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Far-infrared slab lensing and subwavelength imaging in crystal quartz
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We examine the possibility of using negative refraction stemming from the phonon polariton response in an
anisotropic crystal to create a simple slab lens with plane parallel sides, and show that imaging from such a lens
should be possible at room temperature despite the effects of absorption that are inevitably present due to phonon
damping. In particular, we consider the case of crystal quartz, a system for which experimental measurements
consistent with all-angle negative refraction associated with the phonon polariton response have already been
demonstrated. Furthermore, we investigate the possibility of subwavelength imaging from such materials, and
show that it should be possible for certain configurations.

DOI: 10.1103/PhysRevB.86.155152 PACS number(s): 42.25.Bs, 42.25.Lc, 71.36.+c

I. INTRODUCTION

The idea of a slab lens stemming from negative refraction
was described by Veselago as far back as 1968.1 Such a lens
would have plane parallel sides, and an object placed on one
side of the lens would project a real image within the slab
followed by a second image on the other side of it. At the
time, the concept, based on materials having both permittivity
ε and permeability μ simultaneously negative, was regarded
as essentially hypothetical. Pendry’s 2000 paper2 brought it
into the limelight, however, partly due to the realization that
double negative materials (ε < 0,μ < 0) were becoming a
reality through metamaterial engineering,3 and partly as a
result of the suggestion that the resulting lenses may have
imaging possibilities beyond the traditional diffraction limit,
a phenomenon often described as superlensing. Under ideal
conditions this would correspond to perfect imaging.

Although perfect imaging requires exact material pa-
rameters that are difficult (if not impossible) to achieve
in practice,4,5 any slab of material that displays negative
refraction (defined in terms of ray or power flow directions)
for both positive and negative angles of incidence should
display some degree of slab lensing behavior regardless of
the mechanism leading to negative refraction. Thus, assuming
the slab is sufficiently thick to create the intermediate image,
a second image should be formed on the other side of the slab
for a certain range of incident angles (although this does not
necessarily imply that superlensing, nor indeed aberration-free
imaging, will occur). One very simple way of achieving
the necessary negative refraction is to make the slab from
a nonmagnetic anisotropic medium two of whose principal
axes have dielectric tensor components of opposing signs.6–15

Media of this type are often referred to as hyperbolic media
due to the form of the associated wave-vector dispersion. In
the correct configuration, they induce negative refraction at
all incident angles θ1 in the range −90◦ � θ1 � 90◦, thus
making them particularly promising for the construction of
slab lenses.9,16–18

In general, slab lenses of this type do not lead to subwave-
length imaging. Nevertheless, in a restricted geometry in which
both the object and the image are at, or very close to (i.e., at
near-field distances from), the slab surfaces, subwavelength
imaging is possible using slabs of materials with whose

dispersion takes a hyperbolic (or associated) form. In this
case, image formation does not specifically depend on negative
refraction within the slab, but rather on the propagation of
a collimated beam that is essentially perpendicular to the
surfaces. Subwavelength object details, which in air only
exist as evanescent waves, are then passed from one side of
the slab to the other as channeled propagating waves,19–23 a
phenomenon described as canalization by Belov et al..24

There are a number of methods for obtaining suitable
hyperbolic media. In the visible region, it is usual to use metals,
incorporated into structures such as multilayers19,20,25–27 or
oriented nanowires embedded in a dielectric16,17 to ensure the
necessary anisotropy. At far-infrared (terahertz) frequencies,
a useful approach to obtaining negative dielectric tensor
components is through the phonon polariton response since
the dielectric function of a polar medium becomes negative
around the optic phonon frequencies. A suitable anisotropic
response may be obtained, for instance, through the growth
of semiconductor superlattices, whose dielectric tensor com-
ponents may take on opposing signs around the phonon
frequencies,28–31 thus leading to the required behavior.7,11 An
alternative method considered for incorporating the necessary
anisotropy into the phonon polariton response is to use alkali
halides in aligned rod structures.32,33 However, it should
not be forgotten that, around the optic phonon frequencies,
the dielectric tensor of certain natural anisotropic crystals
may display the required characteristics, with the associated
all-angle negative refraction, without the necessity of growing
artificial metamaterial structures.9,10,13,14 Note that all-angle
negative refraction of this type should not be confused with
negative refraction due to conventional birefringence in a
uniaxial crystal whose surface is cut obliquely to the optic
axis.34 Such negative refraction only occurs over a small range
of incident angles, and the condition necessary for slab lensing
(that negative refraction occurs for both positive and negative
angles of incidence) is not satisfied. Around the optic phonon
frequencies, however, the dielectric tensor components may
take opposing signs, resulting in all-angle negative refraction
associated with hyperbolic dispersion, without the need for an
oblique cut.

Dumelow et al.9 have considered slab lensing based on this
principle in the anisotropic crystal triglycine sulfate (TGS)
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at 5 K. In this low temperature case, phonon damping is
extremely low, and absorption effects almost negligible in
the configuration considered. Simulations confirm that slab
lensing should occur, albeit with aberrations, in a slab of
TGS at low temperature.9 At room temperature we expect
absorption effects to be considerably greater, so it is necessary
to investigate whether a similar behavior should also take
place in anisotropic crystals at higher temperatures. Recent
experimental measurements have yielded results supporting
the existence of all-angle negative refraction arising from
the phonon polariton response in crystal quartz at room
temperature,15 so it is natural to wish to study how this material
may perform as a slab lens. We consider such behavior in the
present paper, as well as investigate the possibility of using
natural crystals such as quartz for subwavelength imaging.

The structure of the paper is as follows. In Sec. II we
briefly outline the basis of all-angle negative refraction in
dielectric hyperbolic media. In Sec. III we discuss how this
occurs in natural crystals such as quartz and show supporting
experimental data. In Sec. IV we consider the use of natural
crystals as slab lenses based on negative refraction, configured
to form an image away from the near-field regime. In this
case, the image is diffraction-limited. In Sec. V, in contrast,
we consider a configuration, based on canalization, in which
subwavelength imaging should be possible. Discussions of
the results and future prospects are presented in Sec. VI and
conclusions in Sec. VII.

II. ALL-ANGLE NEGATIVE REFRACTION IN
ANISOTROPIC DIELECTRIC MEDIA

To understand slab lensing behavior in nonmagnetic
anisotropic media, we first consider how negative refraction
of a single ray may occur in the geometry shown Fig. 1(a).
The slab is made of such a medium oriented with its principal
axes along the cartesian axes x, y, and z. xz is the plane of
incidence (i.e., ky = 0) and z is normal to the slab surface. We
consider the incident radiation to be p polarized (E field in the
plane of incidence xz).

If the angle of incidence is represented as θ1, the in-plane
wave-vector component kx is given by

kx = k0 sin θ1, (1)

where k0 = ω/c. The z component of the wave vector outside
the slab is given by

k2
1z = k2

3z = k2
0 − k2

x, (2)

where the subscripts 1 and 3 represent the regions to the left
and to the right of the slab, respectively. Inside the slab k2z is
represented by

k2
2z = k2

0εxx − k2
x

εxx

εzz

, (3)

where εxx and εzz represent two of the principal components of
the dielectric function of the anisotropic medium. The correct
sign of k2z is determined by the condition that power flow must
be away from the interface.7

In defining the angle of refraction, one should remember
that ray directions follow the Poynting vector S rather than the
wave vector k. In addition, it is the Poynting vector direction
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FIG. 1. (Color online) (a) Wave-vector and Poynting vector
directions for a p polarized obliquely incident ray passing through a
slab of nonmagnetic anisotropic material. In this example the angle
of incidence is 30◦ and the slab dielectric tensor components are
εxx = 1, εzz = −1. (b) Field profiles showing beam and wavefront
directions for a ray passing through the slab. (c) Equifrequency plots
(blue curves) in the three regions, along with the resulting Poynting
vector directions normal to the curves. (d) Ray diagram showing the
path of several rays passing through the same slab. Ray directions are
those of the Poynting vector.

that determines the focusing behavior. We therefore consider
the angle of refraction θ2 in terms of the direction of the
Poynting vector S2 within the slab. Its time-averaged value
is given by 〈S2〉 = 1/2 Re (E × H∗), leading to a θ2 value
obtained from the expression9

tan θ2 = 〈S2x〉
〈S2z〉 = Re(kx/εzz)

Re(k2z/εxx)
. (4)
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It is immediately seen that, in general, the direction of the
Poynting vector S2 is different from that of the wave vector
k2. This behavior only occurs in p polarization, and only if
εxx and εzz are different. To gain a physical understanding of
how this may lead to negative refraction, we can, to a first
approximation, ignore absorption, leaving both εxx and εzz

real. In this case k2z can be either real or imaginary, propagation
into the slab occurring when it is real. We note in particular that
this is the case when εxx > 0, εzz < 0, and it is straightforward
to show that k2z is positive under these conditions.7 A simple
comparison of Eqs. (1) and (4) thus shows that θ1 and θ2 have
opposing signs, leading to negative refraction, as defined in
terms of the power flow directions, within the slab. A ray
through the slab thus follows the Poynting vector directions
shown in Fig. 1(a), with the wave behavior shown in Fig. 1(b).
A comparison of these two figures also confirms that the wave
vectors remain normal to the wavefronts in all layers.

An alternative way of interpreting negative refraction in this
type of system is shown in Fig. 1(c). Since group velocity is
given by vg = ∇kω, the group velocity direction, and hence
the Poynting vector direction, should be perpendicular to
an equifrequency surface in k space. In the xz plane, the
equifrequency surface becomes an equifrequency curve (i.e.,
a plot of kz against kx at a given frequency). Such curves
are shown in Fig. 1(c) in the three regions, being hyperbolic
within the slab and circular in the surrounding air. Since kx

is the same in the three regions and simply obtained from the
angle of incidence [Eq. (1)], we can determine the Poynting
vector direction (perpendicular to the equifrequency curve) in
each of them, as shown in the figure. The directions are in
agreement with those shown in Figs. 1(a) and 1(b). Negative
refraction of the Poynting vector direction is clearly seen, and
it is obvious that such behavior will occur for a both positive
and negative incident angles (positive and negative kx).

In the case of a series of rays emanating from an object O,
the simulation in Fig. 1(d) shows image formation both within
the slab and at the right-hand side of it, although there are
aberrations associated with the higher incident angles.9,16,18

III. NEGATIVE REFRACTION DUE TO PHONONS IN
NATURAL CRYSTALS

One way of satisfying the condition εxx > 0, εzz < 0 is
to make use of the phonon response in natural anisotropic
crystals.9,10,13–15 If we take the case of a uniaxial crystal, we
can write the dielectric tensor, expressed in relation to the
crystal axes, as

ε =

⎛
⎜⎝

εord 0 0

0 εord 0

0 0 εext

⎞
⎟⎠ . (5)

Here εext refers to the response along the extraordinary axis (the
crystaĺs’ uniaxis) and εord to the response along the ordinary
axes. Around the phonon frequencies, these components may
be written in the form35

εord = ε∞,ord

∏
n

ω2
Ln,ord − ω2 − iωγLn,ord

ω2
Tn,ord − ω2 − iωγTn,ord

, (6)

εext = ε∞,ext

∏
n

ω2
Ln,ext − ω2 − iωγLn,ext

ω2
Tn,ext − ω2 − iωγTn,ext

, (7)

where ω is the frequency; ε∞,ord and ε∞,ext are the high
frequency dielectric constants; ωTn,ord and ωTn,ext are the
frequencies of the transverse optical (TO) phonons; ωLn,ord

and ωLn,ext are the frequencies of the longitudinal optical (LO)
phonons; and γTn,ord, γTn,ext, γLn,ord, and γLn,ext are the appro-
priate damping parameters responsible for absorption around
the phonon frequencies. Since the phonons polarized along
the ordinary and extraordinary axes are inherently different, the
various phonon parameters (including the phonon frequencies)
contributing to the corresponding tensor components are also
different. This raises the possibility of tensor components
having opposing signs. In principle, in the absence of damping,
this should occur in any polar uniaxial crystal within certain
frequencies ranges.36 In practice, however, reasonably strong
resonances, with frequencies along the different principal
crystal axes well separated in relation to the magnitude of
the damping parameters, are needed to give useful results.

In this paper we consider the case of crystal quartz, a
material which shows suitably separated resonances at room
temperature.15,37–40 In Fig. 2 we show the values of εord and
εext for crystal quartz in the range 400 cm−1 to 600 cm−1.
The parameters used are based on those obtained by Gervais
and Piriou.37 We have made adjustments to some of their
values, however, to give a better fit to the experimental
results presented later in this paper, as summarized in
Table I.

FIG. 2. (Color online) (a) Real and (b) imaginary parts of the
principal components of the dielectric function of quartz in the
frequency range 400 cm−1 to 600 cm−1.
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TABLE I. Comparison of phonon parameters of crystal quartz used in this work with those of Gervais and Piriou.37 We have retained the
high frequency dielectric constants used by these authors (ε∞,ord = 2.356, ε∞,ext = 2.383).

Gervais and Piriou This work

ωTn γTn ωLn γLn ωTn γTn ωLn γLn

Symmetry n (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

1 393.5 2.8 402.0 2.8 393.5 2.1 403.0 2.8
2 450.0 4.5 510.0 4.1 450.0 4.5 507.0 3.5

E 3 695.0 13.0 697.6 13.0 695.0a 13.0a 697.6a 13.0a

(ordinary) 4 797.0 6.9 810.0 6.9 797.0a 6.9a 810.0a 6.9a

5 1065.0 7.2 1226.0 12.5 1065.0a 7.2a 1226.0a 12.5a

6 1158.0 9.3 1155.0 9.3 1158.0a 9.3a 1155.0a 9.3a

1 363.5 4.8 386.7 4.8 363.5a 4.8a 386.7 7.0
A2 2 496.0 5.2 551.5 5.8 487.5 4.0 550.0 3.2
(extraordinary) 3 777.0 6.7 790.0 6.7 777.0a 6.7a 790.0a 6.7a

4 1071.0 6.8 1229.0 12.0 1071.0a 6.8a 1229.0a 12.0a

509.0b 14.0b 507.5b 14.0b

aThe parameters associated with modes having frequencies outside the range of this study, or its immediate vicinity, have been left unchanged
from those published by Gervais and Piriou.
bThis additional mode, used in modeling the experimental results of Gervais and Piriou, is generally considered to be an experimental artefact
(Refs. 37 and 38), and has not been included in our simulations.

The dielectric function in the phonon region is, in general,
complex, but it is reasonable, as a first approximation, to
simply look at the its real part in considering the refracting
behavior. Thus, for negative refraction to take place, Re(εord)
and Re(εext) should have opposing signs. It is seen that, in
the case of crystal quartz, Re(εord) > 0, Re(εext) < 0 in the
frequency region between ωL2,ord and ωL2,ext (using the mode
numbering of Table I) whereas Re(εord) < 0, Re(εext) > 0
in the frequency region between ωT2,ord and ωT2,ext. The
corresponding region of negative refraction depends on the
crystal orientation.

We first consider the extraordinary axis to be along z (i.e.,
normal to the crystal surface), so that εxx = εord and εzz = εext.
In this case we have the negatively refracting condition
Re(εxx) > 0, Re(εzz) < 0 between 507 cm−1 and 550 cm−1

(i.e., between ωL2,ord and ωL2,ext), as shown in Fig. 3(a).
Negative refraction in this orientation has been studied in
Ref. 15, which shows that significant transmission occurs
in the corresponding frequency region. This is confirmed
in the transmission spectra shown in Fig. 3, which shows
both experimental data, measured using a Bruker Vertex
70 spectrometer, and theoretical simulations, obtained using
standard transfer matrix techniques,30 for various sample
thicknesses l (see Fig. 1) and incident angles θ1.

To quantify the efficiency we can look at the figure of merit.
This parameter, often used to characterize negatively refracting
media, is traditionally defined as |Re(n)|/Im(n), where n

represents the refractive index of the material.41 In the present
case, we follow the lead of Hoffman et al.12 and interpret the
figure of merit as Re(k2z)/Im(k2z). At the frequency marked
as X in Fig. 3 (531 cm−1), where the transmission is relatively
high, this gives a figure of merit of 31 at θ1 = 30◦ and of 23
at θ1 = 60◦. These values are considerably larger than those
typically encountered for metamaterial structures.

We model the behavior of a finite beam passing through
the slabs at this frequency by considering the incident beam
to be Gaussian, and represent it as a Fourier sum of plane

waves:

Hy =
∫ ∞

−∞
ψ(kx)ei(kxx+k1zz)dkx. (8)

In the case of a Gaussian beam, ψ(kx) can be written42

ψ(kx) = − g

2 cos θ0
√

π
exp

[
−g2(kx − k0 sin θ0)2

4 cos2 θ0

]
, (9)

where 2g represents the beam width at its waist and θ0

represents the effective incident angle of the overall beam.
In practice, we assume that all components of the Gaussian
beam are propagating in air (i.e., k1z is real),43 so we restrict
the integral in Eq. (8) to the range −k0 � kx � k0.

Using an incident beam of this form, it is possible to use
standard multilayer optics techniques to calculate the magnetic
field associated with each plane-wave component at any point
in the xz plane. Numerical integration then gives the overall H
fields, and thus the associated E fields and Poynting vectors.9,44

The resulting beam profiles for the various experimental
configurations represented in Fig. 3 are shown in Fig. 4. Here
the incident beam, whose width is given by g = 100 μm, is
assumed to be focused at the slab surface, at x = 0, z = 0.
Negative refraction, seen as a displacement of the transmitted
beam in the negative x direction in a manner similar to that
shown in Fig. 1(b), occurs in each case. The displacement is
naturally greater for thicker samples, but the transmission is
lower, in line with the spectra shown in Fig. 3. In addition,
the transmitted intensity is significantly reduced when the
angle of incidence is increased. This is also observed in the
experimental results.

IV. SLAB LENSING IN NATURAL CRYSTALS

We now consider how negative refraction in natural crystals
such as quartz may be used for slab lensing of the type shown
in Fig. 1(d). Rather than the frequency X used in the simulation
of transmission of Gaussian beams, we find it convenient
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FIG. 3. (Color online) (a) Simulated p polarization angle of
refraction in the case of quartz oriented with its extraordinary axis
along z, for incident angles θ1 of 30◦ and 60◦. (b) Transmission
spectra through a crystal of thickness l = 25 μm at these angles of
incidence. (c) Transmission spectra through a crystal with l = 50 μm.
(d) Transmission spectra through a crystal with l = 75 μm. The solid
and dashed lines in the transmission spectra represent experimental
and simulated results, respectively.

to show results for the slightly higher frequency marked as
Y in Fig. 3(a), at 537 cm−1. This is because, although the
transmission is lower at this frequency (the figure of merit is
28 at θ1 = 30◦ and 18 at θ1 = 60◦), the angle of refraction θ2

is (in magnitude) somewhat higher.
The plots of the real and imaginary parts of k2z as a function

of kx (both wave-vector components being normalized with
respect to k0) at frequency Y are shown in Fig. 5(a). The ratio of
these two plots gives the figure of merit. Of particular interest
in this figure is the Re(k2z) curve since this is in essence an

(a) (b)

(c) (d)

(e) (f)

FIG. 4. (Color online) Simulation of the intensity profile (in terms
of the magnitude of the time-averaged Poynting vector) of a Gaussian
beam passing through a quartz slab in the configurations used in
Fig. 3 at frequency X (531 cm−1). The basic geometry is shown in
Fig. 1(a), with the quartz uniaxis along z. (a) l = 25 μm, θ1 = 30◦;
(b) l = 25 μm, θ1 = 60◦; (c) l = 50 μm, θ1 = 30◦; (d) l = 50 μm,
θ1 = 60◦; (e) l = 75 μm, θ1 = 30◦; (f) l = 75 μm, θ1 = 60◦. The
thin white line through the center of the beam represents the ray
path calculated using the angle of refraction given by Eq. (4). The
insets show details of negative refraction within the slab. Note that
the sample thicknesses of 25, 50, and 75 μm correspond to 1.3, 2.7,
and 4.0 free-space wavelengths, respectively.

equifrequency plot. Hyperbolic dispersion of the type shown
in Fig. 1(c) is clearly present, so slab lensing similar to that in
Fig. 1(d) should be expected.

In the slab lens calculations, we take a source to be
positioned at x = 0, z = 0, at a distance l′ to the left of the slab,
that is, the front surface of the slab is at z = l′ [see Fig. 6(a)].
As an approximation to a slit source, the amplitude of the
incident Hy field is assumed constant in the range −a/2 to
a/2 at z = 0, being zero at all other points in this plane. Thus
a effectively represents a slit width. In a manner similar to that
used to describe a Gaussian beam, we represent the incident
field to the right of the z = 0 plane by Eq. (8), but ψ(kx) is
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FIG. 5. (Color online) (a) Real and imaginary parts of the
wave-vector component k2z as a function of kx (expressed in units
of k0), for transmission in a quartz crystal having its extraordinary
axis directed along z, in p polarization, at frequency Y (537 cm−1).
(b) Amplitude of the Hy field at the image plane in the configuration
shown in Fig. 6. Here we take the image position be at the appropriate
intensity maximum in Fig. 6, which is at z = 45 μm in the case of
slab thickness l = 25 μm, z = 94 μm in the case of l = 50 μm, and
z = 146 μm in the case of l = 75 μm.

now given by

ψ(kx) = sin(kxa/2)

πkx

. (10)

The techniques used for calculating the overall fields and
intensities in the xz plane are then the same as those used
above for Gaussian beam simulations.

The result of intensity simulations in the xz plane are shown
in Fig. 6 for the three slab thicknesses considered earlier. For
each of these thicknesses we take l′ = l/2 and a = l/10, so
that, if these figures were replaced by ray diagrams (with,
for instance, each side of the slit represented as a single point
source) the three figures would be equivalent. In practice, Fig. 6
shows that focusing of the internal and external images [see
Fig. 1(d)] occurs in each case, but the image size does not
simply scale with the overall dimensions of the system as
would occur in a geometric optics analysis.

In interpreting these results, one should note that both
the object and image are sufficiently far from the slab
that near-field effects can be reasonably ignored. Thus the
evanescent waves from the object play a negligible role in
the formation of the image. We can see this from Fig. 5(b),
which shows the transfer function (i.e., the amplitude of the
transmission coefficient from the object plane to the image
plane45) of each plane-wave component in the range −2k0 �
kx � 2k0. It is seen that the amplitude quickly falls off for
|kx | > k0, the region in which the waves are evanescent in air.

FIG. 6. (Color online) p-polarization image formation due to a
slit source placed to the left of a quartz slab, whose extraordinary
axis is directed along z (normal to the slab surface), at frequency
Y (537 cm−1). (a) Schematic showing the general setup. (b)–(d)
Simulation of the intensity profile, using parameters (b) l = 25 μm,
l′ = 12.5 μm, a = 2.5 μm; (c) l = 50 μm, l′ = 25 μm, a = 5 μm;
and (d) l = 75 μm, l′ = 37.5 μm, a = 7.5 μm. The slit widths a

correspond to (b) 0.134λ, (c) 0.267λ, and (d) 0.403λ, where λ

represents the free-space wavelength.

Diffraction-limited imaging should therefore be expected. In
interpreting the results of Fig. 6 with this in mind, we note that
the slit width considered in the calculations is smaller than the
diffraction limit in each case. If the image size is diffraction
limited, it is therefore natural to expect the most pronounced
increase in image size with respect to object size a in the
situation shown in Fig. 6(b), where the object is smallest, and
this is what is indeed observed.

It is clear from the above that, since, in the present setup,
the subwavelength details associated with |kx | > k0 tend to
get lost, the slabs are not functioning as superlenses of the
type considered by Pendry.2 In the Pendry lens, consisting
of a slab with ε = −1,μ = −1, any decay of the evanescent
fields in air is compensated by the growing evanescent fields
within the slab, so these details are recovered. In the type of
medium considered here, however, Fig. 5(a) shows that k2z

is essentially real for all kx , that is, there are no evanescent
fields within the slab, either decaying or growing (although
the propagating fields may suffer decay due to absorption).
Thus, this type of lens can never operate in the same way as a
Pendry lens in achieving subwavelength resolution.

Apart from diffraction-limiting, other effects are important
in determining the image quality. First, the effects of absorption
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are not inconsiderable at the slab thicknesses considered here,
as observed in Figs. 3 and 4. This reduces the intensity of
the image and, since the effect is larger for larger kx [see
Fig. 5(b)], may also change the intensity distribution of the
image. Second, even in a geometrical optics analysis, image
formation due to slab lenses with εxx > 0, εzz < 0 is not
perfect, and there are aberrations of the type shown in Fig. 1(d).
These aberrations should be more important in thicker slabs
such as that shown in Fig. 6(d). In thinner slabs of the
type shown in Fig. 6(b) diffraction-limiting effects somewhat
overshadow such aberrations.

V. SUBWAVELENGTH IMAGING POSSIBILITIES

As discussed above, the restoration of evanescent waves
is not possible for this type of lens since evanescent waves
are not present within the slab. However, the absence of such
evanescent waves may be used to advantage if the slab is placed
within the near field of the object. In this case, evanescent
waves in air are converted to propagating waves in the slab. At
the other side of the slab, these waves may then be converted
back to evanescent waves and, given the right slab parameters,
contribute to an image with subwavelength resolution at a near-
field distance from the slab. In the present section we consider
the formation of such subwavelength images, restricting our
attention to the extreme case where both the object and the
image are actually at the slab surfaces. Thus, in the notation of
Figs. 1(d) and 6(a), we arrange to have l′ = 0 with an image at
z = l. In this configuration, field attenuation due to evanescent
decay in air is reduced to zero.

To achieve perfect imaging, the fields associated with each
kx component should all arrive at the image point with the same
phase and with the same relative loss of amplitude (although
preferably with no loss of amplitude at all). We initially search
for a condition that gives a phase change whose dependence on
kx is small. Unless the slab is very thin, the main contribution
to the change in phase between object and image will normally
be that from transmission within the slab, which depends on the
real part of the wave-vector component k2z. If Re(k2z) can be
made independent of kx , all components should transmit across
within the slab with the same phase, as required. Equation (3)
shows that this occurs when Re(εxx) � 0, 1/εzz → 0. As seen
from Eq. (4), this also corresponds to θ2 = 0, so transmission
occurs as a collimated beam, which may be of subwavelength
width, across the slab.

It is noticeable that the condition 1/εzz → 0 merely requires
that the amplitude of εzz be large, without any restriction
on its sign. In fact, it is not even required to be real, so
a large imaginary εzz satisfies the condition. From Fig. 2,
we see that, within the range investigated, the combined
condition Re(εxx) � 0, 1/εzz → 0 does not occur in quartz
if the extraordinary axis lies along z (εxx = εord, εzz = εext),
but occurs at the TO phonon frequency ωT2,ord (450 cm−1)
if the extraordinary axis lies along x (εxx = εext, εzz = εord)
since Im(εzz) becomes large at this frequency. This is therefore
the geometry and frequency we use in our discussion of
subwavelength imaging.

Since we are considering transmission across the slab in p

polarization at a resonance frequency, we should first check
that there is no absorption associated with this resonance. In

FIG. 7. (Color online) Oblique incidence p-polarized transmis-
sion spectra through various thicknesses of quartz crystals having
their extraordinary axes directed along x. The angle of incidence θ1 is
30◦ in each case. The solid and dashed lines represent experimental
and simulated results, respectively.

Fig. 7 we show both experimental and theoretical p-polarized
transmission spectra in the required geometry at oblique
incidence. It is clearly seen that there is no absorption dip
at ωT2,ord, even though the z component of the incident E
field is nonzero in p polarization. We can interpret this in the
following way. Boundary conditions dictate that Dz should be
continuous across the interface, so a large |εzz| implies that
Ez → 0 in the slab, and the TO mode is not excited. There is
some absorption in this region, as can be observed from the
decreasing transmission with increasing slab thickness, but this
is mainly due to the proximity of the x-polarized TO phonon
at ωT2,ext.

Figure 8(a) shows the real and imaginary parts of k2z

as a function of in-plane wave vector kx (both normalized
with respect to k0), and confirms that the condition of nearly
constant Re(k2z) is satisfied. Thus, if we regard the Re(k2z)
curve as an equifrequency plot, it is clear that there will be
propagation in the z direction for all kx , leading to the required
canalization behavior. In addition, we see that Im(k2z), which
is responsible for absorption, is relatively small. In the region
−k0 < kx < k0, corresponding to real angles of incidence (i.e.,
propagating waves in air), it is always less than 0.03 μm−1.
This is equivalent to a figure of merit Re(k2z)/Im(k2z) ranging
from 31 a normal incidence to 26 at grazing incidence.
At higher |kx |, the absorption gradually increases and at
kx = ±5k0 the figure of merit drops to 5.

Figure 8(b) shows the overall amplitude of the Hy field
(i.e., the transfer function) transmitted through slabs of quartz,
having the three studied thicknesses, as a function of kx/k0.
Figure 8(c) shows the associated phase. For perfect imaging,
both the amplitude and phase would be constant for all kx (the
amplitude taking a value equal to unity in the ideal case). In
practice, there are noticeable deviations from this behavior.

We can interpret the curves in Fig. 8(b) in terms of two sepa-
rate effects, transmission efficiency across the two interfaces at
either side off the slab and absorption within the slab associated
with the imaginary part of k2z shown in Fig. 8(a). The first
effect gives the basic shape of the curves and the second effect
accounts for the separation of the three curves representing
the three different thicknesses and contributes to the drop
off in transmission at higher |kx |, where Im(k2z) is larger.
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FIG. 8. (Color online) (a) Real and imaginary parts of the
wavevector component k2z as a function of kx (expressed in units of
k0), for transmission in a quartz crystal having its extraordinary axes
directed along x, in ṕ-polarization, at frequency ωT2,ord (450 cm−1).
(b) Amplitude and (c) phase of the Hy field transmitted through
various thicknesses of crystal quartz in the same configuration.

Figure 8(c) shows that there is some phase change with kx , but
the overall variation for a particular slab thickness is around
π/2 in the range shown. Similarly to the amplitude curves
discussed above, the basic shape is associated with phase
changes on transmission across the interfaces. Phase changes
associated with transmission within the slab simply give a
vertical shift to this basic shape since these phase changes are
almost independent of kx . From the above, we see that a major
restriction to the required subwavelength imaging behavior is
likely to be associated with transmission across the interfaces.
A number of studies of the use of metallic layered structures
to achieve the required anisotropic dielectric tensor have also
discussed this phenomenon.19–23,46 Of particular importance
is the suggestion that the use of a slab thickness equal to an
exact number of half-wavelengths [i.e., Re(k2z)l = mπ where
m is an integer], thus assuring constructive interference from
Fabry-Perot fringes, should overcome these restrictions.22,23 A
special case of this, equivalent to choosing m = 0, is possible if
εxx = 0. In the present work, we can see from Fig. 7 that some

weak interference fringes are observed in the transmission
spectra in the case of the 25-μm-thick sample, but that they
are essentially absent in the case of the thicker samples. Thus
we believe that, for the range of thicknesses considered in this
work, the Fabry-Perot condition is not of crucial importance
since the higher-order partial rays are absorbed by the slab.
In fact, the 25-μm-thick sample is close to satisfying the
Fabry-Perot condition with m = 6 (an exact calculation gives
m = 6.13), but a small change in the slab thickness does not
appear to have much effect on the results.

We now turn to simulations of subwavelength imaging
itself. We consider a two-slit source in which the magnetic
field of the incident beam is assumed to be constant across the
width of each slit, as before. For slits of width a separated by
a distance d [see Fig. 9(a)], this amounts to setting ψ(kx) to

ψ(kx) = 2 sin(kxa/2) cos(kxd/2)

πkx

. (11)

FIG. 9. (Color online) Imaging due to a two-slit source at the
surface of a slab of quartz, whose extraordinary axis is along x,
at frequency ωT2,ord (450 cm−1). (a) Schematic showing the general
setup. (b),(c) Simulation of the intensity profile, using parameters
(b) a = 2.5 μm, d = 7 μm and (c) a = 1.5 μm, d = 5 μm. The slab
thickness l is 25 μm in each case.
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The slits are placed at the front surface of the slab (l′ = 0).
Figures 9(b) and 9(c) show the resulting intensity distributions
in the case of the 25-μm-thick slab. Figure 9(b) shows the
results for a slit separation of d = 7 μm (0.32 λ) and slit widths
a = 2.5 μm (0.11 λ). The intensities from the two slits are
well resolved within the slab, with significant loss of intensity
with propagation through the slab. The solid (green) curve in
Fig. 10(a) shows the intensity distribution passed through the
slab. The images from the two slits are still easily resolved.
When the slit separation d is reduced to d = 5 μm (0.23 λ), we
have found that the images are better resolved if we also reduce
the slit widths. We therefore show the intensity distribution
for a slit separation of d = 5 μm and slit widths a = 1.5 μm
(0.07 λ) in Fig. 9(c). The intensities from the two slits are still
well resolved within the slab, but are considerably reduced
due to the narrowing of the slits. The intensity distribution
passed through the slab is shown as the dashed (red) curve in
Fig. 10(a), and the two peaks are once more resolved.

FIG. 10. (Color online) Intensity profile transmitted across a slab
of quartz with its extraordinary axis along x due to a two-slit source
of slit width a and separation d . Calculations were made at frequency
ωT2,ord (450 cm−1). The intensity scale is normalized with respect to
a plane wave whose magnetic field amplitude is that of the incident
field in the slits. (a) Slab thickness l = 25 μm, (b) l = 50 μm,
(c) l = 75 μm.

Figures 10(b) and 10(c) show the intensity distributions
passed through slabs of thicknesses l = 50 μm and l =
75 μm, respectively, using the same slit width/separation
combinations as for the thinner slab. It is seen that when
l = 50 μm the images of the slits are still resolvable for
d = 7 μm, but not for d = 5 μm. When l = 75 μm, some
structure remains in the d = 7 μm case, but not in the case of
d = 5 μm.

We thus see that subwavelength imaging should occur even
for relatively thick slabs of quartz, corresponding to a few free-
space wavelengths, albeit with considerable loss of intensity.

VI. DISCUSSION AND OUTLOOK

The above results confirm that simple anisotropic crystals,
such as quartz, should function as slab lenses as well as
achieving images with subwavelength resolution. We have
restricted our simulations to the slab thicknesses used in our
experimental spectral investigations, and such thicknesses are
easily obtainable (the quartz crystals used in the spectroscopic
measurements were obtained commercially from Boston
Piezo-Optics).

The slabs used for our subwavelength studies are fairly
thick in relation to those in most studies based on multilayer
structures.19–23 Better resolution should be possible with
thinner slabs, and it should also be possible to take advantage
of Fabry-Perot interference in such cases.22,23 Nevertheless,
in practice, the behavior at the interfaces may be drastically
affected by the source and detector configuration if they are
close to the surfaces, and a plane-wave analysis, although
correct within the slab, may not give an accurate indication
of the interface behavior.

In this study we have only considered crystal quartz as the
slab medium, but there are a number of anisotropic crystals
that may be suitable. Among those considered in the context
of hyperbolic behavior are TGS,9 Hg2I2 (Ref. 10), MgF2

(Ref. 13), and sapphire.14 Several factors may be important
in choosing suitable materials. Obviously different materials
will be appropriate for different frequency ranges, and phonon
resonances must be sufficiently strong and well separated.
Absorption clearly plays a vital role in the image formation,
so low damping is important. For subwavelength imaging
using the Re(εxx) � 0, 1/εzz → 0 criterion at z-polarized TO
frequencies, it would be useful to have negligible Im(εxx),
so there should ideally be no x-polarized phonons close to the
frequency of interest. Dvorak and Kuzel10 discussed the case of
Hg2I2 in the context of negative refraction (rather than imaging
behavior). The damping parameters for this material are
somewhat larger than those for quartz, but its optical phonon
frequencies along the principal axes are well separated from
one another, so they may be suited to subwavelength imaging
applications. As mentioned in the Introduction, Dumelow
et al.9 considered slab lenses from triglycine sulfate (TGS),
which, at low temperature, has both very low damping and
well-separated phonon frequencies. In addition to the slab
lensing properties discussed in the paper, this material is likely
to give very good subwavelength imaging. The disadvantage is,
of course, the necessity of low temperature. Another material
considered as a hyperbolic medium is MgF2, which has
properties somewhat similar to quartz.13
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In this type of study and its in subsequent applications
it would be useful to observe single-frequency behavior
experimentally. There have been recent reports of quantum-
cascade lasers operating in the frequencies discussed in this
paper,47,48 which at present are at the lower frequency limit of
this technology in the infrared region. In the immediate future,
spectroscopic measurements, with the aid of stops, slits, or
gratings, may be an easier option for investigating imaging
effects in quartz. However, optical phonons, in general, span a
wide frequency range, and investigations of imaging properties
using monochromatic radiation may be more straightforward
in other materials. The higher frequency modes of calcite,49

for example, should be far more easily accessible using
quantum-cascade lasers than those of quartz. At considerably
lower frequencies, below ∼150 cm−1, quantum-cascade lasers
may again be considered as possible sources,50 along with
other devices such as backward-wave oscillators.51 Imaging
using crystals such as Hg2I2 an TGS, whose phonons fall in
this frequency range, should therefore be possible with the aid

of such sources. Overall there appear to be ample possibilities
for using anisotropic crystals in this way.

VII. CONCLUSION

In this work we have shown that anisotropic crystals such
as quartz should behave as slab lenses around the optic
phonon frequencies, even at room temperature. Furthermore,
at the frequencies of the TO phonons polarized normal to the
surface, subwavelength imaging based on canalization may
be possible in sufficiently anisotropic crystals, and we have
shown examples of this using quartz. This work clearly needs
extending to other frequencies with other materials, and there
appear to be various possibilities for experimental studies.
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40F. Bréhat and B. Wyncke, Int. J. Infrared Millimeter Waves 18, 1663

(1997).

155152-10

http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1007/s10762-008-9414-1
http://dx.doi.org/10.1007/s10762-008-9414-1
http://dx.doi.org/10.1103/PhysRevB.80.115123
http://dx.doi.org/10.1103/PhysRevB.80.115123
http://dx.doi.org/10.1364/JOSAA.10.000633
http://dx.doi.org/10.1002/mop.10887
http://dx.doi.org/10.1002/mop.10887
http://dx.doi.org/10.1103/PhysRevB.72.235115
http://dx.doi.org/10.1103/PhysRevB.72.235115
http://dx.doi.org/10.1080/00150190600740069
http://dx.doi.org/10.1080/00150190600740069
http://dx.doi.org/10.1364/OE.14.011184
http://dx.doi.org/10.1038/nmat2033
http://dx.doi.org/10.1134/S1063774510060076
http://dx.doi.org/10.1063/1.3466907
http://dx.doi.org/10.1103/PhysRevLett.105.163903
http://dx.doi.org/10.1103/PhysRevLett.105.163903
http://dx.doi.org/10.1364/OE.16.015439
http://dx.doi.org/10.1364/OE.17.022380
http://dx.doi.org/10.1103/PhysRevB.79.245127
http://dx.doi.org/10.1103/PhysRevB.79.245127
http://dx.doi.org/10.1103/PhysRevB.73.113110
http://dx.doi.org/10.1364/OL.31.002130
http://dx.doi.org/10.1103/PhysRevB.75.045103
http://dx.doi.org/10.1364/OE.16.004217
http://dx.doi.org/10.1364/OE.16.004217
http://dx.doi.org/10.1103/PhysRevB.71.193105
http://dx.doi.org/10.1103/PhysRevB.71.193105
http://dx.doi.org/10.1103/PhysRevB.74.075103
http://dx.doi.org/10.1364/OE.15.000508
http://dx.doi.org/10.1364/OE.15.000508
http://dx.doi.org/10.1103/PhysRevB.77.195121
http://dx.doi.org/10.1016/0038-1098(85)90626-X
http://dx.doi.org/10.1007/BF01008634
http://dx.doi.org/10.1007/BF01008634
http://dx.doi.org/10.1016/0167-5729(93)90018-K
http://dx.doi.org/10.1016/0167-5729(93)90018-K
http://dx.doi.org/10.1007/BF02675375
http://dx.doi.org/10.1103/PhysRevB.84.035128
http://dx.doi.org/10.1364/OE.20.014663
http://dx.doi.org/10.1364/OE.20.014663
http://dx.doi.org/10.1103/PhysRevB.72.113111
http://dx.doi.org/10.1103/PhysRevB.72.113111
http://dx.doi.org/10.1103/PhysRevB.10.1642
http://dx.doi.org/10.1088/0034-4885/37/7/001
http://dx.doi.org/10.1103/PhysRevB.11.3944
http://dx.doi.org/10.1103/PhysRevB.36.3368
http://dx.doi.org/10.1103/PhysRevB.36.3368
http://dx.doi.org/10.1007/BF02677934
http://dx.doi.org/10.1007/BF02677934
http://dx.doi.org/10.1007/BF02678278
http://dx.doi.org/10.1007/BF02678278


FAR-INFRARED SLAB LENSING AND SUBWAVELENGTH . . . PHYSICAL REVIEW B 86, 155152 (2012)

41V. M. Shalaev, Nature Photonics 1, 41 (2007).
42B. R. Horowitz and T. Tamir, J. Opt. Soc. Am. 61, 586

(1971).
43X. Chen and C.-F. Li, Phys. Rev. E 69, 066617 (2004).
44J. A. Kong, B.-I. Wu, and Y. Zhang, Appl. Phys. Lett. 80, 2084

(2002).
45D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A.

Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506
(2003).

46S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J.
Stewart, J. Mod. Opt. 50, 1419 (2003).

47R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L.
Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho,
Appl. Phys. Lett. 78, 2620 (2001).

48F. Castellano, A. Bismuto, M. I. Amanti, R. Terazzi, M. Beck,
S. Blaser, A. Bachle, and J. Faist, J. Appl. Phys. 109, 102407
(2011).

49L. Long, M. Querry, R. Bell, and R. Alexander, Infrared Phys. 34,
191 (1993).

50B. Williams, Nature Photonics 1, 517 (2007).
51A. Dobroiu, C. Otani, and K. Kawase, Meas. Sci. Technol. 17, R161

(2006).

155152-11

http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1364/JOSA.61.000586
http://dx.doi.org/10.1364/JOSA.61.000586
http://dx.doi.org/10.1103/PhysRevE.69.066617
http://dx.doi.org/10.1063/1.1462865
http://dx.doi.org/10.1063/1.1462865
http://dx.doi.org/10.1063/1.1554779
http://dx.doi.org/10.1063/1.1554779
http://dx.doi.org/10.1063/1.1367304
http://dx.doi.org/10.1063/1.3576153
http://dx.doi.org/10.1063/1.3576153
http://dx.doi.org/10.1016/0020-0891(93)90008-U
http://dx.doi.org/10.1016/0020-0891(93)90008-U
http://dx.doi.org/10.1038/nphoton.2007.166
http://dx.doi.org/10.1088/0957-0233/17/11/R01
http://dx.doi.org/10.1088/0957-0233/17/11/R01



