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First-Matsubara-frequency rule in a Fermi liquid. II. Optical conductivity
and comparison to experiment
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Motivated by recent optical measurements on a number of strongly correlated electron systems, we revisit the
dependence of the conductivity of a Fermi liquid σ (�,T ) on the frequency � and temperature T . Using the Kubo
formalism and taking full account of vertex corrections, we show that the Fermi-liquid form Reσ−1(�,T ) ∝
�2 + 4π 2T 2 holds under very general conditions, namely, in any dimensionality above one, for a Fermi surface
of an arbitrary shape (but away from nesting and van Hove singularities), and to any order in the electron-electron
interaction. We also show that the scaling form of Reσ−1(�,T ) is determined by the analytic properties of the
conductivity along the Matsubara axis. If a system contains not only itinerant electrons but also localized degrees
of freedom which scatter electrons elastically, e.g., magnetic moments or resonant levels, the scaling form changes
to Reσ−1(�,T ) ∝ �2 + bπ 2T 2, with 1 � b < ∞. For purely elastic scattering, b = 1. Our analysis implies that
the value of b ≈ 1, reported for URu2Si2 and some rare-earth-based doped Mott insulators, indicates that the
optical conductivity in these materials is controlled by an elastic scattering mechanism, whereas the values of
b ≈ 2.3 and 5.6, reported for underdoped cuprates and organics, correspondingly, imply that both elastic and
inelastic mechanisms contribute to the optical conductivity.
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I. INTRODUCTION

Optical response of strongly correlated materials is an
invaluable tool for studying the dynamics of charge carriers.1

On par with the angular-resolved photoemission spectroscopy
which gives information about the single-particle self-energy,
optical experiments provide information about two other
important quantities: the dynamical effective mass and the
scattering rate of conduction electrons.

In the preceding paper2 (hereafter referred to as I), we
discussed constraints imposed on the functional form of the
retarded single-particle self-energy �R(ω,T ) by the “first-
Matsubara-frequency rule.” This rule stipulates that, under
certain conditions, a function obtained by analytic continuation
of Im�R(ω,T ) to the Matsubara axis must vanish at the
first fermionic Matsubara frequency ω → ±iπT . The familiar
scaling form of Im�R(ω,T ) in a generic Fermi liquid (FL) in
D > 2,

Im�R(ω,T ) = C(ω2 + π2T 2) (1.1)

(with a coefficient of exactly π2 in front of the T 2 term),
obviously satisfies this rule.

In this paper, we discuss a similar constraint, “the first
bosonic Matsubara-frequency rule,” imposed on the scaling
form of the optical conductivity σ (�,T ). Within the semi-
classical Boltzmann equation, the T 2 scaling of the dc
resistivity due to umklapp electron-electron scattering was
obtained by Landau and Pomeranchuk,3 and due to normal
scattering in a two-band metal by Baber.4 Later on, Eliashberg5

rederived this result from the Kubo formula, and showed
that it remains valid to all orders in the electron-electron
interaction. The �/T scaling of the “optical resistivity” of
a three-dimensional (3D) FL was first discussed by Gurzhi,6

who used a quantum Boltzmann equation to show that

Re[ρ(�,T )] ≡ Re[σ−1(�,T )] = A′[�2 + 4π2T 2]. (1.2)

The � and T dependences of Reρ(�,T ) are similar to those
of the leading term in Im�R(ω,T ) [cf. Eq. (1.1)], but the ratio
of the T 2 and �2 terms is now 4π2 instead of π2.

This difference is not accidental. Indeed, Im�R(ω,T )
measures the decay rate of single-particle excitations, which
are fermions; hence, the thermal part of Im�R(ω,T ) contains
the square of first fermionic Matsubara frequency (=πT )
rather than T itself. On the other hand, Reρ(�,T ) measures
the decay rate of current fluctuations, which are bosons; hence,
the thermal part of Reσ (�,T ) contains the square of the first
(nonzero) bosonic Matsubara frequency (=2πT ). Also not
coincidentally, Eq. (1.2) is of the same form as the sound
absorption rate in FLs.7

To the best of our knowledge, the scaling form predicted
by Eq. (1.2) has never been verified experimentally in conven-
tional metals. On the other hand, the �/T scaling of Reρ(�,T )
has been studied intensively in strongly correlated materials,
e.g., in heavy-fermion metals and doped Mott insulators. The
result of these studies is quite surprising: whenever it was pos-
sible to fit the � and T dependences of Reρ(�,T ) by quadratic
functions, the coefficient b ≡ π2T 2/�2 was found to be quite
different from 4. This issue was highlighted by recent study8

of Reρ(�,T ) in the “hidden-order” (HO) heavy-fermion
compound URu2Si2, where b was found to be close to 1 above
the 17.5 K transition to the HO state. In fact, the value of
b ≈ 1 was found in a number of other materials, including two
rare-earth-based doped Mott insulators Nd0.905TiO3 (Ref. 9)
and Ce0.095Ca0.05TiO3.04 (Ref. 10). Another recent study11

reports b ≈ 2.3 in three underdoped cuprates (HgBa2CuO4+δ ,
YBa2Cu3O6.5, and Bi2201). Whereas the observed value of b

is less than 4 in most of the cases, there is one exception: b ≈
5.6 was reported for a quasi-two-dimensional (2D) organic
material of the BEDT-TTF family.12 A deviation of b from
4 can also be inferred from the optical data on UPt3,13

Sr2RuO4,14 and Cr;15 see Ref. 8 for more details.
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Motivated by these findings, we revisit the �/T scaling
of the optical conductivity of a FL in this paper. We extend
Eliashberg’s analysis of the Kubo formula for the conductivity
to finite � and obtain an expression for σ (�,T ) to all orders
in the electron-electron interaction. To discuss the results,
it is convenient to identify two distinct frequency regimes,
the “high-frequency” and “low-frequency” ones, and also two
types of FLs, the “conventional” and “nonconventional” ones.

As far as the frequency regimes are concerned, � is larger
than Im�R(�,T ) in the high-frequency regime, while � <

Im�R(�,T ) in the low-frequency one. (The low-frequency
regime also includes the dc limit of � = 0.) In the context of
the standard Drude formula, these regimes are also referred
to as “nondissipative” or “reactive” and “dissipative,” corre-
spondingly.

Turning to two types of FLs, we define a “conventional
FL” as such in which the leading ω and T dependences of
Im�R(ω,T ) are given by ω2 + π2T 2, as in Eq. (1.1), while the
higher-order terms may be nonanalytic. In a “nonconventional
FL,” already the leading term in Im�R(ω,T ) is a nonanalytic
function of ω and T . For a wide class of interactions that
remain finite at q = 0, the demarcation line between the two
types of FLs is determined by the dimensionality: the case of
D > 2 corresponds to conventional FLs, while the case of 1 <

D < 2 corresponds to nonconventional FLs. In the latter case,
Im�R(ω,0) ∝ |ω|D and Im�R(0,T ) ∝ T D . In the marginal
case of D = 2, Im�R(ω,0) ∝ ω2 ln |ω| and Im�R(0,T ) ∝
T 2 ln T .

In the high-frequency regime, current-carrying quasipar-
ticles can be considered as nearly free, so that the residual
interaction among quasiparticles, which gives rise to their
finite lifetime, can be treated as a perturbation. We show
that in this regime, Reρ(�,T ) is given by Eq. (1.2) for both
conventional and nonconventional FLs, as well as for the
marginal case of D = 2, despite qualitative differences in the
self-energies in these cases. Our analysis keeps full track of
the vertex corrections to the conductivity and thus takes both
normal and umklapp scattering processes into account. We
argue that the 4π2 coefficient of the T 2 term in this formula
is a consequence of the “bosonic first-Matsubara-frequency
rule,” which stipulates that a function obtained by analytic
continuation of Reρ(�,T ) to the first (nonzero) bosonic
Matsubara frequency � → ±2iπT does not have a T 2 term.
Equation (1.2) obviously obeys this rule.

In the low-frequency regime, Reρ(�,T ) differs from
Eq. (1.2) because the interaction among quasiparticles can
no longer be treated as a perturbation, and this affects the T 2

and �2 terms in Reρ(�,T ) in different ways. We analyzed the
change in the functional form of ρ(�,T ) between the high- and
low-frequency regimes in the “zero-bubble approximation”16

and found that the change is numerically quite small, i.e., the
formula

Reρ(�,T ) = A′(�2 + bπ2T 2) (1.3)

with b ≈ 4 remains quite accurate down to the lowest �,
although the exact form of Reρ(�,T ) in the entire range of �

is different from that in Eq. (1.2). We also analyzed Reρ(�,T )
in the “incoherent regime,” where all energy scales are of
the same order, i.e., � ∼ T ∼ Re�R(�,T ) ∼ Im�R(�,T ),

and again found a good fit by the �2 + bπ2T 2 form
with b ≈ 4.

Equation (1.3) is to be taken with some caution because
the zero-bubble approximation neglects the corrections to the
current vertex in the polarization bubble. Physically, vertex
corrections differentiate between normal and umklapp scat-
tering processes. In the high-frequency regime, both normal
and umklapp processes contribute to the resistivity provided
that the Fermi surface (FS) is sufficiently anisotropic6,17,18

(a precise definition of “sufficiently anisotropic” is given
in Sec. IV). As a result, Eq. (1.2) remains valid when the
vertex corrections are included. The only change is that the
prefactor A′ now contains a sum of normal and umklapp
scattering amplitudes. In the low-frequency regime and, in
particular, at � = 0, the resistivity of an impurity-free system
is nonzero only in the presence of umklapp scattering, although
normal processes also contribute once umklapp processes are
allowed.19 As a result, the prefactor A in the dc resistivity

ρ(0,T ) = 4π2AT 2 (1.4)

contains some function of the normal and umklapp scattering
amplitudes rather than just their sum, and is therefore different
from A′ in the high-frequency limit. What remains to be seen
is how the functional form of Reρ(�,T ) evolves between
the dc and high-frequency limits beyond the zero-bubble
approximation.

We then discuss the experiment, focusing mostly on recent
optical measurements on URu2Si2.8 Given that the observed
values of the coefficient b are substantially different from the
FL value b = 4, we argue that the existing optical data can
not be explained only by the electron-electron interaction.
Following an analogy with the Kondo effect,20 we propose
a phenomenological model which, in addition to electron-
electron scattering, contains also elastic scattering by some
localized decrees of freedom, e.g., magnetic moments or
resonant levels. In this model, the self-energy is a sum of
two parts: the elastic one, described by an ω2 term, and the
inelastic one, described by the standard FL term ω2 + π2T 2,
i.e.,

Im�R(ω,T ) = C[aω2 + (ω2 + π2T 2)], (1.5)

where the relative weight of the elastic and inelastic contri-
butions a is an adjustable parameter of the model. Within the
zero-bubble approximation, the coefficient b in Eq. (1.3) is
related to a via

b = a + 4

a + 1
. (1.6)

For practical purposes, the model is meaningful only for −1 <

a < ∞; consequently, 1 � b < ∞. The FL value of b = 4 is
reproduced for a = 0. The opposite limit of a = ∞ (and thus
b = 1) corresponds to a purely elastic scattering mechanism.
The range 1 < b < 4 corresponds to a mixture of elastic and
inelastic mechanisms with a > 0, whereas b > 4 corresponds
to an elastic contribution with −1 < a < 0.

In this classification scheme, the value of b ≈ 1, reported
in Refs. 8–10, indicates a purely elastic scattering mechanism,
whereas b ≈ 2.3 (and thus a ≈ 1.3) and b ≈ 5.6 (and thus
a ≈ −0.35), reported in Refs. 11 and 12, correspondingly,
point at a mixture of elastic and inelastic mechanisms.
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We discuss one possible mechanism that leads to b ≈ 1, i.e.,
scattering at resonant levels, and show that this mechanism
explains the data on URu2Si2 reasonably well. We refrain
from identifying the microscopic origin of the resonant levels
(except for noting that extrinsic resonant impurities can hardly
be the culprits) and merely surmise that intrinsic deep electron
states can play a role of incoherent resonant scatterers at
relatively high energies, where a coherent Bloch state is not
formed yet.

Whereas the resonant-level model explains the optical
data in the “b = 1” materials, the T dependence of the dc
resistivity can be explained only by invoking a sufficiently
strong electron-electron interaction which, when combined
the resonant elastic scattering, does not significantly affect
the optical scattering rate. We show that dc and optical
measurements probe different scattering mechanisms: while
a dc measurement is sensitive to both elastic and inelastic
mechanisms, an optical measurement probes primarily the
elastic channel.

The rest of the paper is organized as follows. In Sec. II, we
discuss the optical conductivity of a FL in the high-frequency
regime within the Kubo formalism. In Sec. III, we extend the
analysis to both the low-frequency and incoherent regimes
within the zero-bubble approximation for the current-current
correlator. In Sec. IV, we discuss the interplay between
normal and umklapp contributions to the resistivity in dif-
ferent frequency regimes. Section V addresses comparison
to the experiment. In Sec. V A, we discuss the status of the
experiment and conclude that it can not be explained within the
model which includes only the electron-electron interaction.
In Sec. V B, we introduce a phenomenological model which
combines elastic and inelastic scattering mechanisms, and
classify the observed values of the coefficient b within this
model. In Sec. V C, we apply the resonant-scattering model to
the data on URu2Si2. Section VI presents our conclusions.

II. OPTICAL CONDUCTIVITY OF A FERMI LIQUID

A. Kubo formula: Rigorous treatment

1. Preliminaries

As in I, we consider an electron system on a lattice. We
assume that the FS does not have nested parts and is away
from van Hove singularities but is otherwise arbitrary. Near the
FS, the bare electron dispersion ε0

k (measured from the Fermi
energy) is approximated by ε0

k = v0
kF

· (k − kF ), where kF is
a vector in the direction of k and residing on the FS. Following
the conventional FL methodology, we divide electron states
into “low-energy” (near the Fermi energy) and “high-energy”
ones. Effects of the interaction via high-energy states are
parametrized by the self-energy �̃R

k (ω). An expansion of
�̃R

k (ω) near the FS,

�̃R
k (ω) = iω

(
1

ZkF

− 1

)
− (

ukF
− v0

kF

) · (k − kF ), (2.1)

defines the quasiparticle renormalization factor

ZkF
=

(
1 + ∂�̃R

kF

∂ω

∣∣∣∣
ω=0

)−1

(2.2)

and renormalized dispersion εk = vkF
· (k − kF ) of the low-

energy states, where

vkF
= ZkF

ukF
= ZkF

(
v0

kF
− ∇k�̃k(0)

∣∣
k=kF

)
. (2.3)

[As in I, we define the single-particle self-energy as
G−1

k (ω,T ) = ω + �k(ω,T ) − εk.] The renormalization factor
and both velocities (vkF

and ukF
) are defined at point kF of the

FS and, in general, vary over the FS. The (Matsubara) Green’s
function describing the low-energy electron states is given by

G0
k(ωm) = 1

iωm/ZkF
− ukF

· (k − kF )
= ZkF

iωm − εk
, (2.4)

where ωm = πT (2m + 1).
The combination of properties formulated above defines the

“bare” low-energy theory described by the action

S = T
∑
ωm

∫
k
ψ̄ωm,k

[
iωm/ZkF

− ukF
· (k − kF )

]
ψωm,k,

(2.5)

where
∫

k is a shorthand notation for
∫

dDk/(2π )D . The resid-
ual interaction between low-energy quasiparticles is described
by an instantaneous potential Uq, which is already dressed
up by high-energy states and assumed to be nonsingular
for any q that connects two points on the FS, including
q = 0. Dynamic screening of the interaction by low-energy
states, which gives rise to finite lifetime of quasiparticles and
hence finite conductivity, is treated explicitly. To avoid double
counting, we assume that mass renormalization is already
absorbed into the parameters of the bare theory.

In the presence of an external electromagnetic field de-
scribed by vector potential A, the momentum k in the bare
action [Eq. (2.5)] is replaced by k − eA/c. The corresponding
current vertex contains the “charge velocity” ukF

[Eq. (2.3)].
Note that ukF

is renormalized only by the k-dependent part of
�̃R

k (ω),5,21 in contrast to the full Fermi velocity vkF
, which is

renormalized both by ∇k�̃
R and ∂�̃R

kF
/∂ω.

To simplify notations, we assume that a metal has cubic
symmetry, in which case the conductivity tensor reduces to
σij = δijσ . The diagonal component of the conductivity is
given by the Kubo formula

σ (�,T ) = e2

i�
[KR(�,T ) + Kdia(T )], (2.6)

where KR(�,T ) = KR
1 (�,T ) + KR

2 (�,T ) is the retarded
current-current correlation function, represented by a sum of
two diagrams in Fig. 1, and (e2/i�)Kdia(T ) is the diamagnetic
part of the conductivity, which cancels the � = 0 term in
KR(�,T ) [the sum KR(0,T ) + Kdia(T ) must vanish for a
normal metal by gauge invariance]. In what follows, we assume

FIG. 1. Diagrams for the current-current correlation function: K1

(diagram 1) and K2 (diagram 2). The “four-momenta” in diagram 2
are K = (ωm,k), K ′ = (ωm′ ,k′), and Q0 = (�n,0). The shaded box
is the vertex kk′ (ωm,ωm′ ,�n).
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that the � = 0 piece is already subtracted from KR(�,T ) and
do not specify an explicit form of Kdia.

On the Matsubara axis, the diagrams in Fig. 1 are given by

K1(�n,T ) = − 2

D
T

∑
ωm

∫
k
u2

kF
Gk(ωm)Gk(ωm + �n) (2.7)

and

K2(�n,T ) = − 2

D
T 2

∑
ωm,ωm′

∫
k

∫
k′

ukF
· uk′

F
Gk(ωm)

×Gk(ωm + �n)kk′(ωm,ωm′ ,�n)Gk′(ωm′)

×Gk′ (ωm′ + �n), (2.8)

where the Green’s functions and the vertex part
kk′(ωm,ωm′ ,�n) contain the effects of residual interaction
between low-energy quasiparticles.

The calculation of diagram 1 in Fig. 1 is fairly straightfor-
ward. Replacing the Matsubara sum by a contour integral and
converting the momentum integral into integrals over dεk and
over the FS element dAkF

, we obtain for the imaginary part of
KR

1

ImKR
1 (�,T )

= 2

πD(2π )D

∮
dAkF

u2
kF

vkF

∫
dω

∫
dεk

×[nF (ω) − nF (ω + �]ImGR
k (ω)ImGR

k (ω + �), (2.9)

where nF (ε) is the Fermi function, G
R,A
k (ω) = ZkF

/[ω −
εk ± iZkF

Im�R
k (ω)], and Im�R

k (ω) accounts for the residual
interaction.

2. Canonical Fermi liquids

In this section, we restrict the analysis to conventional FLs.
(We will show later, in Sec. II A3, that the result for the
conductivity applies to nonconventional FLs as well). For a
conventional FL on the lattice, Im�R

kF
(ω,T ) is still given by

Eq. (1.1) with the only proviso that the prefactor now varies
along the FS: C → CkF

. The dependence of Im�R
kk

(ω,T ) on
εk is weak and can be neglected. The integral over εk is then
solved readily:∫

dεkImGR
k (ω)ImGR

k (ω + �)

= πZkF
Im

[
�/ZkF

+ iIm�R
kF

(ω,T )

+ iIm�R
kF

(ω + �,T )
]−1

. (2.10)

The high-frequency regime is defined by the condition

� 	 ZkF
Im�R

kF
(�,T ). (2.11)

For a conventional FL, this condition implies that � 	
CkF

max{�2,T 2} for all points on the FS. The relation between
� and T is arbitrary, but we do assume that �,T 
 EF . In
this regime, Eq. (2.10) is expanded in the imaginary parts of
the self-energies and their sum is averaged with the difference
of the Fermi functions. For a conventional FL, the last step

amounts to∫ ∞

−∞
dω[nF (ω)−nF (ω + �)]

[
Im�R

kF
(ω) + Im�R

kF
(ω + �)

]
= CkF

∫ ∞

−∞
dω[nF (ω) − nF (ω + �)]

× [ω2 + (ω + �)2 + 2(πT )2]

= 2

3
CkF

�(�2 + 4π2T 2). (2.12)

It is at this step when the difference between the coefficients of
the T 2 parts in Im�R

kF
and σ occurs. Using (2.12), we obtain

Reσ1(�,T ) = e2

�
ImKR

1 (�,T ) = B1
�2 + 4π2T 2

�2
(2.13)

with B1 = [4e2/3D(2π )D]
∮

dAkF
(u2

kF
/vkF

)Z3
kF

CkF
. In the

high-frequency regime, Reσ 
 Imσ = ω2
p/4π�, where ωp

is the effective plasma frequency. Expanding ρ(�,T ) =
1/σ (�,T ) in Reσ/Imσ , we obtain Eq. (1.2) with prefactor
A′ = (4π )2B1/ω

4
p.

To analyze the contribution of the vertex corrections
represented by diagram 2 in Fig. 1, we perform analytic
continuation of K2(�n,T ), following the procedure developed
by Eliashberg.5 The resulting expression is quite involved,
but to find the real part the conductivity we need only that
part of KR

2 (�,T ) which contains the product of the retarded
and advanced Green’s functions located on the same side
of the diagram relative to the vertex. Only such products
will survive upon integrating over εk and εk′ . In general,
KR

2 (�,T ) contains vertices which are obtained by analytically
continuing the Matsubara vertex kk′(ωm,ωm′ ,�n) via the
following relations: iωm = ω + iImω, iωm′ = ω′ + iImω′,
and i�n = � + iIm�, where all the imaginary parts are
infinitesimally small. Analytic properties of continued vertices
are determined by relations between the imaginary parts of the
three frequencies. The part of KR

2 (�,T ) that we are interested
in contains vertices II−IV

kk′ (ω,ω′,�), where Roman numerals
indicate regions in the (Imω, Imω′) plane, as shown in Fig. 3
(for definiteness, we set Im� > 0). Explicitly,

KR
2 (�,T ) = 1

4π2D

∫
k

∫
k′

ukF
· uk′

F

∫
dω

∫
dω′[nF (ω)

− nF (ω + �)]GR
k (ω + �)GA

k (ω)kk′(ω,ω′,�)

×GR
k′(ω′ + �)GA

k′(ω′), (2.14)

where

kk′ = coth
ω′ − ω

2T

(
II

kk′ − III
kk′

) + coth
ω + ω′ + �

2T

× (
III

kk′ − IV
kk′

) − tanh
ω′

2T
II

kk′ + tanh
ω′ + �

2T
IV

kk′ .

(2.15)

[For brevity, we do not spell out the arguments ω,ω′,� which
are the same in all vertices in Eq. (2.15).]

Equations (2.15) and (2.14) allow one to extract the � and
T dependences for any vertex diagram. For example, diagram
a in Fig. 2 reads


{a}
kk′(ωm,ωm′ ,�n) = U 2

k−k′�k−k′(ωm − ωm′ ), (2.16)
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K+Q K’+Q

=

K K’

+ + + + ...

0 0

Γ

(a) (c) (d)(b)

FIG. 2. Lowest-order diagrams for the vertex in diagram 2 of
Fig. 1.

where �q(ε) is the polarization bubble. Continuing this expres-
sion to real frequencies, we obtain 

a,II
kk′ = U 2

k−k′�
R
k−k′(ω −

ω′) in region II, where Im(ω − ω′) > 0, and 
a,III
kk′ = 

a,IV
kk′ =

U 2
k−k′�

A
k−k′ (ω − ω′) = Uk−k′q2[�R

k−k′(ω − ω′)]∗ in regions
III and IV, where Im(ω − ω′) < 0. Combining the contribu-
tions from regions II–IV, we obtain


{a}
kk′ = U 2

k−k′
{
2 Re�R

k−k′(ω − ω′)[nF (ω′) − nF (ω′

+�)] + 2i Im�R
k−k′ (ω − ω′)[2nB(ω′ − ω)

+ nF (ω′) + nF (ω′ + �)]
}
, (2.17)

where nB(ε) is a Bose function.
As before, we replace each of the two momentum

integrals in Eq. (2.14) by integrals over the Fermi sur-
face and over the dispersion, and set k = kF and k′ =
k′

F everywhere except for the Green’s functions. In the
high-frequency regime, the Green’s functions in Eq. (2.14)
can be replaced by the bare ones [Eq. (2.4)]; then, the
product

∫
dεkG

R
k (ω + �)GA

k (ω)
∫

dεk′GR
k′(ω′ + �)GA

k (ω′) =
−4π2Z2

kF
Z2

k′
F
/�2 is real. Therefore, the imaginary part of the

current-current correlator is given by Im
{a}
kk′ from Eq. (2.17).

Recalling that Im�q(�) = −Dq�, where

Dq = 1

(2π )2

∮
dAk′

F

vk′
F

Zk′
F
Zk′

F +qδ
(
εk′

F +q
)∣∣

εk′ =0 (2.18)

[cf. Eq. (2.7) of I], and relabeling ω′ → ω + �′, we obtain the
contribution of diagram a to the conductivity

Reσ {a}
2 − = 8π2e2

(2π )D

∮
dAkF

∮
dAk′

F

∫
dω

∫
d�′N (ω,�′,�)

×ukF
· uk′

F

vkF
vk′

F

Z2
kF

Z2
k′

F
DkF −k′

F
U 2

kF −k′
F
, (2.19)

where

N (ω,�′,�) = �′

�3
[nF (ω) − nF (ω + �)]

× [2nB (�′) + nF (ω + �′)
+ nF (ω + �′ + �)]. (2.20)

The integral over �′ in Eq. (2.19) is the same as in the sum
of the imaginary parts of the self-energies corresponding to
diagram a in Fig. 1 of I [cf. Eq. (2.5a) in I]. This integral gives
1
2 [ω2 + (ω + �)2 + 2π2T 2]. Averaging the last result with the
difference of the Fermi functions, as in Eq. (2.12), we obtain∫

dω

∫
d�′N (ω,�′,�) = 1

3

�2 + 4π2T 2

�2
. (2.21)

Thus, Reσ {a}
2 differs from Reσ1 in Eq. (2.13) only by a

prefactor, which can be read off from Eq. (2.19).

Im ω= Im ’ω

ω’Im (ω +    + Ω)=0

Imω
−Im

II

III

IV

I

Im ’ω

Ω

FIG. 3. (Color online) Regions of the (Imω,Imω′) plane.

Other diagrams for KR
2 (�,T ) can be analyzed in a similar

fashion. For example, diagrams b and c in Fig. 2 are similar to
diagram a with the only difference that U 2

k−k′Im�R
k−k′(ω − ω′)

in Eq. (2.17) is replaced by Uk−k′ImPR
k,k′ (ω′ − ω), where

ImPR
k,k′ (�) =

∫
dε[nF (ε) − nF (ε + �)]

×
∫

p
ImGp(ε)ImGp+k′−k(ε + �)Uk−p.

(2.22)

In I, we showed that the analytic properties of PR in the
frequency plane are the same as those of the polarization
bubble. Therefore, the contributions of diagrams b and c to
Reσ , which are equal to each other, also scale as (�2 +
4π2T 2)/�2 with a prefactor different from that of diagram
a. [For Uq = const, the combined contribution of b and c

cancels that of a.]
The Cooper-channel vertex (diagram d) appears to be

somewhat different from particle-hole diagrams a–c but, in
fact, it gives the same result. To see this, we notice that
the Matsubara vertex in diagram d depends only on the
combination ωm + ωm′ + �n; hence, analytic properties of
the retarded vertex depend on whether one is above or
below the Imω + Imω′ + Im� = 0 line in Fig. 3. Therefore,
II

kk′ = III
kk′ = (IV

kk′)∗, and the vertex reduces to


{d}
kk′ = 2 ReCR

kk′(ω,ω′,�)[nF (ω′) − nF (ω′ + �)]

+ 2i ImCR
kk′(ω,ω′,�)[2nB(ω′ + ω + �)

+ nF (ω′) + nF (ω′ + �)]. (2.23)

As before, we need only the imaginary part of the vertex which
contains

ImCR
kk′ =

∫
p

∫
dε

π
ImGR

p (ε)ImGR
k+k′−p(ω + ω′ + � − ε)

× tanh
ε

2T
Uk−pUp−k′ . (2.24)

[For Uk = const, C reduces to a Cooper bubble.] Substituting
explicit expressions for the spectral functions and integrating
over ε and εp, we obtain ImCR

kk′ = C0(ω + ω′ + �) in the
low-frequency limit, where C0 contains a product of two
interactions averaged over the FS. Substituting this result into
the imaginary part of Eq. (2.23), and relabeling ω → −ω and
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ω + ω′ + � → �′, we again arrive at the same integral as in
Eq. (2.21).

The recipe for extracting the �2 + 4π2T 2 scaling form
of Reρ from a diagram of arbitrary order is now clear: one
needs to extract a factor of � from either a particle-hole or
particle-particle convolutions of the Green’s functions in the
vertex, integrate it with the combination of the Fermi and
Bose functions in Eq. (2.20), and then average the result with
the difference of the Fermi function. Up to a prefactor, all
diagrams produce the same �/T scaling form of Reρ given
by Eq. (1.2). As it was the case with the self-energy considered
in I, the overall prefactor can not be expressed in a compact
form.

3. Noncanonical Fermi liquids

The analysis of the preceding section was limited to the
case of a conventional FL, when the infrared singularity
arising from the �/q scaling of the polarization bubble
is suppressed by the phase-space volume, and each of the
diagrams considered above is convergent on its own. In D � 2,
the phase space is too small to suppress the singularities and the
self-energy scales with ω in a noncanonical way: as ω2 ln |ω|
in D = 2 and as |ω|D in 1 < D < 2. However, infrared
singularities in different diagrams for the conductivity cancel
each other. This cancellation manifests the gauge invariance
of the conductivity. In perhaps more familiar terms, this effect
makes the conductivity to depend on the transport rather than
single-particle relaxation time. It is more convenient to see this
effect in the Boltzmann equation, where the electron-electron
contribution to the conductivity is expressed via a change in
the electron current carried by two electrons before and after
a collision:17,18 (�v)2 ≡ 〈(vk + vp − vk−q − vp+q)2〉, where
〈. . .〉 stands for averaging over the FS. For q → 0, (�v)2

vanishes as q2, which suppresses the infrared singularity for
D > 1.

To see how the same cancellation occurs in the Kubo
formula, we consider two diagrams: diagram 1 in Fig. 1 with
both Green’s functions dressed by a single-bubble self-energy
correction (diagram a in Fig. 1 of I) and diagram 2 in Fig. 1 with
vertex correction a in Fig. 2. As we are interested in the q = 0
limit, it is convenient to decompose the momentum transfer q
into components along and perpendicular to the local Fermi
velocity: q = q||v̂k + q⊥, where v̂k = vk/vk, q|| 
 q⊥ 
 k̄F ,
and k̄F is the characteristic “radius” of the FS. Accordingly,
the (renormalized) dispersion is expanded as

εk+q = εk + vkq|| + q2
⊥/2mk, (2.25)

where mk measures the local curvature of the FS. The
imaginary part of the self-energy insertions into diagram 1
of Fig. 1 is given by [cf. I, Eq. (2.5a)]

Im�
R,a
k (ω,T ) =

∫
q
U 2

q

∫
d�

π
[nB(�) + nF (ω + �)]

×ImGR
k+q(ω + �)Im�R

q (�), (2.26)

where, as before, Im�R
q (�) = −Dq� and Dq ∝ 1/q at q →

0. We neglect q|| everywhere but in ImGR
k+q(ω + �), integrate

over q||, and substitute the result into Eq. (2.7), which is then

expanded in Im�R . This yields

ImKR
1 (�,T )= �

πD

∫
dAkF

(2π )D
u2

kF

v2
kF

Z3
kF

∫
dω

∫
d�′N (ω,�′,�)

×
∫

dD−1q⊥
(2π )D−1

Dq⊥U 2
q⊥ZkF +q⊥ , (2.27)

where N is given by Eq. (2.20). In D � 2, the q⊥ integral
in Eq. (2.27) infrared divergent. However, this divergence
is canceled by vertex part a in Fig. 2. To see this cancella-
tion, we need to assume that not only the charge velocity,
defined by Eq. (2.3), but also its derivative on the FS is
known. Then, relabeling k′ = k + q in Eq. (2.14), we expand
uk+q as

uk+q = uk + ([v̂kq|| + q⊥] · ∇)uk. (2.28)

Substituting this expansion into Eq. (2.14) with  = {a}, we
obtain

ImKR
2a(�,T )

= �

2π2D

∫
dAkF

(2π )DvkF

∫
dεk

∫
dq||
2π

∫
dD−1q⊥
(2π )D−1

∫
dω

×
∫

d�′ukF
· [

ukF
+ ([v̂kq|| + q⊥] · ∇)uk|k=kF

]
×GR

k (ω + �)GA
k (ω)GR

k+q(ω + �′ + �)

×GA
k+q(ω + �′)U 2

qDqN (ω,�′,�). (2.29)

First, we integrate the product GR
k+qG

A
k+quk+q over q||, setting

q|| = 0 everywhere else in the integrand. The q|| independent
and linear-in-q|| terms in uk+q produce two integrals

∫
dq||
2π

(
1
q||

)
GR

k+q(ω′ + �)GA
k+q(ω′) =

⎛
⎜⎝

iZ2
kF +q⊥
vk�

Z2
kF +q⊥
iv2

k�

q2
⊥

2mk

⎞
⎟⎠ ,

(2.30)

where terms of order �, T were neglected compared to
q2

⊥/2mk in the second line. Next, we integrate GR
k GA

k over
εk, setting εk = 0 everywhere else in the integrand. The term
proportional to q⊥ vanishes by symmetry, and we obtain

ImKR
2a(�) = − �

πD

∮
dAkF

(2π )D

∫
dω

∫
d�′N (ω,�′,�)

×ukF
· wkF

v2
k

Z2
kF

, (2.31)

where

wkF
=

∫
dD−1q⊥
(2π )D−1

[
ukF

− q2
⊥

2mkF
vkF

(v̂k · ∇k)uk|k=kF

]
×Dq⊥U 2

q⊥Z2
kF +q⊥ . (2.32)

The sum of two contributions to ImK, i.e., Eqs. (2.27) and
(2.31), contains a combination∫

dAkF

v2
kF

Z2
kF

ZkF +q

[
u2

kF

(
ZkF

− ZkF +q⊥
)

+ q2
⊥

2mkF
vkF

ukF
· (v̂k · ∇k)uk|k=kF

ZkF +q⊥

]
, (2.33)
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which vanishes as q2
⊥ for q⊥ → 0 and thus suppresses the 1/q⊥

divergence for all D > 0. Therefore, the optical resistivity in
the high-frequency regime has the same �2 + 4π2T 2 form
both in conventional and nonconventional FLs. Notice that
the other transport coefficients behave differently in these
two cases; for example, the dc thermal conductivity of a 2D
FL behaves as 1/T ln T , as opposed to the 1/T behavior
in 3D.22

B. Bosonic first-Matsubara-frequency rule

Just as it was the case for a single-particle self-energy
considered in I, the �2 + 4π2T 2 scaling form of the optical
resistivity can be related to the analytic properties of the
current-current correlator along the Matsubara axis.

First, we consider the Matsubara version of diagram 1
in Fig. 1, given by Eq. (2.9). Recalling that sgn�kF

(ωm) =
sgnωm, we integrate over εk to obtain (for �n > 0)

K1(�n,T ) = − 2iT

D(2π )D−1

∮
dAkF

u2
kF

vkF

×
ωm=−πT∑

ωm=−�n+πT

1
i�n

ZkF

+�kF
(ωm+�n)+�kF

(ωm)
.

(2.34)

For �n = 2πT , only one term with ωm = −πT survives in
the sum

K1(2πT,T ) = − 2iT

D(2π )D−1

∮
dAkF

u2
kF

vkF

× 1
2πiT
ZkF

+ �kF
(πT ) + �kF

(−πT )
. (2.35)

Since the single-particle self-energy satisfies the first-
(fermionic) Matsubara-frequency rule, i.e., �kF

(πT ) =
�kF

(−πT ) = 0 + O(T D), the residual interaction drops out
from K1(2πT,T ) (to order T 3). Consequently, ImKR

1 (�,T )
vanishes [again, up to O(T D) terms], when contin-
ued to the first nonzero bosonic Matsubara-frequency
2πiT .

Next we integrate the Matsubara vertex [Eq. (2.8)] over
εk and εk′ , setting εk = ε′

k in the rest of the integrand. At
� = 2πT , only the ωm = ωm′ = −πT terms survive in the
fermionic Matsubara sums and, as before, the fermionic self-
energies, evaluated at ±πT , drop out. Therefore,

K2(2πT,T ) = − 2

D(2π )D

∮
dAkF

∮
dAk′

F

ukF
· uk′

F

vkF
vk′

F

×Z2
kF

Z2
k′

F
kF ,k′

F
(−πT, − πT,2πT ).

(2.36)

Particle-hole diagrams for k,k(ωm,ωm′ ,�n), e.g., diagrams
a–c in Fig. 2, depend on ωm − ωm′ , while particle-particle dia-
grams, e.g., diagram d, depend on ωm + ω′

m + �n. Since both
combinations of the frequencies vanish at ωm = ωm′ = −πT

and �n = 2πT , the vertex in Eq. (2.36) is static, i.e., it does not
contribute to the real part of the conductivity. Therefore, the
vertex-part contribution to ImKR(�,T ) vanishes as � = 2πiT

as well.

Strictly speaking, the proof presented above is valid only
for conventional FLs because the single-particle self-energy
obeys the fermionic first-Matsubara-frequency rule only in
this case. However, as it was the case in Sec. II A3, deviations
from the canonical behavior caused by infrared singularities
must cancel between different diagrams. We did not attempt
to repeat the proof for nonconventional FLs because the final
result, applicable to both conventional and nonconventional
FLs, clearly shows that Reσ vanishes at � = 2iπT .

III. KUBO FORMULA: ZERO-BUBBLE APPROXIMATION

A. High-frequency regime

Having shown that all diagrams for the conductivity
produce the same scaling form in the high-frequency regime,
we now consider the case of lower frequencies, when � �
ZkF

Im�kF
(�,T ). The full analysis of the Kubo formula in

this regime is rather involved. We will simplify our task
and focus on diagram 1 in Fig. 1 which does not include
vertex corrections. Although such an approximation can be
rigorously justified only in a few special cases, e.g., in the
D = ∞ limit of the Hubbard model16 or when electron-
electron scattering connects points of the FS with mutually
perpendicular Fermi velocities,23 it provides a convenient way
to describe a crossover between high- and low-frequency
regimes. We also adopt a slightly different version of the FL
theory, compared to that considered in the preceding part of
the paper. Namely, we assume that the self-energy is isotropic
and local, i.e., that it depends on ω much stronger than on
k − kF , and include the effects of interactions at all energy
scales into the self-energy which, to order ω2,T 2, is now
given by �R(ω,T ) = ω(1 + λ) + iC(ω2 + π2T 2). (Since we
neglected the variation of the self-energy over the Fermi
surface, the subscript kF will be suppressed from now on.)
Since this model accounts for effects on interaction at all
energy scales, the charge and Fermi velocities entering the
conductivity diagram coincide with the bare Fermi velocity:
ukF

= vkF
= v0

kF
. Integrating over the bare dispersion ε0

k, we
obtain for the conductivity given by diagram 1

σ1(�,T ) = iω2
p0

4π�

∫ ∞

−∞
dω

nF (ω − �) − nF (ω)

� + �R(ω,T ) + �R(� − ω,T )
,

(3.1)

where the bare plasma frequency is given by

ω2
p0

4π
= 2e2

D(2π )D

∮
dAkF

v0
kF

. (3.2)

To cast the high-frequency limit of Eq. (3.1) into a form of
the “extended Drude formula,”1 we expand in Im�R , evaluate
the frequency integral, and bring the result of integration back
into the denominator, which yields

σ HF
1 (�,T ) = i

ω2
p0

4π

1

�(1 + λ) + i 2C
3 (�2 + 4π2T 2)

(3.3)

or

ReρHF
1 (�,T ) = 4π

ω2
p0

2C

3
(�2 + 4π2T 2), (3.4)
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where HF stands for “high frequency.” We remind that
Eqs. (3.3) and (3.4) are still valid only in the high-frequency
limit, defined by Eq. (2.11).

B. Low-frequency regime

We now analyze σ1(�,T ) at � → 0 and finite T , when
condition (2.11) is no longer valid. In what follows, we will
need the numerical values of integrals

In =
∫ ∞

0

dx

cosh2 x

1

(x2 + π2/4)n+1
, (3.5)

in particular, I0 = 0.333 . . ., I1 = 0.117 . . ., I2 = 0.043 . . . .
Substituting � = 0 into Eq. (3.1) and integrating over ω, we
obtain the dc resistivity as

ρLF
1 (0,T ) = 4π

ω2
p0

(a0C)4π2T 2, (3.6)

where LF stands for “low frequency” and26

a0 = 2

I0π2
= 0.608 . . . . (3.7)

On the other hand, extrapolation of the high-frequency
conductivity in Eq. (3.3) to � = 0 gives

ρHF
1 (� → 0,T ) = 4π

ω2
p0

2C

3
4π2T 2. (3.8)

We see that, in the zero-bubble approximation, the prefactors
in Eqs. (3.4) and (3.8) turn out to be very close to each other:
(2/3)/0.608 = 1.097.

We can also obtain the frequency dependence of σ1(�,T )
at � → 0 by expanding Eq. (3.1) further in � and casting the
result into the form of Eq. (3.3). Expanding in � and evaluating
the integrals over ω, we obtain

σ LF
1 (�,T ) = i

ω2
p0

4π

1

a1�(1 + λ) + ia0C
(
4π2T 2 + a2�2 + ia3

(1+λ)2�2

C2T 2

) (3.9)

or

ρLF
1 (�,T ) = 4π

ω2
p0

a0C

(
4π2T 2 + a2�

2 + a3
(1 + λ)2�2

C2T 2

)
. (3.10)

In Eqs. (3.9) and (3.10), a0 is the same as in Eq. (3.7), while

a1 = a2
0I1π

4/4 = 1.053 . . . ,

a2 = a0π
4

4

∫ ∞

0

dx

cosh2 x

1(
x2 + π2

4

)3

[(
x2 + π2

4

) {
1 − 2x tanh x + 2

3

1 − 2 sinh2(x)

cosh2 x

} (
x2 + π2

4

) − 2x2

]
= 1.030 . . . ,

a3 = π4a0

32

(
I2 − π2a0

2
I 2

1

)
= 0.0036 . . . . (3.11)

In the FL regime, the imaginary part of the self-energy ∼CT 2

must be much smaller than T . Therefore, an expansion in �

should be in powers of �/CT 2. This is how the first and the
last terms (with coefficients a1 and a3, correspondingly) in the
denominator of Eq. (3.9) were obtained. However, because a3

happens to be numerically very small, we also included the
leading term from the expansion in �/T (with coefficient a2).
In practice, the last term in Eq. (3.9) can be ignored so that

ReρLF
1 (�,T ) ≈ 4π

ω2
p0

a0C(4π2T 2 + a2�
2), (3.12)

which is again very close to the high-frequency form (3.4).
Nevertheless, a change in the ratio of the prefactors in the

�2 and T 2 terms between the low- and high-frequency regimes
indicates that the actual dependence of Reρ1(�,T ) is actually
more complex than just a sum of the �2 and T 2 terms. We
computed σ1(�,T ) numerically and found that the � and T

dependences of Reρ1(�,T ) in the entire range �,T 
 EF are
well described by an approximate relation

Reρ1(�,T ) = 4π

ω2
p0

2C

3
(�2 + 3.65π2T 2). (3.13)

We see that the ratio of the π2T 2 and �2 terms in Reρ1(�,T )
is not equal to 4, but numerically is quite close to 4.
Notice, however, that a remarkable agreement between the
low- and high-frequency limits is valid only within the zero-
bubble approximation. We discuss effects not captured by this
approximation in Sec. IV.

C. Incoherent regime

Equation (3.4) is valid in the high-frequency regime, as
specified by Eq. (2.11). Such a regime always exists in a
coherent FL, where Im�R

kF
(�,T ) 
 max{�,T }. However,

the optical conductivity of strongly correlated metals is often
measured in the incoherent regime where all energy scales
are comparable, i.e., � ∼ T ∼ Re�R ∼ Im�R . Having this
in mind, it is instructive to study the behavior of Reρ1(�,T )
in the incoherent regime. In general, calculations in this
regime require a detailed knowledge of the electron-electron
interaction at all energy scales. We use here a simple model
in which Im�R(ω,T ) is assumed to follow the FL form
C(ω2 + π2T 2) all the way up to some cutoff frequency �

and to vanish at larger frequencies. The Kramers-Kronig
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transformation then yields

Re�R(ω,T ) = 2C�ω

π
− C

π
(ω2 + π2T 2) ln

� + ω

|� − ω|
≈ λω

1 + ω2+π2T 2

�2

, (3.14)

where λ = 2C�/π . At the last step, we replaced the actual
Re�R(ω,T ) by an interpolation formula which describes the
limits of both small and large (compared to �) frequencies
but does not have a kink at ω = �. These forms of Re�R

and Im�R are substituted into the Kubo formula for the
conductivity [Eq. (3.1)] and the integral over ω is calculated
numerically.

We found that in a wide range of � and T , including � ∼
T ∼ �, the optical resistivity can be well approximated by

Reρ1(�,T ) ≈ 4π

ω2
p0

0.64B(�2 + 3.86π2T 2). (3.15)

We see the same trend as we found earlier in the low-frequency
regime: the � and T dependences of the optical resistivity are
well approximated by the �2 and T 2 forms, although the actual
function is more complex than just the sum of these two terms,
and the ratio of the π2T 2 and �2 terms is smaller than 4 but
not far from 4.

IV. UMKLAPP PROCESSES

In Sec. II, we showed that any diagram for the conductivity
produces the same �/T scaling form as indicated in Eq. (1.2),
with a prefactor which depends on the electron spectrum. Since
no restrictions were imposed on the change in the electron
quasimomentum due to the interaction, both the normal and
umklapp processes were implicitly taken into account. The
interplay between these two types of processes is different,
however, in different frequency regimes.

In the high-frequency regime, as specified by Eq. (2.11),
the resistivity is finite already in the presence of only normal
processes, provided that Galilean invariance is broken by a
lattice. Even on a lattice, however, the leading �2 + 4π2T 2

term vanishes in several special cases, e.g., for a quadratic
or isotropic FS in any dimension, and for a convex and
simply connected in 2D.17,18,24 In these cases, the optical
resistivity scales as max{�4,T 4}. [The case of an isotropic
and quadratic spectrum corresponds to a Galilean-invariant
FL, the conductivity of which retains a free-electron Drude
form regardless of the electron-electron interaction.] In what
follows, we assume that the FS does not belong to any of the
types specified above, so that normal processes do contribute
to the leading term in the resistivity. If umklapp processes are
also allowed, they affect the resistivity as well. The prefactor
A′ in Eq. (1.2) is proportional to the interaction vertex . In
the high-frequency regime,  is just a sum of the vertices for
normal and umklapp processes (N and U, correspondingly),
i.e.,

A′ ∝ ′ = N + U. (4.1)

In the opposite limit of � = 0, the resistivity of an impurity-
free system is nonzero only in the presence of umklapp
scattering. However, once umklapp processes are allowed,

normal processes contribute as well,19 at least as a correction
to the umklapp contribution (again, if the FS is not of one of
the types specified in the preceding paragraph). The effective
vertex , entering Eq. (1.4), is now a nontrivial function of
N and U which can be represented by the following scaling
form:

A ∝  = U�(N/U). (4.2)

On general grounds, one can infer that �(x → 0) = C1 +
O(x) and �(x → ∞) = C2, where C1,2 are constants. The
ratio N/U and the function �(x) itself depend on the details
of both the band structure and the interaction and are by no
means universal. Therefore, prefactors A′ and A differ by a
nonuniversal factor, which is expected to be of order 1 but not
specifically close to 1.

Even if, for some reason, normal processes are absent, A

and A′ still differ because, when calculating the optical resis-
tivity in the high-frequency regime, one expands the Green’s
functions in the self-energy and averages the result with the
difference of the Fermi functions, while in the low-frequency
regime the self-energy must be kept in the denominators of the
Green’s functions. Although it turns out that A and A′ almost
coincide in the zero-bubble approximation (cf. Sec. III A),
there is no guarantee that this remains true if vertex corrections
are taken into account.

We conclude this section with a remark in regard to
a statement by Rosch and Howell,17 who argued that the
coefficients α0 and β0 in Reρ(�,T ) = α0�

2 + β0T
2 are not,

in general, related. For reasons explained above, this statement
is correct if Reρ(�,T ) is supposed to describe the whole
range of frequencies: from low to high. However, as we
have already emphasized, the formula α0�

2 + β0T
2 with

constant α0 and β0 does not describe a crossover between
the high- and low-frequency regimes, Nevertheless, α0 and
β0 are universally related in the high-frequency regime, where
β0/α0 = 4π2.

This section concludes our analysis of the conductivity of
a FL. To summarize, we have shown that the scaling form
of the optical resistivity in Eq. (1.2) is quite robust. In the
high-frequency regime, this form is produced by all diagrams
for the conductivity. If vertex corrections are neglected, then
one can go beyond the high-frequency regime. It turns out that,
with only small changes in the numerical coefficients, Eq. (1.2)
form works well beyond its nominal region of validity, i.e.,
both near the dc limit and at such high � and T that the
FL picture itself is not applicable. In other words, if the �

and T dependences of the resistivity are determined by the
electron-electron interaction, it is impossible to avoid the FL
scaling form with a coefficient of the T 2 term either equal or
very close to 4π2. As discussed in the next section, this is not
what the experiment shows.

V. COMPARISON TO EXPERIMENT

A. Summary of experimental observations:
Disagreement with the Fermi-liquid theory

Now, we turn to the discussion of the existing experimental
data on the �/T scaling of the optical resistivity. Although the
�2 dependence of Reρ(�,T ) was convincingly demonstrated
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in “weakly correlated metals” (Au, Ag, and Cu),25 the T

dependence, if measured, was found to result from the
electron-phonon rather than the electron-electron interaction.
This is not surprising since the electron-electron interaction in
these metals is relatively weak and one needs to go to very low
temperatures to observe the T 2 dependence. To the best of our
knowledge, the �2 + 4π2T 2 scaling still has not been verified
in weakly correlated metals.

On the other hand, the �/T scaling of the optical con-
ductivity in strongly correlated metals has been studied quite
extensively; a detailed summary of experimental observations
can be found in Ref. 8. The conclusion of these studies is quite
surprising: fitting the measured “optical scattering rate” into a
phenomenological form

1

τ (�,T )
≡ 4π

ω2
p

Reρ(�,T ) = const × (�2 + bπ2T 2) (5.1)

has not produced b close to 4 in any of the cases studied so far.
In some cases, e.g., in the heavy-fermion compound URu2Si2
(Ref. 8) above the 17.5 K transition into the HO state and in
rare-earth-based doped Mott insulators [Ce0.095Ca0.05TiO3.04

(Ref. 9) and Nd0.905TiO3 (Ref. 10)], b has been found to be
close to 1 rather than to 4. On the other hand, a recent study11

of the underdoped cuprates HgBa2CuO4+δ , YBa2Cu3O6.5, and
Bi2201 reports b ≈ 2.3, while another study of an organic
material from the BEDT-TTF family reports b ≈ 5.6.12

In the preceding sections, we showed that b ≈ 4 is a robust
property of FLs with electron-electron interaction. We must
then conclude that even though 1/τ (�,T ) in the compounds
mentioned above exhibits FL-like dependences on � and
T , the lack of a FL-like �/T scaling indicates that these
dependences do not come only from the electron-electron
interaction. In the remainder of this section, we attempt
to explain the discrepancy between the FL theory and the
experiment.

B. Elastic versus inelastic contributions
to the single-particle self-energy

In this section, we try to identify a mechanism responsible
for deviation of the observed coefficient b from the FL value
of 4. In the preceding sections, we analyzed the conductivity
of a FL under an implicit assumption that the only scattering
mechanism is the electron-electron interaction among itinerant
electrons. However, the FL of itinerant electrons is not the only
example of a FL. Another example is a FL state formed around
magnetic impurities at energies below the Kondo temperature.
In the Kondo case, there are two channels of interaction: an
elastic one, which contributes an ω2 term to the imaginary part
of the self-energy, and an inelastic or electron-electron one,
which contributes an ω2 + π2T 2 term. The relative weight
of these two contributions depends on the strength of the
onsite electron-electron interaction, which can be conveniently
parametrized by the Wilson ratio R.20 In the unitary limit,
when R = 2, the elastic channel is twice more efficient than
the inelastic one, i.e.,

Im�R(ω,T ) = B − 2
3C ′ (ω2 + 1

2 [ω2 + π2T 2]
)

= B − C ′ (ω2 + 1
3π2T 2

)
, (5.2)

where B is the ω-independent part of the elastic contribution
and C ′ > 0. The reduction of the T 2 contribution to Im�R is
reflected in the optical scattering rate, which is obtained, as
before, by substituting Eq. (5.2) into the Kubo formula (3.1)
(in the zero-bubble approximation) and integrating over ω:

1

τ (�,T )
= B − 2C ′

3
(�2 + 2π2T 2). (5.3)

Thus, the Kondo FL belongs to a different universality class
with b = 2. This does not explain the experiment yet because
of the nonmetallic signs of the � and T dependences of
1/τ (�,T ) in Eq. (5.3), as opposed to the metallic signs
observed in the experiment, at least at the lowest frequencies.
However, this gives us an idea to ask: How does a reduction of
the inelastic contribution to the self-energy affect the relative
weight of the �2 and T 2 terms in the optical conductivity?

To answer this question, we introduce a phenomenological
form of the self-energy

Im�R(ω,T ) = �el(ω) + C(ω2 + π2T 2). (5.4)

The first term describes a contribution of the elastic channel
which arises from the energy dependence of the effective
scattering cross section. However, since scattering is elastic,
its cross section does not depend on the temperature (provided
that the number and other properties of the scattering centers
do not vary with T ) and �el(ω) is T independent. The second
term describes the contribution of inelastic electron-electron
interaction, which is the same as in a conventional FL. A
particular form of �el(ω) is important for determining the
actual behavior of the optical conductivity, especially if �el(ω)
is a sharp function of ω, as it is the case for resonant scattering,
considered in the next section. For the time being, however,
we assume only that �el(ω) is an analytic function of ω and
expand it to second order in ω as

�el(ω) = �el(0) + �′
el(0)ω + aCω2, (5.5)

where the constant C [the same as in Eq. (5.4)] was factored
out for convenience, and a is another constant which can be of
either sign. We call the elastic contribution “metallic” if a > 0
and “nonmetallic” if a < 0. On the other hand, the inelastic
contribution is always metallic because C > 0 (which is not
the case for the Kondo model). Combining Eqs. (5.4) and (5.5),
we obtain

Im�R(ω,T ) = �el(0) + �′
el(0)ω + C[aω2 + (ω2 + π2T 2)].

(5.6)

The aω2 term mimics the ω2 dependence of the inelastic contri-
bution but does not have its T 2 counterpart. We emphasize that
the ω and T dependences of the inelastic contribution should be
consistent with the fermionic first-Matsubara-frequency rule,
which stipulates that the inelastic term in Eq. (5.4) must vanish
upon replacing ω by ±iπT . This rule, which is obviously
satisfied with our choice for the inelastic part, does not allow
for changes in the relative weight of the ω2 and T 2 terms in
this part. Next, we substitute Eq. (5.4) into (3.1), integrate over
ω, upon which the linear-in-ω term in Im�R(ω,T ) vanishes,
and obtain the optical scattering rate as

1

τ (�,T )
= 1

τ0
+ 2

3
(a + 1)C[�2 + bπ2T 2] (5.7)
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with

b = a + 4

a + 1
. (5.8)

The residual term 1/τ0 contains a contribution from static
disorder (not considered explicitly here), and we absorbed �el

into this term as well.
Now, we discuss constraints imposed on the parameter a,

and thus on b. For a < −1, the prefactor of the second term
in Eq. (5.7) is negative, i.e., the � and T dependences of
1/τ (�,T ) are nonmetallic. Since this does not correspond to
any of the experiments, we discard this possibility. The special
case of a = −1 corresponds to 1/τ (�,T ) which depends only
on T but not on �. Discarding this possibility as well, we focus
on the range −1 < a < ∞, which corresponds to 1 � b < ∞.
The FL value of b = 4 is reproduced for a = 0. The opposite
limit of a = ∞ (and thus b = 1) corresponds to a purely elastic
scattering mechanism. The range 1 < b < 4 corresponds to
a mixture of elastic and inelastic mechanisms with a > 0,
i.e., with a metallic sign of the elastic contribution, whereas
b > 4 corresponds to a nonmetallic elastic contribution with
−1 < a < 0, although the � and T dependences of 1/τ (�,T )
in this case are still metallic.

According to this classification scheme, the value of b ≈
1, reported in Refs. 8–10 for the U-, Ce-, and Nd-based
compounds, indicates a purely elastic scattering mechanism
(a = ∞). The value of b ≈ 2.3 (and thus a ≈ 1.3), reported
in Ref. 11 for the underdoped cuprate, points at a mixture of
elastic and inelastic mechanisms with comparable weights, and
with a metallic sign of the elastic contribution. Finally, b ≈ 5.6
(and thus a ≈ −0.35), reported in Ref. 12 for the organic
material, also corresponds to a mixture of the two mechanisms,
but with a nonmetallic sign of the elastic contribution.

The deviation from the FL behavior is the most dramatic
for the b = 1 case, where it appears that the electron-electron
interaction does not play any role. However, this conclusion
would be incorrect. In the next section, we discuss one example
of a purely elastic scattering mechanism, i.e., scattering from
resonant levels, and apply this model to the URu2Si2 data. We
will see that, while the optical conductivity can be explained
by resonant-level scattering alone, an explanation of the T

dependence of the dc resistivity requires invoking a sufficiently
strong electron-electron interaction.

C. Scattering from resonant levels: The case of URu2Si2

In this section, we discuss the model of purely elastic
scattering from resonant levels, located at energy ω0 away
from the Fermi energy and of width γ . The self-energy in this
case is given by

Im�R(ω,T ) = �el(ω) = C0γ

(ω − ω0)2 + γ 2
. (5.9)

At T = 0, the corresponding optical scattering rate is given by

1

τ (�,0)
= C0

�

[
arctan

� − ω0

γ
+ arctan

� + ω0

γ

]
. (5.10)

If the resonant level coincides with the Fermi energy, 1/τ (�,0)
is purely nonmetallic, i.e., it decreases as � increases. If the
resonant level is away from the Fermi energy, 1/τ (�,0) is a
nonmonotonic function of � with a maximum at � ∼ ω0 (see

FIG. 4. (Color online) Imaginary part of the fermionic self-energy
[Eq. (5.9)] (left) and optical scattering rate at T = 0 [Eq. (5.12)]
(right) for scattering at resonant impurities.

Fig. 4). The origin of the maximum is clear: as � increases
from zero to ω0, the rate of transitions from the Fermi energy
to the resonant levels increases. When � becomes larger than
ω0, the rate decreases because now the energy interval from the
Fermi energy to the resonant level constitutes only a fraction
of the photon energy. Expanding Eq. (5.9) near ω = 0 as

Im�R(ω) = C0γ

[
1

ω2
0 + γ 2

+ 2ωω0(
ω2

0 + γ 2
)2 + 3ω2

0 − γ 2(
ω2

0 + γ 2
)3 ω2

]

(5.11)

and substituting (5.11) into (3.1), we obtain

1

τ (�,T )
= const + C0γ

(
3ω2

0 − γ 2
)

(
ω2

0 + γ 2
)3 (�2 + π2T 2). (5.12)

[The linear in ω term in Eq. (5.11) vanishes by parity.] Already
for a moderately narrow level, i.e., for γ < ω0

√
3, the signs of

both the � and T dependences of 1/τ (�,T ) are metallic, and
b = 1. The behavior of 1/τ (�,T ) over a larger range of � and
T is obtained by substituting Eq. (5.9) into the Kubo formula
(3.1) and computing the integral over ω numerically. The
results are shown in Fig. 5. To compare to the experimental data
on URu2Si2 from Ref. 8, shown in Fig. 6, we choose ω0 = 12.5
meV to match the position of the peak in the data. All other
energies are measured relative to ω0. In Fig. 5, γ = 0.2ω0,
and the temperatures are chosen to coincide with the absolute

FIG. 5. (Color online) Optical self-energy in the resonant-
impurity model as a function of frequency at several tempera-
tures. Absolute values of temperatures are fixed by choosing ω0 =
12.5 meV and γ = 0.2ω0. Dashed lines show �2 fits of the actual
dependences.
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FIG. 6. (Color online) Experimental results for URu2Si2 from
Ref. 8. (a) Optical scattering rate 1/τ (�,T ). (b) Optical resistivity at
lower frequencies from the refined reflectivity.

temperatures used in the experiment (18, 22, and 25 K).
Comparing Figs. 5 and 6, we see that the model reproduces
the characteristic features of the data, i.e., a nonmonotonic
dependence of 1/τ (�,T ) on �, as well as an (approximate)
isosbestic point at � ≈ ω0, where 1/τ (�,T ) apparently does
not depend on T . The very existence of the isosbestic point
implies that the data can not be described by Eq. (1.2) with a
T -independent prefactor A′. Nevertheless, we follow the same
protocol as used in Ref. 8, i.e., we fit the � dependence of the
computed 1/τ (�,T ) into an �2 function ( shown by dashed
lines in Fig. 5), then fit the intercept 1/τ (� → 0,T ) into a T 2

function (shown in Fig. 7), and take the ratio of the slopes of the
T 2 and �2 fits. This procedure gives b ≈ 0.9, which is within
the margin of error of the experimental value b = 1 ± 0.1.8

The behavior of 1/τ (�,T ) in the Ce and Nd compounds
(Refs. 9 and 10, correspondingly) is qualitatively similar
to that in URu2Si2, although the ranges of � and T are
drastically different. In Nd0.905TiO3, 1/τ (�,T ) scales as �2

up to about 0.1 eV, followed by a maximum at ≈0.27 eV.
The � = 0 intercept of 1/τ scales as T 2 over a wide
temperature range: from 29 to 295 K.27 In Ce0.095Ca0.05TiO3.04,
1/τ (�,T ) scales as �2 also up to about 0.1 eV, followed by
a tendency to saturation, but the maximum is not yet revealed
at the highest frequency measured (≈0.14 eV). The � = 0
intercept also scales as T 2 over a wide range of temperatures.
These similarities suggest that, despite obvious differences in
composition and energy scales in U, Ce, and Nd compounds,

FIG. 7. (Color online) The intercept 1/τ (� → 0,T ) in the
resonant-impurity model as a function of (T/ω0)2.

the optical response in all three cases is governed by the same
mechanism.

Elucidation of the microscopic mechanism of resonant
levels is beyond the scope of this work, and we make just
a brief comment in this regard. It is very unlikely that clean
samples studied in Refs. 8–10 contained considerable amounts
of extrinsic resonant impurities. Therefore, resonant states
must be intrinsic to these compounds. We surmise that f

electrons of U, Ce, and Nd atoms, although arranged into a
lattice, play the role of incoherent resonant levels at sufficiently
high energy scales probed in optical measurements.

D. Combined effect of the electron-electron
and resonant-level-scattering mechanisms

Although the resonant-scattering model explains the results
of optical measurements, this model alone can not explain
the temperature dependence of the dc resistivity. Above the
superconducting transition temperature (≈1 K) in URu2Si2,
both the a- and c-axis resistivities increase with T in a
quadratic manner within the HO phase, exhibit a kink at
HO T HO

c , and continue to increase up to about 75 K, where
ρa goes through a broad maximum, whereas ρc starts to
saturate.28–30 The slopes of the increasing parts in ρa,c,
both below and above T HO

c , are largely independent of the
residual resistivity,31 which indicates that the T dependence
comes from an intrinsic mechanism. On the contrary, the T

dependence of the dc resistivity in the resonant-scattering
model is purely nonmetallic. Indeed, it is easy to see that
the dc conductivity

σ (0,T ) = ω2
p0

8π

∫
dω

(
−∂nF

∂ω

)
1

Im�R(ω)
, (5.13)

with Im�R(ω) from Eq. (5.9), increases with T as T 2;
therefore, ρ(0,T ) = 1/σ (0,T ) decreases with T . In order to
reproduce the metallic sign of ρ(0,T ), at least for T below
75 K, one needs to bring in the inelastic electron-electron
interaction with Im�R(ω,T ) given by Eq. (1.1). This seems
to defy the purpose of the preceding analysis, as we have
argued that the optical data can not be explained by an inelastic
mechanism. It turns out, however, that a combination of elastic
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and inelastic mechanisms explains both the dc and optical data.
In the “combined” model, the total self-energy is a sum of two
contributions

Im�R(ω,T )

= C0γ

(ω − ω0)2 + γ 2
+ C(ω2 + π2T 2)F

(√
ω2 + π2T 2

�

)
.

(5.14)

This equation is the same as we introduced in Eq. (5.4),
except for now the electron-electron contribution contains
a smooth cutoff function F (x), defined in such a way that
F (0) = 1 and F (x) falls off faster than 1/x2 for x 	 1. The
function F (x) is chosen to reproduce a slow decrease of
the measured a-axis resistivity at higher temperatures. (Since
optical experiments probe the basal-plane conductivity, we
focus on this case.) To minimize the number of free parameters,
we set � = ω0. The relative strength of two contributions to
Im�R(ω,T ) in Eq. (5.14) is controlled by a dimensionless
parameter

α ≡ Cω4
0

C0γ
. (5.15)

Larger values of α correspond to a larger electron-electron
and smaller resonant-level contribution, and vice versa. Using
the small-ω expansion in Eq. (5.11), it is easy to show that
dρ(0,T )/dT |T →0 is positive, i.e., “metallic,” already for α >

1/4. The dependence of ρ(0,T ) over the entire temperature
range is obtained by numerical integration of Eq. (5.13) with
Im�R from Eq. (5.14). The resulting profiles of ρ(0,T ) are
shown in Fig. 8 for α = 0,1,2. As we see, the electron-electron
contribution leads to a qualitative change in ρ(0,T ): a purely
nonmetallic T dependence with resonant levels alone (α = 0)
is transformed into a curve with a maximum (α = 1,2). The
α = 2 curve is already similar to the measured profile of
ρ(0,T ), which increases almost threefold when T is varied

FIG. 8. (Color online) dc resistivity (arbitrary units) for a model
form of the self-energy which combines resonant-level and electron-
electron contributions [Eq. (5.14)]. Temperature is measured in units
of the resonant-level energy ω0, which is also chosen to coincide with
the cutoff energy �. The resonant-level width γ = 0.2ω0. Parameter
α, defined by Eq. (5.15), measures the relative strength of the two
contributions.

FIG. 9. (Color online) Optical scattering rate (arbitrary units) for
a model form of the self-energy which combines resonant-level and
electron-electron contributions [Eq. (5.14)]. Frequency is measured
in units of ω0. T = 22 K, γ = 0.2ω0. From top to bottom: α = 0 (red
line), α = 1 (blue line), α = 2 (green line).

in-between T HO
c (chosen as the lowest temperature in

Fig. 8) and the temperature corresponding to a maximum
resistivity.28–30 On the contrary, the optical resistivity is largely
unaffected by the electron-electron contribution. Figure 9
shows the frequency dependence of the optical scattering rate
at fixed temperature (=22 K) for the same values of α (=0,1,2)
as in the dc case (Fig. 8). As it is obvious from the figure,
1/τ (�,T ) is practically the same for all three values of α,
except for a small overall shift. Repeating the same procedure
as was applied to the numerical data in Figs. 5 and 7, we again
arrive at the result that coefficient b in Eq. (5.1) is very close
to 1.

The results presented above indicate that the electron-
electron and resonant-level contributions to the self-energy
affect different parts of the frequency range: whereas the
electron-electron contribution is largely responsible for the T

dependence of the dc resistivity and has practically no effect
on the high-frequency optical resistivity, the resonant-level
contribution determines the optical resistivity but plays only a
secondary role in controlling the dc resistivity. This happens
because dc and optical measurements probe different parts
of the electron spectrum (cf. Fig. 10). At sufficiently low
temperatures, i.e., at T 
 ω0, a dc measurement probes the
spectrum in the region ω ∼ T 
 ω0, where both contributions
to the self-energy vary smoothly with ω (as ω2). The resulting
T dependence of ρ(0,T ) is just a sum of two T 2 terms
with opposite signs, and the electron-electron contribution
wins this competition rather easily. On the other hand, the
optical scattering rate is controlled by the region ω ∼ ω0,
where the resonant-level contribution has a sharp peak and
thus dominates over the electron-electron one, even if the latter
is strong enough to control the dc resistivity.

Concluding this section, we would like to emphasize the
importance of a sharp feature in the elastic contribution to
the self-energy �el(ω). Indeed, the classification scheme of
different behaviors of 1/τ (�,T ) based on the magnitude and
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FIG. 10. (Color online) Resonant-level (a sharply peaked curve)
and electron-electron contributions to the imaginary part of the self-
energy. The electron-electron parts correspond to α = 1,2 and were
multiplied by a factor of 8 for clarity.

sign of the coefficient a, as defined by Eq. (5.5), would
predict substantially different values of b for the values of
the parameter α used above. It is easy to see that a = 3/α

in the resonant scattering model. According to Eq. (5.8) this
implies that b = (4α + 3)/(α + 3). This formula gives b = 1
for α = 0; b = 7/4 ≈ 1.75 for α = 1; and b = 11/5 ≈ 2.2
for α = 2. Nevertheless, fitting 1/τ (�,T ) curves computed
with a full form of �ee rather than with its Taylor expansion,
we obtained b ≈ 1 in all of these cases. The reason for this
discrepancy is that the Taylor expansion is not applicable near a
sharp peak �ee, and one needs to use the classification scheme
based on Eqs. (5.7) and (5.8) with certain care.

VI. SUMMARY

The main purpose of this paper was to highlight the uni-
versality of the FL result for the optical resistivity [Eq. (1.2)].
We showed that, within the Kubo formalism which takes full
account of vertex corrections to the conductivity, Eq. (1.2)
holds for an arbitrary lattice and for any form of the electron-
electron interaction, as long as the system remains a FL and is
away from nesting and van Hove singularities. In fact, the
optical resistivity turns out to be more universal than the
single-particle self-energy: whereas the latter is described by
the conventional form given by Eq. (1.1) only in canonical FLs,
i.e., in D > 2, and deviates from this form in noncanonical FLs
i.e., in in 1 < D � 2, the former is given by Eq. (1.2) both for
canonical and noncanonical FLs. We showed that a particular
scaling form in Eq. (1.2) takes its roots in analytic properties
of the optical conductivity along the Matsubara axis and is
consistent with the bosonic first-Matsubara-frequency rule.

If a system contains not only itinerant electrons but also
localized degrees of freedom (magnetic moments or resonant
levels), the functional form of the optical resistivity changes,
as specified by Eq. (5.1). The magnitude of the coefficient b

in this equation depends on the interplay between inelastic
(electron-electron) and elastic scattering mechanisms. Com-
pletely inelastic electron-electron scattering corresponds to

b = 4; completely elastic scattering from, e.g., resonant levels,
gives b = 1; intermediate cases, where elastic and inelastic
channels are mixed, correspond to 1 < b < ∞.

As far as the existing experiments are concerned, the value
of b = 4 has never been reported. In some cases, including
the latest detailed study of the optical conductivity in URu2Si2
(Ref. 8), the coefficient b has been found to be close to 1,
which indicates a completely elastic scattering mechanism;
a recent study of the underdoped cuprate reports b ≈ 2.3;
yet another study of the BEDT-TTF organic material reports
b ≈ 5.6. We considered a simple model of scattering from
resonant levels, and showed that it is capable of reproducing
the major features of the optical resistivity in URu2Si2 above
T HO

c . On the other hand, the T dependence of the dc resistivity
can only be explained in a model which combines elastic
and inelastic electron-electron scattering mechanisms. We
deliberately refrained from identifying a microscopic nature
of resonant levels, except for stating that they are not likely to
be extrinsic resonant impurities. More likely, deep f states of
rare-earth atoms play the role of incoherent resonant scatterers
at rather high-energy scales probed in optical measurements.

If this picture is correct, it tells us something new about
a crossover between coherent and incoherent regimes in
heavy-fermion materials. The conventional scenario of this
crossover is that the only energy scale is the Kondo temperature
(TK ). Above TK , localized magnetic moments scatter electrons
incoherently, as in a diluted Kondo alloy. Below TK , a (heavy)
FL state is formed and localized moments do not scatter
electrons anymore but participate in formation of a coherent
Bloch state. The low-energy FL state is supposed to have all the
attributes of a standard FL, in particular, the coefficient b must
be equal to 4. This scenario is probably correct as long as the
evolution of the system is traced along the temperature axis.
Optical measurements add one more dimension: frequency. In
the presence of elastic scattering, the variations of temperature
and frequency do not have the same physical consequences
because the scattering cross section depends on the electron
energy, and thus on the frequency of light, but not on
the temperature. It appears that the crossover between the
incoherent and coherent regimes along the frequency axis
contains an intermediate interval, where localized states scatter
itinerant electrons neither as Kondo spins nor as screened
Kondo clouds, but rather as resonant levels.

Regardless of the validity of a particular model for elastic
scattering, we hope that our paper will help to recognize the
importance of the interplay between � and T dependences in
the optical data. We believe that, on par with much studied
recently Wiedemann-Franz law which, if satisfied, indicates
not only the FL nature of the ground state but also complete
elasticity of the underlying scattering mechanism, systematic
studies of the coefficient b can tell us something new about
the interplay between elastic and inelastic channels in strongly
correlated electron systems.
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