĤT (t), (26)

where ζ and ζ ′ specify the respective dot and lead operators.
Here, we use a compact notation which treats both operators on
equal footing. The average in Eq. (24) is taken with respect to
the coupled system, while the average in Eq. (25) is performed
with respect to the uncoupled one. The next, somewhat tedious
task is to evaluate the various Green’s functions. To achieve
that, we make extensive use of the following general relation
for the RLM case, obtained by expansion of the S matrix to
first order and subsequent re-exponentiation

G
ηη′
αα′ (t,t ′) = g

ηη′
αα′ (t,t ′) −

∑
σ=±

σ ·
∫ +∞

−∞
dsγ (s)

[
g

ησ

αL(t,s)

×G
ση′
dα′ (s,t ′) + g

ησ

αd (t,s)Gση′
Lα′(s,t ′)

]
, (27)

where the upper indices indicate the branch of the Keldysh
contour (−/+ for the forward/backward branch) and the
lower ones specify the lead/dot operators. It proves to be
advantageous to express all Green’s functions in terms of the
full dot Green’s function D(t,t ′) ≡ Gdd (t,t ′) and the free lead
Green’s functions gαα′(t,t ′) (Ref. 36). The Dyson equation for
the full Keldysh dot Green’s function in matrix form is

D̂(t,t ′) = D̂0(t,t ′)

+
∫

dt1

∫
dt2D̂0(t,t1)σ̂3̂+(t1,t2)σ̂3D̂(t2,t

′), (28)

where σ̂3 = diag(1,−1) is the third Pauli matrix and, for later
use, we defined the even/odd tunneling self-energy as

̂±(t,t ′) = γ (t)γ (t ′)[ĝLL(t,t ′) ± ĝRR(t,t ′)]. (29)

The free lead Green’s function in Fourier-Keldysh space
reads14,37–39

ĝαα′(ω) = 2πiρ0δαα′

(
nα − 1/2 nα

nα − 1 nα − 1/2

)
, (30)

where nα(ω) = nF (ω − μα) represents the Fermi-Dirac dis-
tribution function of the respective lead electrode α with
chemical potential μα , while the free dot Green’s function
is given by

D̂0(t,t ′) = e−i�(t−t ′)
(−i[θ (t − t ′)(1 − n0) − θ (t ′ − t)n0] in0

−i(1 − n0) −i[θ (t ′ − t)(1 − n0) − θ (t − t ′)n0]

)
, (31)
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where n0 denotes the initial population of the quantum dot.
Using the above relations, we finally obtain the irreducible
current-current correlation function

S(t,t ′) = 1
4 [S1(t,t ′) + S2(t,t ′)], (32)

where we defined

S1(t,t ′) = D−+(t ′,t)+−
+ (t,t ′) + −+

+ (t ′,t)D+−(t,t ′) (33)

and

S2(t,t ′) = −2 · Re

[∫
dt1D

R(t ′,t1)−+
− (t1,t)

×
∫

dt2D
R(t,t2)−+

− (t2,t
′)
]
. (34)

It has to be noted that this formula splits into two major parts.
S1(t,t ′) involves the sums of Fermi functions and depends on
the initial dot occupation while S2(t,t ′) contains the differences
of Fermi functions and is insensitive to the initial preparation
of the system. To apply this formula, we now have to compute
the various dot Green’s functions. Thereby, we use the relation
D+− = D−+ + DR − DA and the versions of the Langreth
theorem35 for the greater and lesser Green’s functions

D+− = (1 + DRR)D+−
0 (1 + DAA) + DR+−DA,

(35)
D−+ = (1 + DRR)D−+

0 (1 + DAA) + DR−+DA,

where integration over the internal time variables is im-
plied. Depending on the initial dot occupation, one of these
expressions simplifies tremendously. For an initially empty
dot D−+

0 (t,t ′) = 0, whereas for an initially occupied dot
we have D+−

0 (t,t ′) = 0. The retarded and advanced Green’s
functions were calculated in earlier works40,41 by solving
the corresponding Dyson equation, thus we only provide the
results for reference

DR(t,t ′) = −iθ (t − t ′)e−i�(t−t ′)e−�(t−t ′) (36)

and DA(t,t ′) = [DR(t ′,t)]∗. These functions are insensitive to
the initial dot occupation, which is reflected in the fact that
they are solely dependent on time differences. In our noise
calculations, we first evaluate the time integral to get a formula
which explicitly contains the Fermi functions and thus applies
at arbitrary temperatures. We then restrict ourselves to zero
temperature and give the quite lengthy result in Appendix A.
The energy integrals of the first part S1(�,T ) then have
−∞ as a lower boundary owing to the wide flat band limit,
whereas the corresponding integrations in the second part
S2(�,T ) are performed on compact supports. The complete
finite temperature result is provided in Appendix B. As an
initial condition we choose an empty dot.

1. Steady state solution

We want to check our results by calculating the steady state
noise independently and comparing it later with the limit T →
∞ of the transient noise. Taking advantage of time-translation
invariance and transforming to Fourier space, we obtain the

following analytical formula

Sstat
αβ (�) = γ 2

∫
dω

2π
[D−+(ω)G+−

αβ (ω + �) + G−+
βα (ω)

×D+−(ω + �) − G−+
dα (ω)G+−

dβ (ω + �)

−G−+
βd (ω)G+−

αd (ω + �)]. (37)

Unlike in the time-dependent case, the Green’s functions of
Eq. (37) are easily accessible and are obtained by inverting the
corresponding Dyson equation in matrix form. Using another
formalism, the steady state noise spectrum for the RLM has
first been calculated by the authors of Refs. 33 and 42, which is
in excellent agreement with our result. We note in passing that,
in comparison to our graphs, the authors of the aforementioned
references obtained mirrored noise spectra with respect to �

on account of their slightly different definition of the Fourier
transformation. As an additional check, we then specialize to
the case � = 0, which indeed yields the same stationary result
as an independent derivation from the cumulant generating
function.

2. Limiting cases

For the zero-temperature shot noise, we give compact,
analytical formulas for various limiting cases by holding all
other quantities fixed. The only terms that contribute are those
of S1(�,T ). For V → ±∞, we obtain

lim
V →±∞

S(�,T ) = �

4
, (38)

which is accompanied by the saturation of the total current
through the constriction at high voltage

lim
V →±∞

〈I (t)〉 = ±�

2
. (39)

These two limits do not display any time dependence. It should
be mentioned that this is generally not expected in a model with
finite bandwidth εc, where the short time scale behavior of the
transient current is dominated by oscillations with a period of
1/εc (Ref. 7). For T → 0, we have an offset

lim
T →0

S(�,T ) = �

4
. (40)

This limit can be linked to the V → ±∞ case, which is the
same, and could thus be interpreted as tunneling into vacuum.
For an arbitrary switching procedure γ (t) = γ θ (t)f (t), a
detailed analysis shows that the offset is generated by a
boundary term of the form ∝f (0)f (T ), which obviously
disappears in case of a continuous switching function f (0) =
0. For � → ±∞, we have

lim
�→+∞

S(�,T ) = �

2
, (41)

lim
�→−∞

S(�,T ) = 0. (42)

These are the usual limits of the unsymmetrized noise in the
steady state. We note that the aforementioned cases are all
independent of the initial dot occupation. On the contrary, for
� → ±∞, we have for an initially empty dot

lim
�→−∞

S(�,T ) = �

2
e−�T , lim

�→+∞
S(�,T ) = 0, (43)
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whereas for an initially occupied dot, the limits are reversed.
This remaining dynamics of noise is understandable since,
in the former limit, a tunneling process is allowed only for
an initially empty dot that can be populated by one lead
electron, whereas in the latter, an electron on the dot can
jump to one of the leads. This jump probability is equal for
electrons on/to both leads, thus the time-dependent net current
vanishes although zero temperature fluctuations are present.
All formulas are clearly in excellent agreement with the steady
state result.

3. Long-time asymptotics: Zero temperature case

Apart from the special limits above, we now analyze
the general long-time behavior of transient noise at zero
temperature. The most astonishing feature is the temporal
decay as a power law for large times. At zero frequency
(� = 0), we obtain in case of an initially occupied dot

S(� = 0,T ) = + 4�2

(4π )2

∑
m,n=±

∫ mV/2

−∞
dω

Si[(ω + nV/2)T ]

(ω − �)2 + �2

+ �2

4π

∑
m=±

∫ mV/2

−∞
dω

1

(ω − �)2 + �2

− �2

(2π )2

∫ V/2

−V/2
dω

∫ V/2

−V/2
dω′

× (�2 − (ω − �)(ω′ − �))T sinc[(ω′ − ω)T ]

[(ω − �)2 + �2][(ω′ − �)2 + �2]
+ g(T ), (44)

where Si(x) is the sine-integral function, sinc(x) is the cardinal
sine function,43 and g(T ) comprises all terms which decay
exponentially and are thus subleading in T . For zero voltage
at resonance (� = 0), this simplifies to produce

S(� = 0,T ) = �2

2π

∫ 0

−∞
dω

1 + Si(ωT )/(2π )

ω2 + �2
+ g(T ). (45)

To leading order in 1/T , we find that the transient noise
evolution for large times is dominated by a power law

S(� = 0,T � � 1) ≈ 1

π2T
. (46)

For increasing voltage, this distinctive feature gradually
disappears until, at infinite voltage, we attain the limit of
Eq. (38). It can only be retained by adjusting the detuning
� in such a way that the Lorentzian peak in the integrand of
the first term in Eq. (44) is shifted to the zero of one of the
sine integrals (i.e., to the position of one of the lead Fermi
levels −V/2 or V/2). This tendency is illustrated in Fig. 3.
Moreover, the feature is only dominant if the frequency fulfills
the condition �/� � 1, which can be seen in Fig. 4 where we
depict the transient noise spectrum at different times. We note
the pronounced discrepancy to the steady state noise spectrum
around �/� = 0, an indicator of the algebraic decay. Apart
from that region, the curves are almost indistinguishable for
T � = 20 on the plotted scale. In Figs. 5 through 7, we display
the effects of tuning the various parameters of the model,
namely voltage, dot level energy, and frequency for the case
of an initially unoccupied dot. Obviously, one recognizes the
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FIG. 3. (Color online) Difference between transient noise and
its steady state at V/� = �/� = �/� = 0 for zero temperature
(red solid curve) and finite inverse temperature β� = 200,100,50,20
(orange long-dashed, green short-dashed, cyan dot-dashed, and
blue double-dot-dashed curves). We include the reference function
1/(π 2T ) (black dotted curve).

gradual approach to the limits calculated before. We stress that,
using our definition of noise, we still observe negative transient
noise in two important cases: large negative frequency or large
positive/negative detuning for an initially empty/occupied dot,
although the steady state noise is always strictly positive.
This is consistent with very small overall noise levels in
the corresponding limiting cases (� → ±∞ and � → −∞).
Since at finite values of these parameters, shortly before
approaching the extreme cases, we always have oscillatory
behavior, we expect and indeed observe an undershooting
below the zero line. We want to present evidence of a relation
between the long-time asymptotics and a feature of the steady
state solution. Indeed, it is striking that the algebraic decay
of the transient noise is dominant at zero frequency, where
the stationary noise spectrum is nondifferentiable, its first
derivative having a discontinuity δS ′. Inspired by the plots
of Fig. 8, it is tempting to suggest the following generalization
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FIG. 4. (Color online) Transient noise at times T � =
2.5,5,10,20 (red long-dashed, orange short-dashed, green dot-
dashed, and blue dotted curves) and steady state noise (black solid
curve) at V/� = 2�/� = 10 as a function of frequency �/�.
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FIG. 5. (Color online) Zero-frequency transient noise at
fixed voltage V/� = 10 for various detunings �/� =
−20,−10,−5,5,10,20 (red solid, orange long-dashed, green
short-dashed, cyan dot-dashed, blue double-dot-dashed, and black
dotted curves). Note the dominance of the algebraic decay of the
green and cyan curves (V = ±2�).

of our transient noise formula to arbitrary values of V and �

S(� = 0,T � � 1) = Sstat(� = 0) + δS ′

πT
+ r(T ) , (47)

where the discontinuity is given by

δS ′ =
(

lim
�→0+

∂Sstat(�)

∂�
− lim

�→0−

∂Sstat(�)

∂�

)

= 1

2π

∑
σ=±

(
�2

(� + σV/2)2 + �2

)2−δV,0

, (48)

and the function r(T ) incorporates all terms of subleading
order (i.e., algebraic terms of higher order ∝1/T α with α > 1
and exponentially decaying functions). Our conjecture Eq. (47)
obviously reproduces our analytical result from Eq. (46).
Provided it is correct, we conclude the dominance of the
algebraic decay for such parameter constellations in which
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FIG. 6. (Color online) Transient noise at resonance (�/� =
0) and fixed voltage V/� = 10 for various frequencies �/� =
−20,−5,−2,2,5,20 (red solid, orange long-dashed, green short-
dashed, cyan dot-dashed, blue double-dot-dashed, and black dotted
curves).
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FIG. 7. (Color online) Zero-frequency transient noise at reso-
nance (�/� = 0) for various voltages |V |/� = 1,2,5,10,20,40 (red
solid, orange long-dashed, green short-dashed, cyan dot-dashed, blue
double-dot-dashed, and black dotted curves).

the dot level coincides with a Fermi level of the electrodes and
its gradual disappearance for growing detuning of the dot level
away from a Fermi edge. This is supported by our calculations
as well as numerical evaluation, especially by the limiting
cases V → ±∞ and � → ±∞, where the feature is absent.

At this point, we would like to address the similarities and
differences to the calculation from Ref. 8, which addresses
transient equal time current-current fluctuations in an RLM
setup. There the calculated quantity is

S(τ = 0,T ) =
∫ +∞

−∞
d�S(�,T ) , (49)

that is, Eq. (16) taken at t = t ′. Moreover, the t of Ref. 8 is
related to our parameter by t = T/2. The procedure presented
there consists of taking a time-dependent bias voltage and
assuming its dynamics to be sufficiently slow so that an
adiabatic approximation can be applied. On the contrary, in

100 200150
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FIG. 8. (Color online) Difference between zero-frequency tran-
sient noise and its steady state value for parameter pairs
(V/�,�/�) = (0.5,0),(0,0.5),(0.5,0.5),(0.5,1) (red, orange, green,
and blue dotted curves from top to bottom) compared with the
respective reference curves calculated according to the function
δS ′/(πT ) (black solid curves).
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our case the tunneling coupling is switched on instantaneously
and thus infinitely fast and anti-adiabatic.

4. Long-time asymptotics: Finite temperature case

We now want to address the calculation of transient
noise for finite temperature. The result obtained after a
cumbersome calculation is provided in Appendix B. We here
concentrate on the salient feature which consists of a modifi-
cation of the temporal decay compared to zero temperature,
which is now exponential. Indeed, we observe that the presence
of thermal fluctuations introduces a new energy scale to
the problem on which the new damping constant is linearly
dependent. In Fig. 3, we contrast these two types of decay. We
point out that in these plots, we have subtracted the respective
steady state values due to thermal Johnson-Nyquist noise.
An estimation of the finite-temperature damping constant is
provided by �′ = π/β so that the envelope of the transient
noise for large times is cutoff by a function proportional
to e−πT/β , where β is the inverse temperature. For more
details, see Appendix B. This behavior is not unexpected
as the transition from algebraic decay at zero temperature
to exponential decay at finite temperature is a quite general
phenomenon, which occurs in various systems and is not
restricted to temporal evolution. As an example, we cite the
spatial decay of Friedel oscillations, which follows a similar
pattern. Furthermore, our result has a dramatic consequence
for eventual numerical simulations, which depend sensitively
on the approach to steady state. We thus conclude that
these should be performed at finite temperature to reduce
computational effort. From an experimental point of view,
it should be an observable effect, at least at sufficiently low
temperature where the Fermi functions are not much smeared
out so that one can detect the decrease of the damping constant
as a function of temperature in different parameter regimes.

5. Correlation function for dot occupation

We want to mention an interesting similarity to the Fourier
transform of the correlation function for the dot occupation

F(�,T ) =
∫ +T

−T

d(t − t ′)ei�(t−t ′)〈n̂d (t)n̂d (t ′)〉. (50)

In an analogous calculation as before it can be shown that this
function already displays an algebraic long-time asymptotics.
For the special case V = � = � = 0, we find to leading order

F(�,T � � 1) ≈ 2

π2T
. (51)

However, it has to be stated that the charge susceptibility
χ (�,T ) exhibits a purely exponential decay in time already at
zero temperature as it is related to a retarded Green’s function
and thus involves a commutator. Its definition reads

χ (�,T ) =
∫ +T

−T

d(t − t ′)χ (t,t ′), (52)

where χ (t,t ′) is a retarded Green’s function given by

χ (t,t ′) = iθ (t − t ′)〈[n̂d (t),n̂d (t ′)]〉. (53)

This behavior is not surprising though. The charge suscepti-
bility represents the response function to external fields. One

particular realization of such fields is a finite voltage across
the constriction. The response is then the current through the
system which, as we know, has an exponential behavior.

IV. NOISE IN THE MRLM

We proceed along the lines of the previous Section to
evaluate the transient behavior of current noise in the MRLM.

A. Transient noise evolution

The transient evolution of the current was calculated in
an earlier work.24 We use the same formalism and define
the Majorana Green’s function according to the following
prescription

Gζζ ′(t,t ′) = −i〈ζ (t)ζ ′(t ′)〉 = −i〈ζ (t)ζ ′(t ′)Ŝ〉0 (54)

with the usual definition of the S matrix

Ŝ = TCe− ∫
C

dtγ (t)b(t)ξ (t). (55)

Hence, we obtain the irreducible current-current correlation
function

S(t+,t ′−) = 1
4γ (t)γ (t ′)[G+−

bη (t,t ′)G+−
ηb (t,t ′)

−D+−
bb (t,t ′)G+−

ηη (t,t ′)]

= 1
4γ (t)γ (t ′)[G−+

bη (t,t ′)G−+
ηb (t,t ′)

−D+−
bb (t,t ′)g+−

ηη (t,t ′)]. (56)

In the second line, we used the facts that the retarded
mixed Green’s function vanishes and that the η-Majoranas
decouple from the transport process for symmetric coupling.
For completeness, we write down the retarded Majorana dot
Green’s function which is obtained by solving the Dyson
equation24

DR
bb(t,t ′) = −iθ (t − t ′)f (t − t ′), (57)

where

f (t) = e−�t/2

2�′ [(�′ − �/2)e�′t + (�′ + �/2)e−�′t ], (58)

with �′ =
√

(�/2)2 − �2. We also use the Langreth formula
Eq. (35) for D−+

bb (t,t ′) and express the mixed Green’s functions
in terms of the full dot Green’s functions by an expansion of
the S matrix and subsequent re-exponentiation. As a result,
we find a similar structure of the irreducible current-current
correlation function as in the RLM

S(t,t ′) = 1
4 [S1(t,t ′) + S2(t,t ′)], (59)

where we defined

S1(t,t ′) = −D+−(t,t ′)�+−
+ (t,t ′) (60)

and

S2(t,t ′) =
∫

dt1D
R(t,t1)�−+

− (t1,t
′)

×
∫

dt2�
−+
− (t,t2)DA(t2,t

′). (61)

The functions �± are defined in Fourier-Keldysh space as

�̂+(ω) = γ 2ĝηη(ω) = γ 2ĝξξ (ω) (62)

155304-8



TRANSIENT NOISE SPECTRA IN RESONANT TUNNELING . . . PHYSICAL REVIEW B 86, 155304 (2012)

0.8 0.6 0.4 0.2 0.0 0.2 0.4
0.02

0.04

0.06

0.08

0.10

S
Π

2
G

02

FIG. 9. (Color online) Transient noise at times T � = 10,20,30
(red dashed, green dot-dashed, and blue dotted curves) and steady
state noise (black solid curve) at V/� = �/� = 5 as a function of
frequency �/�.

and

�̂−(ω) = γ 2ĝξη(ω) = −γ 2ĝηξ (ω), (63)

where the free lead Majorana Green’s functions are given
by16,17

ĝηη(ω) = i

2

(
n′

L + n′
R − 1 n′

L + n′
R

n′
L + n′

R − 2 n′
L + n′

R − 1

)
(64)

and

ĝξη(ω) = 1

2
(n′

L − n′
R)

(
1 1
1 1

)
. (65)

The primes indicate that, instead of choosing the electrodes’
real chemical potentials μL,R = ±V/2, we have to insert
effective ones μ′

L,R = ±V into the Fermi-Dirac distribution
functions. As expected we recover the stationary state results
of the authors of Refs. 17 and 16.

1. Limiting cases

As for the RLM calculation, we give compact formulas
for various limiting cases at zero temperature by holding all
other quantities fixed. The contributions are due to terms of
S1(�,T ), again containing only sums of Fermi functions. In

the following, we list them in the same order as before. For
V → ±∞, we obtain

lim
V →±∞

S(�,T ) = �

8
(1 + 2e−�T ), (66)

which is accompanied by the saturation of the total current
through the constriction at high voltage

lim
V →±∞

〈I (t)〉 = ±�

4
. (67)

At T → 0, we again have an offset

lim
T →0

S(�,T ) = 3�

8
. (68)

At this point, we would like to mention that the discrepancy
of the latter result with Eq. (40) is due to a nonvanishing
contribution from the first part of Eq. (35) which is absent in
the RLM case. For � → ±∞, we have

lim
�→+∞

S(�,T ) = �

4
(1 + 2e−�T ), (69)

lim
�→−∞

S(�,T ) = 0. (70)

However, for � → ±∞, we have for an initially empty dot

lim
�→−∞

S(�,T ) = 5�

8
e− �T

2 , lim
�→+∞

S(�,T ) = 0, (71)

whereas for an initially occupied dot the limits are reversed.
In relation to the RLM case, we state the qualitative difference
that we have a temporal dynamics in the case of limits � →
±∞ and V → ±∞ for the MRLM. We speculate that, at least
in the IRLM case, the feature is due to the Coulomb interaction
term in the Hamiltonian, which is absent in the RLM case. The
seemingly slower exponential decay in the limits � → ±∞
with �/2 is not directly comparable to the RLM due to a
different definition of � in both models. Of course, letting
T → ∞ in the above formulas, we find an approach to the
expected steady state values.

2. Long-time asymptotics: Zero temperature case

In analogy to the RLM case, we identify a term with a
similar structure involving sine integrals. For � = 0, it is given
by

S1(� = 0,T ) = − �2

64�′2π2

∑
σ=±

∫ +V

−V

dω

∫ +V

−V

dω′ ∑
k,m=±

(k�′ + �/2)(m�′ + �/2)

[�′ + k(�/2 − iω)][�′ + m(�/2 + iω′)]
2T sinc[(ω + ω′)T ]

+
∑
σ=±

∫ σV

−∞
dω

[
�2

8π2

∑
m=±

ω2
(
Si[(ω − mV )T ]−π

2

)
(ω2 + �2)2 + ω2(�2 − 4�2)

− �

16�′π

∑
m,n=±

(�′ − n�/2)

im(� + ω) + (n�′−�/2)

]
+ h(T ),

(72)

where the function h(T ) summarizes all terms that are
exponentially decaying and thus subleading in T . Note that
here the voltage is doubled with respect to the RLM, a
peculiarity due to the transformation steps from the original
models. For V = � = 0, we come to the same conclusion
apart from the prefactor and again obtain an algebraic decay,

namely to leading order

S(� = 0,�T � 1) ≈ 1

2π2T
. (73)

In general, instead of one Lorentzian peak as for the RLM,
the second term of Eq. (72) shows a two-peak structure
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FIG. 10. (Color online) Zero-frequency transient noise at reso-
nance (�/� = 0) for various voltages |V |/� = 1,2,5,10 (red solid,
green dashed, blue dot-dashed, and black dotted curves).

with maxima at ω = ±�. However, this does not modify our
conclusion. Obviously, the term has an appreciable effect only
if V ≈ ±� (i.e., if the dot level almost coincides with one
of the “dressed” lead Fermi levels). If the dot and Fermi
levels move away from each other, the two peaks are no
longer situated at the respective zeros of the sine integrals.
For increasing �, we also observe the gradual disappearance
of this distinctive feature as shown in Fig. 9. Moreover, we
emphasize that the transient noise as well as the current can also
become negative in the MRLM. The transient noise evolution
for various parameters in the case of an initially empty dot is
shown in Figs. 10 through 12.

V. DISCUSSION AND OUTLOOK

The most striking feature that distinguishes the zero
temperature transient noise from the evolution of current and
dot population in both the RLM and the MRLM is its algebraic
temporal decay dominant for certain parameter sets. It achieves
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FIG. 11. (Color online) Zero-frequency transient noise at fixed
voltage V/� = 10 for detunings �/� = −10,−5,−1,1,5,10 (red
solid, orange long-dashed, green short-dashed, cyan dot-dashed, blue
double-dot-dashed, and black dotted curves). Note the dominance of
the algebraic decay of the red and black curves (V = ±�). The inset
shows the same plot zoomed in the range [0,1].
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FIG. 12. (Color online) Transient noise at resonance (�/� =
0) and fixed voltage V/� = 10 for various frequencies �/� =
−20,−5,−2,2,5,20 (red solid, orange long-dashed, green short-
dashed, cyan dot-dashed, blue double-dot-dashed, and black dotted
curves).

its maximum magnitude if one of the (dressed in the case of
resonant tunneling between Luttinger liquids) Fermi levels
matches the dot energy at � = 0 and is suppressed if one
of the model parameters becomes significantly larger than
�. With increasing frequency �, the feature also becomes
less pronounced. In both cases of conventional as well as
Majorana RLM, this remarkable feature can be traced back to
contributions involving energy integrals over sinc functions,
which, in turn, are a result of resonances in involved Green’s
functions.

We expect this effect to survive in the case of realistic band
structures beyond the adopted wide flat band limit since a
finite bandwidth can only affect the transient behavior on short
time scales. It is also independent of the detailed switching
mechanism as it is an effect at large times. However, we find
that finite temperature destroys this effect by introducing a
new energy scale determining the damping constant of the
exponential decay. Thus, we expect the results to be observable
at sufficiently low, but finite temperature.

The possible avenues for further progress could be a
detailed analysis of the impact of the on-dot interactions within
the framework of the conventional Anderson impurity model,
or a discussion of transient noise in Kondo systems beyond the
Toulouse point.
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APPENDIX A: ANALYTICAL EXPRESSION
FOR TRANSIENT NOISE IN THE RLM:

ZERO TEMPERATURE CASE

Below we give an exact expression for the transient noise
in the RLM at zero temperature for an initially unoccupied
dot. The first part involves single integrals on the noncompact
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supports [−∞,±V/2] and reads

S1(�,T ) =
∑
σ=±

∫ σV/2

−∞
dω

(
s1,1(ω,�,T )

(ω − � + �)2 + �2
+

3∑
i=2

s1,i(ω,�,T )

(ω − �)2 + �2

)
(A1)

with

s1,1(ω,�,T ) = �

4π
(� − e−�T � cos[(� − ω − �)T ] + e−�T (� − ω − �) sin[(� − ω − �)T ]),

s1,2(ω,�,T ) = �2

8π2

∑
p,q=±

q · (Si[(pV/2 + qω − �)T ] + Si[(pV/2 + q� − �)T ]e−�T ), (A2)

s1,3(ω,�,T ) = �2

8π2

∑
p,q,s=±

q · Si[((pV − q(ω + �) − 2�) + iqs�)T/2]e(is(ω−�)−�)T/2.

The second part consisting of double integrals, both on the compact support [−V/2,+V/2], is given by

S2(�,T ) =
∑
σ=±

∫ V/2

−V/2
dω

∫ V/2

−V/2
dω′

4∑
i=1

s2,i(ω,ω′,�,T )

[(ω − �)2 + �2][(ω′ − �)2 + �2]
(A3)

with

s2,1(ω,ω′,�,T ) = − �2

4π2
[�2 − (ω − �)(ω′ − �)]T sinc[(ω′ − ω − �)T ],

s2,2(ω,ω′,�,T ) = − �2

4π2
e−�T [�2 − (ω − �)(ω′ − �)] cos[(ω + ω′ − 2�)T/2]T sinc[(ω′ − ω − 2�)T/2],

(A4)

s2,3(ω,ω′,�,T ) = + �2

4π2
e−�T (ω + ω′ − 2�)� sin[(ω + ω′ − 2�)T/2]T sinc[(ω′ − ω − 2�)T/2],

s2,4(ω,ω′,�,T ) = − �2

4π2
Re

[
�2 − (ω − �)(ω′ − �) − i�(ω − �)(ω′ − �)

i(2ω − ω′ + � − 2�σ ) + �
(e(i(�−ω+σ�)−�)T − ei(ω−ω′−σ�)T )

]
.

APPENDIX B: ANALYTICAL EXPRESSION FOR TRANSIENT NOISE IN THE RLM: FINITE TEMPERATURE CASE

In the case of finite temperature, everything is much more involved. We begin with the analog contribution to S1 in case of
zero temperature. It splits into two parts, one where all integrals are performed

S1,1 = �

8π

1

4β�

∑
σ

{
4iπ [B1(z,x1σ ) − B1(z,−x̄1σ )] + 4iπe−2�T [B1(z,−x1σ ) − B1(z,x̄1σ )]

+ (2iπ − x1σ )[B0(z,−x̄1σ ) − e−2�T B0(z,−x1σ )] − (2iπ + x̄1σ )[B0(z,x1σ ) − e−2�T B0(z,x̄1σ )]

+ 4β�

[
π − iψ

(
1

2
+ ix1σ

4π

)
+ iψ

(
1

2
− ix̄1σ

4π

)]}
, (B1)

and a second one where one frequency integration is left over

S1,2 = −�2

4

∑
σ,τ=±

σ

∫
dω

(2π )2

nL(ω) + nR(ω)

(ω − �)2 + �2

{
2πnS

(
x2στ

2

)

+ iB0(z,−x2στ ) − iB0(z,x2στ ) + e−�T

[
2πnS

(
x3στ

2

)
+ iB0(z,−x3στ ) − iB0(z,x3στ )

]

− e−�T/2e−iT (ω−�)/2

[
2πnS

(
x4στ

2

)
+ iB0(z,−x4στ ) − iB0(z,x4στ )

]

− e−�T/2eiT (ω−�)/2

[
2πnS

(
x̄4στ

2

)
+ iB0(z,−x̄4στ ) − iB0(z,x̄4στ )

]}
. (B2)

Bi(z,a) = Bz( 1
2 + ia

4π
,−i) with B denoting the incomplete Beta function,44 x1σ = β(σV − 2(� + �) − 2i�), x2στ = β(τV −

2� − 2σω), x3στ = β(τV − 2� − 2σ�), x4στ = β(τV − 2� − σω − σ� − iσ�), and z = e−2πT/β . nS(x) = nF(−x/β) is the
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Sigmoid function.44 The analog contribution to S2 is given by

S2 = −�2

4
Re

∑
σ,τ=±

τ

∫
dω

(2π )2

nL(ω) − nR(ω)

i(ω − �) + �

{
β

y1στ − y ′
1,τ

[
B0(z,y1στ ) − B0(z,−y1στ )

− e
−i(y1στ −yτ )T

2β B0(z,yτ ) + e
i(y1στ −yτ )T

2β B0(z,−yτ ) + 2iπnS

(
y1τ

2

)
− 2iπnS

(
yτ

2

)
e

i(y1στ −yτ )T
2β

]

− 2βeiσ�T

y2στ − yτ

[
B0(z,yτ ) − e

iT (y2στ −yτ )
2β

(
B0(z,y2στ ) + ψ

(
1

2
+ iy2στ

4π

)
− ψ

(
1

2
+ iyτ

4π

))]

− 2βeiσ�T

y3στ − yτ

[
e

i(y3στ −yτ )T
2β

(
B0(z,y3στ ) + B0(z,−y3στ ) − 2iπnS

(
y3στ

2

))

−B0(z,yτ ) + e
i(y3στ −yτ )T

β

(
− B0(z,−yτ ) + 2iπnS

(
yτ

2

))]}
, (B3)

where yτ = β(τV − 2� − 2i�), y1στ = β(τV − 2ω − 2σ�), y2στ = β(τV − 2ω − 4σ�), and y3στ = β(τV − ω − � −
2σ� − i�). To find the decay law of the noise correlation with time, one has to investigate term by term. First, we notice
that all the remaining integrals are convergent even without the Beta functions (all the Beta functions are at most constant or
decaying as a function of ω). This is because of the overall Lorentzian-like prefactors. To estimate the asymptotics due to the
Beta functions, the following power series representations turn out to be extremely useful (|z| < 1)

Bz(a,b) = za

∞∑
n=0

(1 − b)n
n!(a + n)

zn, (B4)

where (x)n = �(x + n)/�(x) is the Pochhammer symbol. In our case, we only need (1)n = n! in the case of x = 0 and
(2)n = (n + 1)! in the case of x = −1. We introduce the following notation z′ = β(ηω + iξ�) where ηω is a real function of ω

and ξ is a real constant. With gω we denote an arbitrary complex function of the variable ω. Then one obtains

gωBz

(
1

2
+ iz′

4π
,0

)
= gωe−πT/βe

ξ�T

2 e
−iηωT

2

∞∑
n=0

e−2πnT/β

1/2 + n − ξ�β/(4π ) + iηωβ/(4π )

= gωe−πT/βe
ξ�T

2 e
−iηωT

2

∞∑
n=0

1/2 + n − ξ�β/(4π ) − iηωβ/(4π )

(1/2 + n − ξ�β/(4π ))2 + (ηωβ/(4π ))2 e−2πnT/β

= gωe−πT/βe
ξ�T

2 e
−iηωT

2

∞∑
n=0

(an + ibn)e−2πnT/β . (B5)

Now it is crucial that for every β there exists a positive integer Nβ so that the modulus of the real part an or the imaginary part bn

is majorized by 1 for n � Nβ . Hence, the real or imaginary parts of the whole expression can be estimated by a combination of
finite polynomial pNβ

(e−2πT/β ) and e−2πNβT/β/(1 − e−2πT/β ). It is important to notice that the prefactor eξ�T/2 does not lead to
an exponential increase in any case. The function gω always suppresses this tendency. Although our result is valid for arbitrary
temperature, we emphasize that the zero temperature limit (i.e., β → ∞) is far from being trivial.

APPENDIX C: ANALYTICAL EXPRESSION FOR TRANSIENT NOISE IN THE MRLM: ZERO TEMPERATURE CASE

We provide the result for � �= �/2 in the zero temperature case. Here κ = ± specifies the initially occupied/empty dot

S1(�,T ) =
2∑

i=1

s1,i(�,T ) +
∑
σ=±

∫ ∞

σV

dωs1,3(ω,�,T ) +
∑
σ=±

∫ σV

−∞
dω

7∑
i=4

s1,i(ω,�,T ) (C1)

with

s1,1(�,T ) = �3

32�′2π

∑
m,n=±

(�′ + n�/2)2e(−n�′−�/2)T

(�′ + n�/2)2 + �2

(
π

2
+ Si[(� + mV )T ]

)
,

s1,2(�,T ) = �3

32�′2π

∑
m,n=±

�2e−�T/2

−2�2 + 2iκ�n�′

(
π

2
+ Si[((� + mV ) + in�′)T ]

)
,

s1,3(ω,�,T ) = �

16�′π

∑
m,n=±

(�′ − n�/2)

im(� − ω) + (n�′ − �/2)
(e(im(�−ω)+n�′−�/2)T − 1),
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s1,4(ω,�,T ) = �2

32�′2π2

∑
m,n=±

−(�′ + n�/2)2e(−n�′−�/2)T

(�′ + n�/2)2 + ω2

(
π

2
+ Si[(� + mV )T ]

)
,

s1,5(ω,�,T ) = �2

8π2

∑
m=±

ω2

(ω2 + �2)2 + ω2(�2 − 4�2)

(
Si[(ω − mV − �)T ] − π

2

)
,

s1,6(ω,�,T ) = �2

32�′2π2

∑
k,m,n,p=±

m(�′ + n�/2)(m�′ + n�/2)

[�′ + n(�/2 − ikω)][m�′ + n(�/2 + ikω)]
e(ikω−n�′−�/2)T/2

×
(

π

2
+ Si[((2� + pV − ω) + ik(n�′ + �/2))T/2]

)
,

s1,7(ω,�,T ) = �2

32�′2π2

∑
m,n=±

(�′ − �/2)(�′ + �/2)e−�T/2

[�′ − n(�/2 − iω)] [�′ + n (�/2 + iω)]

(
π

2
+ Si[((� + mV ) − in�′)T ]

)
, (C2)

and

S2(�,T ) = − �2

64�′2π2

∑
σ=±

∫ +V

−V

dω

∫ +V

−V

dω′
4∑

i=1

s2,i(ω,ω′,�,T ) (C3)

with

s2,1(ω,ω′,�,T ) =
∑

k,m=±

(k�′ + �/2)(m�′ + �/2)

[�′ + k(�/2 − iω)][�′ + m(�/2 + iω′)]
2T sinc[(� − ω − ω′)T ],

s2,2(ω,ω′,�,T ) =
∑

k,m,n=±

−m(�′ + n�/2)(m�′ + n�/2)

[�′ + n(�/2 − ikω)][m�′ + n(�/2 + ikω′)]
e(ikω−n�′−�/2)T/2

×2T sinc[((2� − 2ω′ − ω) + ik(n�′ + �/2))T/2],

s2,3(ω,ω′,�,T ) =
∑
m=±

(�′ + m�/2)2

[�′ + m(�/2 − iω)][�′ + m(�/2 + iω′)]
e(i(ω−ω′)−2m�′−�)T/2

×2T sinc[(2� − ω′ − ω)T/2],

s2,4(ω,ω′,�,T ) =
∑
m=±

−(�′ + �/2)(�′ − �/2)

[�′ + m(�/2 − iω)][�′ − m(�/2 + iω′)]
e(i(ω−ω′)−�)T/2

×2T sinc[(2� − ω − ω′ + i2m�′)T/2]. (C4)
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P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys.
Rev. Lett. 96, 076605 (2006).

7T. L. Schmidt, P. Werner, L. Mühlbacher, and A. Komnik, Phys.
Rev. B 78, 235110 (2008).

8Z. Feng, J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 77, 075302
(2008).

9S. Andergassen, M. Pletyukhov, D. Schuricht, H. Schoeller, and
L. Borda, Phys. Rev. B 83, 205103 (2011).
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