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Multiband effects and possible Dirac states in LaAgSb2
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Here, we report the possible signature of Dirac fermions in the magnetoresistance, Hall resistivity, and
magnetothermopower of LaAgSb2. The opposite sign between the Hall resistivity and Seebeck coefficient
indicates the multiband effect. Electronic-structure calculations reveal the existence of the linear bands and the
parabolic bands crossing the Fermi level. The large linear magnetoresistance was attributed to the quantum limit
of the possible Dirac fermions or the breakdown of weak-field magnetotransport at the charge-density-wave
phase transition. Analysis of Hall resistivity using a two-band model reveals that Dirac holes which dominate
the electronic transport have much higher mobility and larger density than conventional electrons. The magnetic
field suppresses the apparent Hall carrier density, and also induces the sign change of the Seebeck coefficient
from negative to positive. These effects are possibly attributed to the magnetic field suppression of the density of
states at the Fermi level originating from the quantum limit of the possible Dirac holes.
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I. INTRODUCTION

Recently, layered rare-earth antimonides have been at-
tracting wide attention due to their possible relationship to
superconductivity, charge density wave (CDW), and colossal
magnetoresistance (MR).1–4 For example, two-dimensional
(2D) superconductivity (Tc ∼ 1.7 K) was observed in LaSb2

under ambient pressure, while application of hydrostatic
pressure induces a two- to three-dimensional superconducting
crossover.2,3 Large positive magnetoresistance was observed
in LaSb2 and LaAgSb2.3–7 LaSb2 exhibits a large linear
magnetoresistance with no sign of saturation up to 45-T fields
and [ρ(H ) − ρ(0)]/ρ(0) ∼ 104%.4 MR in LaAgSb2 is also
linear and reaches ∼2500% in an 18-T field.6 The resistivity
of LaAgSb2 exhibits a significant anomaly at ∼210 K which
was attributed to the possible CDW transition.6,7 Very large
magnetothermopower effects were observed in LaAgSb2.9 The
magnetoresistance and magnetothermopower effects in these
materials are extraordinary and are still poorly understood.
This is because the semiclassical transport in conventional
metals gives quadratic field-dependent MR in the low-field
range, which would saturate in the high field, and the diffusive
Seebeck coefficient does not depend on the external magnetic
field.10

Large linear MR was also observed recently in SrMnBi2,
which has similar crystal structure to LaAgSb2.11–13 The
crystal structure of SrMnBi2 contains alternatively stacked
MnBi layers and two-dimensional Bi square nets separated by
Sr atoms along the c axis.11,12 Highly anisotropic Dirac states
were identified in SrMnBi2 where linear energy dispersion
originates from the crossing of two Bi 6px,y bands in the
double-sized Bi square net.11 The linear MR is attributed to
the quantum limit of the Dirac fermions.11,13,14 In high enough
field, the electronic systems enter the extreme quantum limit
where all of the carriers occupy only the lowest Landau level
(LL) and a large linear MR could be expected.14,15 Unlike the
conventional electron gas with parabolic energy dispersion, the
distance between the lowest and first LLs of Dirac fermions
in a magnetic field is very large and the quantum limit is
easily realized in the low-field region.16,17 Consequently, some
quantum transport phenomena such as quantum Hall effect

and large linear MR could be observed in the low-field region
for Dirac fermion materials such as graphene,16,17 topological
insulators,18–20 Ag2−δTe/Se,21–23 iron-based superconductors
BaFe2As2,24,25 and La(Fe,Ru)AsO,26 as well as SrMnBi2.11,13

In this paper, we attribute the large linear magnetoresistance
and magnetothermopower in LaAgSb2 to the quantum limit
of Dirac fermions as revealed by ab initio calculation, or to
the breakdown of weak-field magnetotransport at the CDW
phase transition. Interestingly, the Hall resistivity is positive,
but the Seebeck coefficient is negative in the 0-T field. Analysis
of Hall resistivity using a two-band model reveals that Dirac
holes have higher mobility and larger density than conventional
electrons, and dominate the electronic transport. The magnetic
field suppresses the apparent Hall carrier density, and also
induces the sign change of the Seebeck coefficient from
negative to positive. These effects are attributed to the magnetic
field suppression of the density of states at the Fermi level
originating from the quantum limit of the Dirac holes.

II. EXPERIMENT

Single crystals of LaAgSb2 were grown using a high-
temperature self-flux method.6 The resultant crystals are
platelike. X-ray diffraction (XRD) data were taken with Cu
Kα (λ = 0.15418 nm) radiation of a Rigaku Miniflex powder
diffractometer. Electrical transport measurements up to 9 T
were conducted in Quantum Design PPMS-9 with the con-
ventional four-wire method. In the in-plane measurements,
the current path was in the ab plane, whereas magnetic field
was parallel to the c axis. Thermal transport properties were
measured in Quantum Design PPMS-9 from 2 to 350 K
using a one-heater–two-thermometer method. The direction
of heat and electric current transport was along the ab

plane of single grain crystals with magnetic field along
the c axis and perpendicular to the heat/electrical current.
The relative error in our measurement was �κ

κ
∼5% and

�S
S

∼5% based on Ni standard measured under identical
conditions. First-principles electronic-structure calculations
were performed using experimental lattice parameters within
the full-potential linearized augmented plane-wave (LAPW)
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method27 implemented in the WIEN2K package.28 The general
gradient approximation (GGA) of Perdew et al. was used for
the exchange-correlation potential.29

III. RESULTS AND DISCUSSIONS

The crystal structure of LaAgSb2 [Fig. 1(a)] features La ions
between alternatively stacked two-dimensional Sb layers (red
balls) and AgSb layers along the c axis. The first-principles
electronic-structure calculations reveal that the density of
states (DOS) at the Fermi level is very small [Fig. 1(b)] and
is dominated by the states coming from two-dimensional Sb
layers. There are three nearly linear narrow bands crossing
the Fermi level along Z − A, Z − R, and � − M directions,
respectively [as indicated by the red circles in Fig. 1(c)].
Because of the occupation of Ag ions below and above the
quasi-two-dimensional Sb layers, the unit cell of Sb layer has
two Sb atoms [Fig. 1(a)]. This will lead to the folding of the
dispersive p orbital of Sb. The two px,y bands from two Sb

FIG. 1. (Color online) (a) The crystal structure of LaAgSb2. Sb
atoms in 2D square nets (Sb1) are shown by red balls. Ag atoms are
denoted by green balls. Sb atoms in AgSb4 tetrahedrons (Sb2) are
denoted by blue balls. La atoms are denoted by orange balls. Blue
lines define the unit cell. (c) The total density of states (DOS) (black
line) and local DOS from La, Ag, Sb1, and Sb2 in LaAgSb2. The
dotted line indicates the position of the Fermi energy. (d) The band
structure for LaAgSb2. The lines with open circles indicate the bands
with px,y character. The line at energy = 0 indicates the position of the
Fermi level and the red circles indicate the position of Dirac-cone-like
points.

FIG. 2. (Color online) In-plane thermal conductivity κ(T ) of
LaAgSb2 single crystal as a function of temperature in 0- and
9-T magnetic fields, respectively. The blue line indicates the sharp
anomaly at ∼210 K.

atoms cross each other at a single point and then form the
nearly linear band and Dirac-cone-like point around the Fermi
level [Fig. 1(c)]. This is similar to the case of SrMnBi2 where
the crossing of Bi 6px,y orbitals forms the Dirac-cone-like
point.11

Powder x-ray diffraction results confirmed phase purity
of our crystals, and the temperature- and magnetic-field-
dependent resistivity and Seebeck coefficient agree very
well with previous reports.6–9 Figure 2 shows the thermal
conductivity κ in 0- and 9-T magnetic fields perpendicular
to the ab plane. The thermal conductivity κ exhibits a CDW
anomaly at about 210 K (blue dashed line) that corresponds
to similar anomalies in ρ(T ) and S(T ) already reported in
literature.6,7,9 It is suppressed significantly by the magnetic
field below 200 K (Fig. 2).

LaAgSb2 exhibits very large linear magnetoresistance.
Below 30 K, the in-plane magnetoresistance MR = [ρab(B) −
ρab(0)]/ρab(0) exhibits a sharp dip at low field and then
increases nearly linearly with increasing field at higher field
(>1 T), as shown in Fig. 3(a). At higher temperature (>40 K),
the dip at low field disappears [Figs. 4(a) and 4(b)]. Below

FIG. 3. (Color online) (a) The magnetic field (B) dependence of
the in-plane magnetoresistance MR at different temperatures from 2
to 30 K. The open symbols are the experimental data and solid lines
are the fitting results using Eq. (3). (b) The linear and cyclotronic
contributions to the magnetoresistance at 2 K derived from fitting
using Eq. (3).
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FIG. 4. (Color online) (a), (b) The magnetic field (B) dependence
of the in-plane magnetoresistance (MR) at different temperatures
above 40 K. (c), (d) The field derivative of in-plane MR, d MR/dB,
as a function of field (B) at different temperatures, respectively. The
red lines in the high-field regions were fitting results using MR =
A1B + O(B2) and the lines in low-field regions using MR = A2B

2.

1 T at 2 K, dMR/dB is proportional to B [as shown
by lines in low-field regions in Fig. 4(c)], indicating the
semiclassical quadratic field-dependent MR (∼A2B

2). But,
above a characteristic field B∗, dMR/dB deviates from the
semiclassical behavior and saturates to a much reduced slope
[as shown by lines in the high-field region in Fig. 4(c)].
This indicates that the MR for B > B∗ is dominated by
a linear field dependence plus a very small quadratic term
[MR = A1B + O(B2)]. With increasing temperature, the
magnetoresistance is gradually suppressed and the crossover
field B∗ increases rapidly [Fig. 4(a)]. Above 200 K, linear
MR becomes invisible in our magnetic field range (0 ∼ 9 T)
[Fig. 4(b)] and the MR in the whole field range is quadratic
[Fig. 4(d)].

Single-band semiclassical transport gives that magne-
toresistance scales as MR = f (Bτ ) = F (B/ρ0) with the
assumption of the single scattering time τ , i.e., 1/τ (T ) ∝
ρ0(T ), where ρ0(T ) is the zero-field resistivity.10,30 The linear
unsaturated magnetoresistance of LaAgSb2 clearly deviates
from semiclassical transport and also violates Kohler’s scaling,
particularly in the high-field region [Fig. 5(a)], indicating
multiband or quantum effects.

In metals with two types of carriers (holes and electrons),
semiclassical transport and the cyclotronic motion gives

ρ(H ) − ρ(0)

ρ(0)
= σhσe(μh + μe)B2

(σh + σe)2 + (σhμe + σeμh)2B2
, (1)

where σe (σh) and μe (μh) are the electronic conductivity
and mobility for electrons (holes), respectively. This formula

FIG. 5. (Color online) (a) The Kohler’s plots for MR at different
temperatures. (b) Temperature dependence of the critical field B∗

(black squares) and the effective MR mobility μMR (blue circles)
extracted from the weak-field MR. The red solid line is the fitting
result of B∗ using B∗ = 1

2eh̄v2
F

(EF + kBT )2.

usually results in the quadratic field-dependent MR in the
low-field range and saturated MR in the high field.10,26

Hitherto, there are several possible mechanisms for linear
MR. In the single crystal with open Fermi surface (such as the
quasi-one-dimensional Fermi surface sheet), along the open
orbits there will be B2-dependent MR in very high field. The
linear MR might also be observed in the polycrystalline sample
due to average effect.10,14 This mechanism obviously does not
attribute to our results since our sample is a high-quality single
crystal. Linear MR could also arise due to the quantum limit
in the high magnetic field.14,15 Application of strong magnetic
field (B) results in quantized Landau levels En (LLs). When
the field is very large and the difference between the zeroth and
first Landau levels �LL exceeds the Fermi energy EF and the
thermal fluctuation kBT , all carriers only occupy the lowest
LL and a large linear MR could be expected:

MR = 1

2π

(
e2

ε∞h̄vF

)2
Ni

en2
B ln(ε∞), (2)

where Ni is the density of scattering centers, n is the
carrier density, vF is the Fermi velocity at the Dirac cones,
and ε∞ is the high-frequency dielectric constant.14,15 For
electrons with conventional parabolic bands, �LL = eh̄B

m∗ and
its evolution with field is very slow. Then, it is difficult to
observe quantum limit and linear MR behavior in the moderate
field range (below 9 T). Unusual linear magnetoresistance in
the low-temperature range was identified in some materials
hosting Dirac fermions with linear energy dispersion, such as
Ag2−δ(Te/Se), topological insulators, and BaFe2As2.18–20,24,25

For Dirac states with linear energy dispersion, the energy
splitting between the lowest and first LLs is described
by �LL = ±vF

√
2eh̄B where vF is the Fermi velocity. It

increases rapidly with field because of the large Fermi velocity
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of Dirac fermions. Hence, in Dirac materials, the quantum limit
and quantum transport can be achieved in the low-field region.

Large linear MR was also observed recently in SrMnBi2. In
SrMnBi2, highly anisotropic Dirac states were identified where
linear energy dispersion originates from the crossing of two
Bi 6px,y bands in the double-sized Bi square nets. The crystal
structure of LaAgSb2 has quasi-two-dimensional Sb layers
similar to the double-sized Bi square nets in SrMnBi2. It could
be expected that the Sb layers in LaAgSb2 can also host Dirac
fermions. The band structure in Fig. 1(d) shows two nearly
linear narrow bands crossing the Fermi level along Z − A and
� − M directions. The Fermi level is located very close to
the Dirac-cone-like points. Quantum oscillation experiments
revealed the hollow cylindrical Fermi surface in LaAgSb2

and very small effective mass (m∗ ∼ 0.16m0 where m0 is the
mass of the bare electron).31,32 These results suggest that the
unusual linear MR would originate from the quantum limit
of Dirac fermions. Theoretical calculation predicted a very
small pocket which has 20-T oscillation frequency and very
small effective mass ∼0.06me, although it was not observed
in the experiment;31 our first-principles results are consistent
with this. These indicate possible small Dirac pockets in the
system. Most likely, the quantum limit and linear MR are
related to these very small pockets.

Taking the linear MR induced by the quantum limit into
account and combing Eqs. (1) and (2), MR in LaAgSb2 can be
described very well by

MR = αB2

β + B2
+ γ |B|, (3)

with α,β,γ as the fitting parameters.10,14,26 The fitting curves
for low temperature (<30 K) and higher temperature (>30 K)
are shown in Figs. 3(a) and 4(a), respectively. Figure 3(b)
gives the MR contribution from cyclotron motion and quantum
linear MR at 2 K, respectively. The cyclotron MR contribution
has very low saturation value (∼0.03) and saturates at very
small magnetic field (∼0.4 T). The critical condition to
achieve the quantum limit at finite temperature is �LL =
EF + kBT and then the critical field B∗ for Dirac fermions
is B∗ = 1

2eh̄v2
F

(EF + kBT )2.20 For conventional electron gas

with parabolic bands, B∗ is proportional to temperature. The
temperature dependence of critical field B∗ in LaAgSb2 clearly
deviates from the linear relationship and can be well fitted by
B∗ = 1

2eh̄v2
F

(EF + kBT )2, as shown in Fig. 5(b). The fitting

gives a large Fermi velocity vF ∼ 1.46 × 105 ms−1. The
mobility of the system can be inferred from the semiclassical
transport behavior in the low-field region. For a multiband sys-
tem, the coefficient of the low-field semiclassical B2 quadratic
term A2 is related to the the effective electron and hole
conductivity (σe,σh) and mobility (μe,μh) through

√
A2 =√

σeσh

σe+σh
(μe + μh) = μMR = √

A2, which is smaller than the

average mobility of carriers μave = μe+μh

2 and gives an
estimate of the lower bound to the latter.20,24 Figure 5(b) shows
the dependence of μMR on the temperature. At 2 K, the value of
μMR is about 4000 cm2/V s in LaAgSb2, which is larger than
the values in conventional metals and semiconductors. The
parabolic temperature dependence of B∗ and the large μMR

confirm the existence of Dirac fermion states in LaAgSb2.

Another possible reason of the evolution of the crossover
field B∗ is the dependence of the carrier density and mobility.
Although there is temperature evolution of the carrier density
and mobility, Dirac fermions dominate the MR behavior and
the large linear MR should be only due to the quantum
limit of Dirac fermions. The temperature evolution of carriers
should only influence the curve shape in the semiclassical
transport region and the magnitude of the quantum linear
MR since the quantum linear MR only depends on the Dirac
fermions’ density. In fact, the decrease of MR with temperature
increasing should be attributed to the decrease of Dirac
carriers. But, the crossover point from semiclassical transport
region to quantum transport region should not be influenced
by this temperature evolution of carrier density/mobility, but
by the thermal fluctuation smearing out the LL splitting.

Another possibility for linear MR is the breakdown of weak-
field magnetotransport at a simple density-wave quantum
critical point.33,34 Quasilinear MR was also found in Sr2RuO4

(Ref. 35) and Ca3Ru2O7 (Ref. 33). Both of them are argued
to be a small-gap-density wave system with quasi-2D Fermi
surface. Theoretical analysis pointed out that at a simple
density-wave quantum critical point, the weak-field regime
of magnetotransport collapses to zero field with the size of the
gap.33,34 LaAgSb2 also exhibits CDW transition at ∼200 K
and the linear MR disappears around the CDW temperature.
So, the linear MR or the Dirac fermions could be related to the
CDW order. Similar phenomena were observed in BaFe2As2,
in which the linear MR disappears above the spin density
wave (SDW) temperature and the formation of Dirac fermions
was attributed to the nodes of the SDW gap by complex
zone folding in bands with different parities.24,25 The detail
mechanism of linear MR, the existence of Dirac fermion, as
well as the relationship between Dirac fermions and CDW in
LaAgSb2 deserve further study using direct methods such as
the angle-resolved photoemission spectroscopy (ARPES).

The magnetic field also has significant influence on the
thermal transport of LaAgSb2 [Figs. 2(b) and 2(c)]. Magnetic
field suppresses thermal conductivity significantly below
200 K due to the large MR. Figures 6(a) and 6(b) show
the magnetic field dependence of the Hall resistivity ρxy and
Seebeck coefficient S at different temperatures, respectively.
The behavior in ρxy is different from the classical Hall
behavior. The positive ρxy are not linear in field but quadratic.
The Hall resistivity curves all cross at ∼2 T. Below 2 T, ρxy

increases with an increase in temperature, while it decreases
with an increase in temperature above 2 T. This indicates
the change in the apparent carrier density napp = B/(eρxy).
Figure 6(c) shows the temperature dependence of napp at
several magnetic fields. At 2 K, the apparent carrier density
at 1 T is reduced by a half in the 9-T field, implying the
suppression of the DOS. This also induces the suppression of
thermal conductivity in field (Fig. 2). More interestingly, napp

increases with an increase in temperature below 2 T, while it
decreases with an increase in temperature for fields larger than
2 T. In the zero field, the Seebeck coefficient is negative in
the whole temperature range. For magnetic field dependence
of S [Fig. 6(b)], the absolute value decreases linearly with an
increase in magnetic field below 2 T. It becomes zero at about
2 T when temperature is below 30 K. A further increase in
field induces the changes of the sign of the Seebeck coefficient
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FIG. 6. (Color online) The magnetic field (B) dependence of the
Hall resistivity ρxy (a) and Seebeck coefficient S (b) at different
temperatures. Note the sign change at ∼2 T in S(B) at temperature
below 70 K. The inset in (a) shows the Hall resistivity in field below
3 T. (c) The temperature dependence of the apparent carrier density
as derived from Hall data in different fields.

from negative to positive, and then the magnitude increases
with an increase in field.

In a single-band metal with diffusion mechanism and
electron-type carriers, the Seebeck coefficient is given by the
Mott relationship

S = −π2k2
BT

3e

∂ ln σ (μ)

∂μ
, (4)

where ρ(ε) is the DOS, εF is the Fermi energy, kB is the
Boltzmann constant, and e is the absolute value of electronic
charge.36 The electron contribution to the Seebeck coefficient
Se is usually negative, while the hole contribution Sh is always
positive.36 For a two-band metal comprising electron and hole
bands, S is expressed as

S = σh|Sh| − σe|Se|
σh + σe

, (5)

where σe(h) and Se(h) are the contributions of electrons
(holes) to the electric conductivity and Seebeck coefficient,
respectively. According to the classical expression for the Hall
coefficient, including both electron- and hole-type carriers,10,37

ρxy/μ0H = RH

= 1

e

(
μ2

hnh − μ2
ene

) + (μhμe)2(μ0H )2(nh − ne)

(μenh + μhne)2 + (μhμe)2(μ0H )2(nh − ne)2
,

(6)

FIG. 7. (Color online) The fitting results for the magnetic field
(B) dependence of the Hall resistivity ρxy at 2 and 20 K, respectively.
(b) The temperature-dependent carrier mobility μh,μe and the carrier
density (nh − ne) derived from the Hall resistivity fitting.

where e is the electron charge, ne(h) and μe(h) represent
the carrier concentrations and mobilities of the electrons
(holes). Once there are two carrier types present, the field
dependence of ρxy(H ) will become nonlinear. Moreover,

Eq. (2) gives RH = 1
e

(μ2
hnh−μ2

ene)
(μenh+μhne)2 , when μ0H → 0, and RH =

e−1 · 1/(nh − ne) when μ0H → ∞.37

First-principles band structure in Fig. 1(c) shows that
the Fermi level is located just below the Dirac-cone-like
point of the gapless linear bands, but there is also a wide
band crossing the Fermi level at the Z point. Most likely,
the Dirac holes and the conventional electrons contribute to
the transport simultaneously. The parabolic curves of ρxy plus
the opposite signs between ρxy and S(T ) in the low field reflect
the multiband effect. Hall resistivity ρxy can be fitted very well
by the two-band Hall coefficient (6), as shown in Fig. 7(a)
by two typical curves at 2 and 20 K. Combined with MR
fitting using Eq. (1), we derive some parameters including
carrier mobility (μh,μe) and carrier density n = nh − ne, as
shown in Fig. 7(b). The holes have much higher mobility
(∼104 cm2/V s) than the electrons at 2 K, and with increasing
temperature, the hole mobility μh decreases significantly, but
the change in the electron mobility μe is negligible. The value
of mobility at 40 K derived from Hall resistivity is consistent
with the magnitude from MR fitting. Moreover, the carrier
density is positive, indicating the hole density is higher than
the electron density.

Electronic transport in the Hall channel is determined by
the density and mobility of different carriers, according to
Eq. (6).10 The Dirac holes have much higher mobility and
dominate the Hall resistivity, which make ρab of LaAgSb2

positive. But, the Seebeck coefficient is proportional to the
logarithmic derivative of the DOS at Fermi level and then
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inversely proportional to the DOS at Fermi level or carrier
density.36 In particular, for the two-dimensional Dirac system
with linear energy dispersion, S ∝ 1/

√
n could be expected

and was indeed observed in graphene.38,39 The electron density
is smaller than the hole density according to the two-band
analysis of Hall resistivity, and the electron band has smaller
DOS in LaAgSb2, so |Se| is larger than |Sh| and in the zero-
field, the Seebeck coefficient S is negative. With increasing
magnetic field, the Dirac holes will occupy the zeroth LLs
gradually and dominate the thermal transport behavior in the
quantum limit since the Fermi level locates between the zeroth
and first LLs and the DOS at the Fermi level is suppressed. The
positive Hall resistivity and the Seebeck coefficient confirm
the dominant holelike carriers in the high field, which induce
the sign change in S(B) at ∼2 T.

IV. CONCLUSION

In conclusion, we performed detailed magnetoresistance
and magnetothermopower measurements in the LaAgSb2

single crystal. The in-plane transverse magnetoresistance
exhibits a crossover at a critical field B∗ from the semiclassi-
cal weak-field B2 dependence to the high-field linear-field

dependence. The temperature dependence of B∗ satisfies
quadratic behavior. This, combined with the first-principles
electronic structure, indicates the possible existence of Dirac
fermions with linear energy dispersion. The linear magnetore-
sistance originates from the quantum limit of the possible Dirac
fermions or the breakdown of weak-field magnetotransport
at CDW transition. The Hall resistivity is positive, but the
Seebeck coefficient is negative in the 0-T field. Analysis of
Hall resistivity using the two-band model reveals that Dirac
holes have higher mobility and larger density than conventional
electrons, and dominate the electronic transport. Magnetic
field suppresses the apparent Hall carrier density, and induces
the sign change of the Seebeck coefficient from negative to
positive. These effects are attributed to the magnetic field
suppression of the density of states at Fermi level originating
from the quantum limit of the Dirac holes.
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