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We analyze in detail the fermionic self-energy �(ω,T ) in a Fermi liquid (FL) at finite temperature T and
frequency ω. We consider both canonical FLs, i.e., systems in spatial dimension D > 2, where the leading term
in the fermionic self-energy is analytic [the retarded Im�R(ω,T ) = C(ω2 + π 2T 2)], and noncanonical FLs in
1 < D < 2, where the leading term in Im�R(ω,T ) scales as T D or ωD . We relate the ω2 + π 2T 2 form to a special
property of the self-energy, “the first-Matsubara-frequency rule,” which stipulates that �R(iπT ,T ) in a canonical
FL contains an O(T ) but no T 2 term. We show that in any D > 1, the next term after O(T ) in �R(iπT ,T ) is of
order T D (T 3 ln T in D = 3). This T D term comes from only forward and backward scattering, and is expressed
in terms of fully renormalized amplitudes for these processes. The overall prefactor of the T D term vanishes
in the “local approximation,” when the interaction can be approximated by its value for the initial and final
fermionic states right on the Fermi surface. The local approximation is justified near a Pomeranchuk instability,
even if the vertex corrections are non-negligible. We show that the strength of the first-Matsubara-frequency
rule is amplified in the local approximation, where it states that not only the T D term vanishes, but also that
�R(iπT ,T ) does not contain any terms beyond O(T ). This rule imposes two constraints on the scaling form of
the self-energy: upon replacing ω by iπT , Im�R(ω,T ) must vanish and Re�R(ω,T ) must reduce to O(T ). These
two constraints should be taken into consideration in extracting scaling forms of �R(ω,T ) from experimental
and numerical data.
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I. INTRODUCTION

Properties of single-particle and collective excitations
in strongly interacting electron systems continue to attract
substantial interest of the condensed-matter community. This
interest is stimulated by the avalanche of discoveries of new
materials, many of which fall into a category of strongly
correlated electron systems, and by advances in experimental
techniques, which allow one to extract, with good accuracy, the
single-particle self-energy from angle-resolved photoemission
spectroscopy (ARPES) data and the two-particle or “optical”
self-energy from the real and imaginary parts of the optical
conductivity.

One of the most actively explored directions in the study of
strongly correlated electron systems is a search for non-Fermi
liquids (non-FLs), i.e., systems in which electrons interact so
strongly that they completely lose coherence. Many newly
discovered systems were classified as non-FLs because their
electron spectral functions, extracted from ARPES, are quite
broad. However, a broad spectral function is an indication,
but not the proof, that the system in question is a non-
FL, as the Landau criterion for the FL only requires that
the spectral function must be sharp for fermions in the
immediate vicinity of the Fermi surface (FS). A mathematical
formulation of this requirement is that the imaginary part of
the retarded self-energy Im�R(ω) must be much smaller than
ω + Re�R(ω) at the smallest ω. This does not preclude that
at higher frequencies Im�R(ω) can become comparable to
ω + Re�R(ω) or even exceed it.

To satisfy the Landau criterion, Im�R(ω) has to scale as
ω1+a with a > 0. The original argument by Landau, based on
the Pauli principle and the assumption of analyticity, yields
Im�R(ω) ∝ ω2, i.e., a = 1. Microscopic calculations show
that Im�R(ω) does indeed scale as ω2 in a three-dimensional

(3D) FL. The same holds for all “fractional” dimensions D >

2. For D � 2, the analyticity is, however, broken: Im�R(ω)
scales as ω2 ln |ω| in D = 2 and as |ω|D in D < 2. Still, by
Landau criterion, these systems are FLs, as long as D > 1.
Hereafter, we refer to systems in which Im�R(ω) ∝ ω2 as
“canonical FLs,” and to systems in which Im�R(ω) ∝ ω1+a

with 0 < a < 1 as “noncanonical FLs.”
The goal of this paper is to analyze the form of the

self-energy in both conventional and nonconventional FLs at
finite frequency ω and temperature T . We will be particularly
interested in how general is a certain property of the self-
energy, which we will be referring to as the “first-Matsubara-
frequency rule” or, for brevity, as the “first-Matsubara rule.”
This rule states that the self-energy �(ωm,T ), evaluated
at discrete Matsubara points ωm = πT (2m + 1), exhibits a
special behavior at the first fermionic Matsubara frequency
ω0 = πT , namely, �(πT,T ) does not contain terms higher
than T . (The same happens at ω−1 = −πT .) This rule was
proven in the past for particular cases of the electron-phonon1,2

and screened Coulomb3,4 interactions. In the former case,
this rule is sometimes being referred to as a “Fowler-Prange
theorem.”5

Although the first-Matsubara rule operates on the imaginary
frequency axis, it is relevant to properties of physical fermions
with real frequencies: it requires that the retarded self-energy
�R(ω,T ), with ω replaced by iπT , should not contain terms
beyond O(T ), and thus imposes a constraint on the interplay
between the ω and T terms in �R(ω,T ).

A 3D FL provides a simple example of how the first-
Matsubara rule works. To order ω2 and T 2, we have in this
case Re�R(ω,T ) = λω, with no ωT term, and Im�R(ω,T ) =
C(ω2 + π2T 2), with a factor of exactly π2 in front of T 2. At
ω = iπT , Im�R vanishes and Re�R becomes of order T ,
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hence the total �R(iπT ,T ) contains only an O(T ) term but no
T 2 term.

In this paper, we analyze the validity of the first-Matsubara
rule beyond the conventional FL paradigm. The proof of
this rule in prior work1–4 was based on demonstrating the
nullification of the leading term in the imaginary part of the
self-energy at ω = iπT . We show here that the first-Matsubara
rule does not hold beyond the leading order for conventional
FLs, and does not hold at all for unconventional FLs. Our
primary finding is that �R(iπT ,T ) scales as T D in all D (with
an extra ln T factor in D = 3); however, the consequences of
this finding are different for conventional and unconventional
FLs. For conventional FLs, i.e., for 2 < D � 3, the T D term is
still subleading to T 2, and thus the first-Matsubara rule holds to
order T 2. For unconventional FLs, i.e., for 1 < D < 2, the T D

term is of the same order as the leading terms in Im�R(ω,T ),
and thus the first-Matsubara rule is violated. In D = 2, which
is a marginal case between conventional and unconventional
FLs, Im�R(ω,T ) ∝ (ω2 + π2T 2) ln |ω| + O(ω2,T 2). While
the logarithmic term vanishes at ω = iπT , the T 2 term
does not. As a result, the first-Matsubara rule is satisfied to
logarithmic accuracy but not beyond.

We find that for 1 < D < 3, the T D term in �R(iπT ,T )
is universal, i.e., independent of the upper cutoff of the
theory. Furthermore, its prefactor is expressed via exact
spin and charge components of the forward-scattering and
backscattering amplitudes.

At the same time, we find that the first-Matsubara rule holds
to all orders in T in both conventional and nonconventional
FLs, if the effective interaction between fermions, which in-
cludes dynamic screening by particle-hole bubbles, is assumed
to connect only the states right on the Fermi surface. Hereafter,
we refer to this approximation as the “local approximation,”
as it is generally valid when bosons which mediate interaction
between fermions are slow compared to fermions.6–8

We show that, within the local approximation, the
first-Matsubara rule relies only on the analytic properties of the
local susceptibility. For the electron-phonon interaction, this
approximation is a key ingredient of the Eliashberg theory,9

and the small parameter which controls this approximation is
the ratio of the Debye frequency to Fermi energy. We consider
here the case of an electron-electron interaction. In certain
limits, it can be approximated by an effective interaction
mediated by collective modes of fermions in the spin or charge
channel. The collective modes are generally not slow com-
pared to fermions themselves (their velocity is of order of the
Fermi velocity), but they do become slow near a Pomeranchuk
instability, when the correlation length for critical collective
modes diverges. As a result of this divergence, the system
generates a low-energy scale, below which near-critical
collective modes become overdamped and slow down.7,10

The local approximation for collective modes is a necessary
but not sufficient condition for the Eliashberg theory, as the
latter also requires vertex corrections to be small. In the case
of collective modes, vertex corrections are not controlled by
the same parameter which makes the local approximation
valid,10–15 and are not necessarily small.13,14,16–18 We show
that the smallness of vertex corrections is not required for
the first-Matsubara rule to work: the local approximation is
sufficient.

We analyze the local approximation in more detail and
show that the first-Matsubara rule imposes two conditions:
(1) Im�R(iπT ,T ) vanishes to all orders in T , and (2)
Re�R(iπT ,T ) contains an O(T ) term, but all higher-order
terms in T vanish. These two conditions are nontrivial
because, beyond the conventional FL paradigm, �R(ω,T ) can
not be obtained from the T = 0 result by a simple replacement
ω → √

ω2 + π2T 2. This is true for the subleading ω3,T 3

terms in a 3D FL, and also for the leading ωD , T D

terms in nonconventional FLs. In particular, Im�R(ω,T )
in nonconventional FLs has a complex form which is
very different from (ω2 + π2T 2)D/2, and Re�R(ω,T ) also
contains a complex dependence on ω and T at order ωD ,
in addition to the λω term. Nevertheless, as long as the
local approximation is applicable, Im�R(ω,T ) vanishes at
ω = iπT , and Re�R(iπT ,T ) reduces to iπλT .

Finally, we show that the first-Matsubara rule holds within
the local approximation even for a non-FL, e.g., for a system
in D � 3 right at a Pomeranchuk instability, except that in
this case the coefficient λ in �R(iπT ,T ) = iπT λ diverges
as T → 0. In particular, the first-Matsubara rule holds for a
marginal FL and for an itinerant two-dimensional (2D) system
at a nematic quantum critical point (QCP).

The rest of the paper is organized as follows. In Sec. II,
we review the derivation of the single-particle self-energy to
order T 2 and ω2 in a conventional FL, and show where the
relation between the ω2 and T 2 terms comes from. In Sec. III,
we discuss the self-energy outside of the conventional FL
paradigm. We show that, in general, the self-energy contains
terms of order T D , which do not vanish when ω is replaced
by iπT . The case of D = 2 is marginal, and we consider it
separately. In Sec. IV, we discuss the self-energy within the
local approximation. We show that, at order T D , �R(ω,T ) has
quite a complex dependence on the ratio ω/T , yet the prefactor
of the T D term vanishes at ω = iπT . We consider in detail 2D
and 3D FLs, a 2D system at a nematic QCP, and also a marginal
FL. We discuss under what conditions the local approximation
is valid in all these cases. We also discuss in this section
how one should properly construct the self-energy along real
frequency axis to make sure that a replacement of ω by iπT

agrees with the analytical continuation of the self-energy into
the upper half-plane. We present our conclusions in Sec V.

In the subsequent paper,19 we discuss the constraints
imposed by the first-Matsubara rule on the �/T scaling, the
optical conductivity σ (�,T ) of a FL, and the consequences of
these constraints for the experiment.

Throughout the paper, we denote the retarded self-energy
along the real frequency axis as �R

k (ω,T ) and the self-energy
along the Matsubara axis as �k(ωm,T ), where k is the electron
(quasi)momentum. We set the overall sign of the retarded self-
energy via

GR
k (ω,T ) = 1

ω + �R
k (ω,T ) − εk

, (1.1)

where εk is the electron dispersion, and define the Matsubara
self-energy in such a way that it is real on the Fermi surface, i.e.,

Gk(ωm,T ) = 1

i[ωm + �k(ωm,T )] − εk
. (1.2)
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II. SINGLE-PARTICLE SELF-ENERGY: CANONICAL
FERMI LIQUID

In this section, we briefly review the derivation of the
scaling forms for the self-energy in a conventional FL to
order ω2 and T 2: Im�R(ω,T ) ∝ ω2 + π2T 2, Re�R(ω,T ) =
λω with no O(ωT ) terms in either of these quantities. We
first show how these forms are obtained in the perturbation
theory, then use the Eliashberg’s argument9 to generalize the
derivation to an arbitrary order in the interaction, and finally
relate these forms to the first-Matsubara rule, a special property
of the self-energy at the first fermionic Matsubara frequency
ωm=0,−1 = ±πT (Sec. II C).

A. Perturbation theory

We consider a system of fermions on a lattice with single-
particle dispersion εk. We assume that the Fermi surface
does not have nested parts and is away from the van Hove
singularities but otherwise arbitrary. Near the FS, εk can be
approximated as εk = vkF

· (k − kF ), where kF is a vector
pointing in the direction of k and residing on the FS, and
vk = ∇kεk. We will see that ω2 and T 2 terms in Im�R

k (ω,T )
come from low energies where the linear approximation is
valid. Having this in mind, we follow a conventional reasoning
of a FL theory, set the upper cutoff of the theory with the
linearized dispersion at some energy 	 (generally comparable
to the bandwidth W ), and absorb all renormalizations from
energies between 	 and W into nonsingular renormalizations
of the effective mass and quasiparticle residue Z. The bare
Green’s function of low-energy fermions is then given by

GR
k (ω) = ZkF

/(ω − εk + iδ), (2.1)

where δ > 0 is infinitesimally small and ZkF
, in general,

varies along the FS. We further assume that fermion-fermion
interaction Uq is static and nonsingular for all q connecting
points on the FS, including q = 0. This is the case for, e.g., a
screened Coulomb interaction.

The lowest-order diagrams which contribute to the imag-
inary part of the fermionic self-energy are shown in Fig. 1.
The imaginary part of the fermionic self-energy arises from
the convolutions of two Green’s functions marked by slanted

P

P+K−K’

K’

K

(c)

K K+Q

K’

(a) (b)
K’+Q

K+QK K’

K’+Q

FIG. 1. (Color online) Diagrams for the self-energy. K = (ωm,k),
K ′ = (ωm′ ,k′), Q = (�n,q).

dashes in Fig. 1. In Fig. 1(a), such a convolution is just
a particle-hole bubble, the imaginary part of which scales
linearly with the bosonic frequency �. In Fig. 1(b), this
convolution involves the momentum-dependent interaction,
but the result still scales linearly with �.

To see this in more detail, we write down a Matsubara
form of the self-energy from diagram Fig. 1(a) and obtain
�Rk(ω,T ) by analytic continuation. With our definition for
the self-energy (1.2), we have

�a
k(ωm,T ) = −iT

∑
�n

∫
q
U (q)2Gk+q(ωm + �n)�q(�n),

(2.2)

where

�q(�n) = 2T
∑
ωm′

∫
k′

Gk′ (ωm′)Gk′+q(ωm′ + �n) (2.3)

with �n = 2πnT and
∫

l ≡ ∫
dDl/(2π )D . Performing analytic

continuation in both (2.2) and (2.3), we obtain the retarded
self-energy along the real frequency axis

�
R,a
k (ω,T )

=
∫

q
U 2

q

∫
d�

2π

[
coth

�

2T
GR

k+q(ω + �) Im �R
q (�)

+ tanh
� + ω

2T
Im GR

k+q(ω + �)�A
q (�)

]
, (2.4a)

�R
q (�)

= 2
∫

k′

∫
dω′

2π

[
tanh

ω′

2T
Im GR

k′(ω′)GR
k′+q(ω′ + �)

+ tanh
ω′ + �

2T
GA

k′(ω′) Im GR
k′+q(ω′ + �)

]
. (2.4b)

Extracting the imaginary parts of Eqs. (2.4a) and (2.4b) and
using the relations tanh(x/2) = 1 − 2nF (x) and coth(x/2) =
2nB(x) + 1, where nF (x) and nB(x) are the Fermi and Bose
functions, correspondingly, we obtain

Im�
R,a
k (ω,T ) =

∫
q
U 2

q

∫
d�

π
[nB(�) + nF (ω + �)]

× ImGR
k+q(ω + �)Im�R

q (�), (2.5a)

Im�R
q (�) = 2

∫
k′

∫
dω′

π
[nF (ω′ + �) − nF (ω′)]

× ImGR
k′(ω′)ImGR

k′+q(ω′ + �). (2.5b)

Equation (2.5b) can be rewritten as

Im�R
q (�) =

∫
k′

∫
dω′[nF (ω′ + �) − nF (ω′)]

×
∮

dAk′
F

vk′
F
(2π )2

Zk′
F
Zk′

F +q

∫
dεk′δ(ω′ − εk′)

× δ(ω′ + � − εk′+q), (2.6)

where dAk′
F

is the element of the (D − 1)-dimensional FS.
The integral over εk′ gives δ(ω′ + � − εk′+q)|εk′=ω′ . The role
of this δ function is to impose a constraint on the angle
between k′ and q. Since this angle is not, in general, small,
it suffices to resolve this constraint at ω′ = � = 0 because,
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as subsequent integration will show, ω′ ∼ � ∼ max{ω,T }.
The δ function thus reduces to δ(εk′

F +q)|εk′=0, which means
that both the initial and final states are on the FS. (Notice
that this approximation corresponds to expanding the δ

functions in max{ω,T }/EF rather than in ω/εk.) The integral
over ω′ now gives

∫ ∞
−∞ dω′[nF (ω′) − nF (ω′ + �)] = �, and

Im�R
q (�) reduces to � multiplied by a function of q, averaged

over the FS:

Im�R
q (�) = − �

(2π )2

∮
dAk′

F

vk′
F

Zk′
F
Zk′

F +qδ(εk′
F +q)|εk′=0.

(2.7)

For small q, the prefactor of � behaves as 1/q. Substituting
Im�R

q (�) ∝ � into (2.5a), and applying the same procedure as
above to integrate over the momentum, we obtain, for k = kF ,

Im�
R,a
kF

(ω,T ) = 2Ca

∫ ∞

−∞
d��[nB (�) + nF (ω + �)]

(2.8)

with

Ca = π

2(2π )D−1

∫
q

∮
dAk′

F

vk′
F

ZkF +qZk′
F
Zk′

F +q

×δ(εkF +q)δ(εk′
F +q)U 2

q . (2.9)

[A factor of 2 in Eq. (2.8) is introduced for future convenience.]
The frequency integral in Eq. (2.8) is readily evaluated as∫ ∞

−∞
d��[nB (�) + nF (ω + �)] = 1

2
(ω2 + π2T 2), (2.10)

hence

Im�
R,a
k (ω,T ) = Ca(ω2 + π2T 2). (2.11)

We can now specify what actually makes the analysis above
applicable only to conventional FLs rather than to all FLs: it
is an assumption that the integral in Eq. (2.9) is convergent in
the infrared. Power counting shows that the integrand behaves
as 1/q2 for q → 0; the integral over dD−1q then converges for
D > 2 and diverges for D � 2. Infrared divergence for D � 2
will modify the ω and T dependences of �R

kF
(ω,T ) compared

to the canonical form valid for D > 2.
Figure 1(b) is analyzed in a similar way with the only

difference that the quantity UqIm�R
q (�) in Eq. (2.5a) is

replaced by

ImPR
q,k(�) =

∫
k′

∫
dω′

π
[nF (ω′ + �) − nF (ε)]Uk−k′

× ImGR
k′(ε)ImGR

k′+q(ε + �). (2.12)

Still, ImPR
q,k(�) scales as � for � → 0. Evaluating the

integrals in the same way as above, we find

Im�
R,b
kF

(ω,T ) = Cb(ω2 + π2T 2), (2.13)

where

Cb = − π

4(2π )D−1

∫
q

∮
dAk′

F

vk′
F

ZkF +qZk′
F
Zk′

F +q

× δ(εkF +q)δ(εk′
F +q)UqUk′

F −kF
. (2.14)

As before, the integral in Eq. (2.14) is convergent for D > 2.
Comparing Im�

R,a
kF

(ω,T ) and Im�
R,b
kF

(ω,T ), we see that they

both have the same scaling form ω2 + π2T 2 and differ only in
prefactors which, in the general case, depend on kF , i.e., on
position along the FS.

The real part of the self-energy can be obtained either
directly, e.g., from Eq. (2.4a) for Fig. 1(a), or via a Kramers-
Kronig (KK) transformation of Im�R

k (ω,T ):

Re�R
kF

(ω,T ) = 2ω

π
P

∫ ∞

0
dω′ Im�R

kF
(ω′,T )

ω′2 − ω2
, (2.15)

whereP stands for the principal part. The integral is ultraviolet
divergent if Eq. (2.11) or (2.13) is used for Im�R

kF
(ω,T ), which

implies that, to get the correct form of Re�kF
(ω,T ) from the

KK transformation, one has to use the full form of Im�R
kF

(ω,T )
rather than its low-energy approximation. Nevertheless, one
can easily make sure that, to quadratic order, Re�kF

(ω,T ) =
λkF

ω (where λkF
varies, in general, along the FS) with no ωT

term.
A comment is in order here. By applying (2.15) to (2.11)

or (2.13), we can only show that there is no “universal”
cutoff-independent ωT term in Re�R

k (ω,T ), and hence no
T 2 term in Re�R

k (iπT ,T ). There is still a possibility that a T 2

term in Re�R
k (iπT ,T ) may come from internal frequencies in

Eq. (2.15) comparable to the upper cutoff of the low-energy
theory. We show later, in Sec. II C, that this is not the case, and
that only a T 3 term emerges from high energies.

B. Arbitrary order in the interaction

We now follow the argument by Eliashberg9 who showed
that the ω2 + π2T 2 form of the self-energy at finite T holds to
all orders in the interaction [a similar reasoning was also em-
ployed by Luttinger20 to show that Im�R

kF
(ω,T = 0) ∝ ω2].

The argument is as follows. In the second-order diagrams,
the ω2 + π2T 2 form comes from the region where all three
intermediate fermions are located within the window of width
of order ω or T near the FS. Accordingly, the interactions Uq
can be approximated by their values evaluated for the case
when when the initial and final states are on the FS, i.e., q =
lF − l′F .

In a self-energy diagram of any order, one can select a
cross section with three low-energy fermions, and sum over
all other fermions without assuming that they are near the FS.
The diagrams of this kind can be cast in the form of Fig. 1(c).
The three selected fermions are near the FS and the shaded
squares are the full vertex functions. Because integration over
the fermionic lines already gives a function quadratic in ω

or T , one can set T = 0 in the remainder of the diagram
and project all momenta onto the FS. As long as the full
vertex functions do not diverge, they do not affect integration
over dispersions and frequencies of intermediate fermions.
Self-energy corrections to fermionic lines are also irrelevant
because the dressed Green’s function still has the form of
Eq. (2.1) at the lowest energies; adding one-loop self-energy
to Eq. (2.1) simply replaces iδ by iC(ω2 + π2T 2), which has
an extra power of energy compared to ω and hence does
not affect the ω2 and T 2 terms in the full self-energy. As a
result, the ω2 + π2T 2 form survives to an arbitrary order in
the interaction: self-energy and vertex renormalizations only
affect the overall factor in Im�R

kF
(ω,T ). We then have for a
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conventional FL and to order ω2,T 2

Im�R
kF

(ω,T ) = C(ω2 + π2T 2). (2.16)

The prefactor C depends on model parameters, including the
cutoff 	, and is thus nonuniversal. Substituting this form into
the KK formula (2.15), and using the same arguments as in the
previous section, we find

Re�R
kF

(ω,T ) = λω(1 + 0 × T ) (2.17)

[we spelled out the 0 × T combination to emphasize that there
Re�R(ω,T ) does not contain an ωT term]. The prefactor λ is
again nonuniversal.

C. Self-energy along the imaginary axis:
The first-Matsubara-frequency rule

We now show that the scaling form of Im�R
kF

(ω,T ) in
Eq. (2.16) and the absence of the ωT term in Re�R

kF
(ω,T )

are related to a particular behavior of the self-energy at the
first fermionic Matsubara frequency ωm=0 = πT (the same
behavior holds at ωm=−1 = −πT ).

1. Analytic continuation

Let us first analytically continue Im�R
k (ω,T ) and

Re�R
k (ω,T ) in Eqs. (2.16) and (2.17) into the upper-half

plane of the complex variable ω → z = z′ + iz′′. Because
Im�R

k (ω,T ) and Re�R
k (ω,T ) are analytic, their analytic

continuation reduces to just a replacement of ω by z. The
complex function Im�R(z,T ) ∝ z2 + π2T 2 then vanishes at
z = iπT and Re�R(z,T ) becomes iπλT , so that the full
self-energy reduces to iπT λ and does not contain a T 2 term.
This is only true, however, if z is replaced by the first Matsubara
frequency. For any other ωm 	= πT , the function �R(iωm,T )
contains a T 2 term. As we said in the Introduction, we will
refer to this property as the first-Matsubara-frequency rule
(first-Matsubara rule).

It is worth stressing that the rule formulated above applies
only to the first Matsubara frequency. This may not seem to
be the case if we replace ω by iπ (2m + 1)T with arbitrary
m in Im�R

kF
(ω,T ) given by Eq. (2.5a), before integrating

over the bosonic frequency �. Doing so, and using the
identity nF (� + iωm) = −nB(�), we seemingly find that
Im�R(iωm,T ) vanishes not only at ω = iπT , but also at any
Matsubara frequency iπT (2m + 1).

This result is, however, false because the complex function,
obtained by analytic continuation of, e.g., Eq. (2.5a), into
the complex plane before the integral over � is performed,
contains a sequence of branch cuts that run parallel to the
real axis and intersect the imaginary axis at the Matsubara
frequencies (see Fig. 2). As a result, the imaginary part of the
function

F (z) =
∫

d��[nB (�) + nF (� + z)] (2.18)

changes discontinuously at z = z′ + iπ (2m + 1)T . For exam-
ple, a discontinuity of ImF (z) at z = z′ + iπT is

{ImF [z′ + iT (π + δ/2)] − ImF [z′ + iT (π − δ/2)]}|δ→0

= −δ

∫
d�

�

sinh2 �+z′
2T

+ δ2
≈ 2πT z′. (2.19)

FIG. 2. (Color online) Analytic structure of the function
Im�R

kF
(z,T ) in the complex z plane. Analytic continuation from the

real axis is possible to any point within the shaded region, including
the points ±iπT , but not beyond this region.

This implies that the substitution ω → z = z′ + iz′′ into the
integral form of Im�R

kF
(ω,T ) [Eq. (2.8)] gives the same result

for Im�R
kF

(z,T ) as the actual analytical continuation only in
the region bounded by two branch cuts at z = z′ + iπT and
z′ − iπT , but not outside this region. In other words, the
substitution ω = iωm into (2.8) gives the correct result for
only for the first, but not for all Matsubara frequencies.

2. Direct proof of the first-Matsubara-frequency rule

The first-Matsubara rule can be also proven directly by
computing the self-energy for a conventional FL in Matsubara
frequencies. For the electron-electron interaction, this was
done in Refs. 3 and 4; however, the proofs presented in these
two papers are valid under two additional assumptions, namely,
of small-angle scattering and of a quadratic dispersion εk =
(k2 − k2

F )/2m∗, where m∗ is the renormalized effective mass.
In fact, neither of these two assumptions is necessary. In what
follows, we first consider the case of arbitrary-angle scattering
but still keep an assumption of a quadratic dispersion, and then
generalize the argument for an arbitrary dispersion.

Quadratic dispersion. To be specific, we consider the 3D
case; other dimensions can be considered in a similar way. The
clamshell self-energy diagram [Fig. 1(c)] reads as

�kF
(ωm,T ) = −iZ3T

∑
�n

T
∑
ωm′

∫
d3k′

(2π )3

∫
d3p

(2π )3

×Gk′ (ωm + �n)Gp(ωm′)Gp+k−k′(ωm′ + �n)

×
kF ,pF ;k′
F ,pF +kF −k′

F

k′

F ,pF +kF −k′
F ;kF ,pF

,

(2.20)

where 
k,p;k′,p′ is the renormalized vertex [a filled diamond in
Fig. 1(c)]. Since we have already assumed that the dispersion
is isotropic, the Z factor is assumed to be isotropic as well. The
momentum transfers can be arbitrary, but all three intermediate
momenta are assumed to be near the FS; this assumption has
already been used in Eq. (2.20).

To evaluate the momentum integrals, the dispersion εp+k−k′

needs to be expanded in εp, εk, and εk′ . For a quadratic
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dispersion, we obtain after some algebra

εp+k−k′ = 2k2
F

m∗ sin
θk,k′

2

(
sin

θk,k′

2
+ cos θp,k−k′

)

+ εp

(
1 + 2 sin

θk,k′

2
cos θp,k−k′

)
+ (εk + εk′)

×
(

2 sin2 θk,k′

2
+ sin

θk,k′

2
cos θp,k−k′

)
, (2.21)

where θl,m is the angle between momenta l and m. A similar
analysis can be carried out for any isotropic but not necessarily
quadratic dispersion. For small-angle scattering θk,k′ � 1,
Eq. (2.21) reduces to a familiar form εp+q = εp + vF q cos θp,q
with q = 2kF sin(θk,k′/2). For the momentum p + k − k′ to be

on the FS, the first term in Eq. (2.21) must be small; for generic
values of θk,k′ , this condition amounts to a geometric constraint

cos θp,k−k′ = − sin
θk,k′

2
(2.22)

or θp,k−k′ = ±(π + θk,k′)/2. We expand the first term in
Eq. (2.21) around this value as θp,k−k′ = ±(π + θk,k′)/2 − α

with α � 1, and set α = 0 in the remaining two terms. This
gives

εp+k−k′ = v∗
F kF α sin θk,k′ + εp cos2 θk,k′

+ (εk + εk′) sin2 θk,k′

2
, (2.23)

where v∗
F = kF /m∗. Substituting the last result into (2.21), we

obtain

�kF
(ωm,T ) = −2iZ3T

∑
�n

T
∑
ωm′

(
k2
F

vF

)2 ∫
dεk′

(2π )2

∫
dθk,k′ sin θk,k′ cos

θk,k′

2

∫
dεp

(2π )2

∫
dα

1

i(�n + ωm) − εk′

1

iωm′ − εp

× 1

i(ωm′ + �n) − vF kF α sin θk,k′ − εp cos2 θk,k′ − (εk + εk′) sin2 θk,k′
2


kF ,pF ;k′
F ,pF +kF −k′

F

k′

F ,pF +kF −k′
F ;kF ,pF

.

(2.24)

Constraint (2.22) is assumed to be imposed on the momenta
entering both vertices in the last equation. The integral over α

gives

−i
π

v∗
F kF sin θk,k′

sgn(ωm′ + �n), (2.25)

while the integral over εp gives −iπ sgnωm′ . Summing the
product of the two sign functions over ωm′ , we obtain a “local,”
i.e., integrated over the momentum, polarization bubble as a
sum of two terms: −|�n|/π and a constant, proportional to the
ultraviolet cutoff of the theory. The constant contributes only
to the O(T ) term in �kF

(πT,T ), and we consider it separately
later. The |�n| term is the one relevant to our purposes as
we need to verify that �kF

(πT,T ) does not contain a T 2

contribution. The prefactor of the |�n| term is given by

2C =
(

m∗Z
2π

)3 ∫
dθk,k′ cos

θk,k′

2

kF ,pF ;k′

F ,pF +kF −k′
F

×
k′
F ,pF +kF −k′

F ;kF ,pF
. (2.26)

The remaining integral over εk′ gives sgn(ωm + �n), and the
self-energy becomes

�kF
(ωm,T ) = −2CπT

∑
�n

sgn(ωm + �n)|�n| + · · · ,

(2.27)

where the ellipsis stands for O(T ) terms. Summation over �n

is straightforward, and we obtain

�kF
(ωm,T ) = C

(
π2T 2 − ω2

m

) + · · · . (2.28)

The T 2 term in the Matsubara self-energy obviously vanishes
for ωm = ±πT .

Arbitrary dispersion. Equation (2.28) is also valid for an
arbitrary fermionic dispersion, with the only difference that
the prefactor C now depends on the position on the FS. To see
how this works, we expand εp+k−k′ near a FS. Knowing that
εk and εk′ drop out anyway, we set them to zero and expand
εp+k−k′ around pF as

εp+qF
= εp−pF +pF +qF

= εpF +qF
+ εp

v
||
pF +qF

v
||
pF

, (2.29)

where qF ≡ kF − k′
F , v

||
l ≡ vl · p̂F , p̂F ≡ pF /pF , and we

suppressed the ∗ symbol in vF for brevity.
Substituting this expansion into (2.20) and replacing inte-

grals over 3D momenta by integrals over the FS and over the
electron energy, we obtain

�kF
(ωm,T ) = −iT

∑
�n

T
∑
ω

′
n

∮
dAk′

F

(2π )3vk′
F

∮
dApF

(2π )3vpF

Z̃3

×
∫

dεk′

∫
dεp

1

i(�n + ωm) − εk′

1

iω
′
n − εp

× 1

i(ω′
n + �n) − εpF +qF

− εp
v

||
pF +qF

v
||
pF

×
kF ,pF ;k′
F ,pF +qF


k′
F ,pF +qF ;kF ,pF

, (2.30)

where Z̃3 ≡ Zk′
F
Zp′

F
ZpF +kF −k′

F
. The condition that all three

internal fermions are located near the FS implies that, at
fixed qF , the angle between pF and qF must be such
that the first term in εpF +qF

is small. Suppose that, at
fixed qF , the constraint εp0,i

F +qF
= 0 is satisfied for a set

of symmetry-related points on the FS, p0,i
F . The vector pF
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spans a narrow solid angle around each of p0,i
F ; therefore, we

can expand the dispersion as εpF +qF
= (pF − p0,i

F ) · ṽ, where
ṽ ≡ vp0,i+qF

. Since qF is still fixed, it can be chosen as the
polar axis of a local spherical system, in which a point on
the FS is described by an equation pF = r(θ,φ). Vectors
p0,i

F are parametrized as pF = r(θ0,i ,φ0,i); correspondingly,
pF = r(θ0,i − α,φ0,i − β) ≈ p

0,i
F − αrθ − βrφ where rθ and

rφ are the partial derivatives of r with respect to θ and φ,
respectively, evaluated at the point (θ0,i ,φ0,i). Suppose that
ṽ makes angle γ with the polar axis and, without a loss
of generality, assume that the x axis belongs to the plane
formed by vectors ṽ and qF . Then, cos θp0,i

F ,ṽ = cos θ0,i cos γ

and cos θp0,i
F ,ṽ ≈ (cos θ0,i + α sin θ0,i) cos γ to linear order in

α. Substituting all of the results above into Eq. (2.29), we
obtain

εp+qF
= α

(
p

0,i
F sin θ0,i − rθ cos θ0,i

)
cos γ + εp

v
||
p0,i

F +qF

v
||
p0,i

F

,

(2.31)

which generalizes Eq. (2.23) for the arbitrary dispersion case.
The measure of integration over the area dApF

reduces to

dApF

vpF

≈
(
p

0,i
F

)2

v
||
p0,i

F

sin θ0,idα dβ. (2.32)

The rest of the calculations proceed in the same way as for
the quadratic-dispersion case, namely, integrating first over α,
then εp, and, finally, over εk, we reproduce the same product
of the three sign factors as before. The final expression for
the self-energy reduces to that in Eq. (2.27) with a different
prefactor, which varies over the FS.

Interestingly, we found that the seemingly obvious result
that frequency summation in Eq. (2.27) yields (2.28) can be
reproduced only with a considerable effort if one uses the
Euler-Maclaurin formula to sum over �n. Namely, one has
to keep not only the “conventional” terms with the integral
over n and derivatives of the summand at n = 0, but also the
“remainder” term, which is often neglected when the Euler-
Maclaurin formula is applied in practice. We discuss this issue
in Appendix A.

3. Linear-in-T term in the Matsubara self-energy

Finally, we consider in more detail the O(T ) contribution
to �kF

(πT,T ). For definiteness, we focus on the 3D case and
restrict to quadratic dispersion. If we integrate in Eq. (2.20)
over εp and εk′ in infinite limits, as we did earlier in this section,
and retain a constant term [denoted as �(0)] instead of the |�|
term in the local polarization bubble, we obtain

�kF
(πT,T ) = λT

∑
�n

sgn(πT + �n), (2.33)

where λ ∝ �(0). Because only the n = 0 term contributes to
the sum, �kF

(πT,T ) = λT .
This result holds only if we integrate over εp and εk′ in

infinite limits. Since, however, we have set the cutoff of our
low-energy theory to 	, integrations over εp and εk′ should,
strictly speaking, be performed between −	 and 	. The

magnitude of λ then depends on the ratio 	/EF and reduces
to the previous result only for 	 
 EF . In the opposite limit
of 	 � EF , which is more appropriate for systems in which
EF is of the same order as the bandwidth, λ is much smaller,
namely, λ ∼ (	/EF ) ln(EF /	). We show this in Appendix B.
We also checked if there is a T 2 contribution to �kF

(πT,T ) at
finite 	, but found no such term. The next term after the λT is
of order T 3/	2. This one is irrelevant to our purposes, as later
in the text we show, that in a generic 3D FL, there are universal
terms of order (T 3/E2

F ) ln EF /T , which are parametrically
larger than a nonuniversal T 3 term.

III. SINGLE-PARTICLE SELF-ENERGY: NONCANONICAL
FERMI LIQUIDS AND HIGHER-ORDER TERMS IN

CANONICAL FERMI LIQUIDS

We remind the reader that the analysis in the previous
section relied on the assumption that the momentum inte-
grals, incorporated into the prefactor C in Eq. (2.16) for
Im�R

kF
(ω,T ), are free from singularities. These integrals

include quasiparticle renormalization factors, the effective
interaction between the quasiparticles, and the prefactor of
the � term in the imaginary part of the polarization operator
[see Eqs. (2.9) and (2.14)]. The quasiparticle renormalization
factors and the effective interaction are nonsingular at small
q, but the prefactor of the � term scales as 1/q and may give
rise to infrared divergencies. The momentum integral in the
expression for C is over the D − 1 components of q lying
in a plane tangential to the D-dimensional FS. This integral
converges for D > 2, i.e., in a conventional FL, but diverges
for D � 2, i.e., in a nonconventional FL.

The issue we discuss in this section is whether the first-
Matsubara rule holds in a nonconventional FL and in a
conventional FL beyond the T 2 order. We will show that the
next after the O(T ) term in �kF

(πT,T ) scales as T D for any
D, i.e., �kF

(πT,T ) = λT + dT D .
The T D term is subleading to the T 2 one in a conventional

FL (D > 2), and thus the first-Matsubara rule holds to order T 2

in this case. However, the leading terms in a nonconventional
FL (1 < D � 2) are also of the T D order, and thus the first-
Matsubara rule does not hold in this case. In the next section,
we show that the first-Matsubara rule holds to all orders in T

for any D near a QCP, when the local approximation becomes
valid.

We consider first the marginal case of D = 2, and then
discuss the cases of 2 < D < 3, D = 3, and 1 < D < 2.

A. D = 2

In D = 2, the self-energy is nonanalytic: Im�R
kF

(ω,T ) ∝
ω2 ln |ω| at T = 0 and T 2 ln T at ω = 0,21–23 while the first
subleading term in Re�R

kF
(ω,T ) scales as ω|ω| at T = 0 and

as T 2sgnω for ω � T .12 To logarithmic accuracy, the scaling
form of Im�R

kF
(ω,T ) is given by3,4,24–30

Im�R
kF

(ω,T ) = C2(ω2 + π2T 2) ln
	

|ω| , (3.1)

where C2 is a constant. By the KK relation,

Re�R
kF

(ω,T ) = λω − πC2

2
sgnω(ω2 + π2T 2). (3.2)
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At this level, the first-Matsubara rule is obviously satisfied. Be-
yond logarithmic accuracy, however, the situation is different,
as we will now see.

Let us first calculate the self-energy in Matsubara fre-
quencies. Consider diagram (a) in Fig. 1. The corresponding
formula for the self-energy is given by Eq. (2.2). We explore
an earlier observation12,29–31 that the nonanalytic contributions
to the fermionic self-energy come from forward scattering and
backscattering rather than from scattering by an arbitrary an-
gle. The internal structures of diagrams with forward scattering
and backscattering are the same, i.e., it is sufficient to analyze
only one of these two contributions. We consider forward
scattering, i.e., focus on small momentum transfers q, and
also assume that the FS is isotropic (a circle). Consequently,
the self-energy does not depend on the position on the FS,
but we will still keep the subscript kF which indicates that
the self-energy is evaluated on the FS, as opposed to the
self-energy evaluated away from the FS also considered in
this section.

At small q, the polarization bubble behaves as

�q(�n) = −m

π

(
1 − |�n|√

�2
n + (vF q)2

)
. (3.3)

The constant term in � gives rise to the O(T ) term in
�kF

(iπT ,T ). We neglect it for now but will reinstate it in
the final result for �kF

(πT,T ). Keeping the dynamic part
in Eq. (3.3) and introducing polar coordinates for momentum
integration, we obtain for the forward-scattering contribution

of Fig. 1(a) to the self-energy at arbitrary momentum k

�k(ωm,T )

= −iA2T
∑
�n

∫
q dq dφ

(2π )2

1

i(ωm + �n) − εk − vF q cos φ

× |�n|√
�2

n + (vF q)2
, (3.4)

where A2 = 4πu2(0)/m and u(0) ≡ mUq=0/2π is the
dimensionless coupling constant for forward scattering.
Integrating over θ , we obtain

�k(ωm,T )

= −A2T
∑
�n

∫
dq q

2π

sgn(ωm + �n)√
(ωm + �n + iεk)2 + (vF q)2

× |�n|√
�2

n + (vF q)2
. (3.5)

First, we discuss the self-energy on the FS. Substituting εk = 0
into Eq. (3.5) and integrating over q up to 	/vF , we obtain

�kF
(ωm,T ) = − T A2

2πv2
F

∑
�n

|�n|sgn(ωm + �n)

× ln

[√
	2 + �2

m +
√

	2 + (ωm + �n)2

|�n| + |ωm + �n|

]
.

(3.6)

For ωm = πT , the last result reduces to

�kF
(πT,T ) = −T 2A2

v2
F

∞∑
n=1

m ln

[
2n − 1/2

2n + 1/2

(	̄2 + n2)1/2 + [	̄2 + (n + 1/2)2]1/2

(	̄2 + n2)1/2 + [	̄2 + (n − 1/2)2]1/2

]
, (3.7)

where 	̄ = 	/(2πT ) 
 1. To evaluate the frequency sum, we
notice that the second fraction under the logarithm is close to
unity in both regions of m that are relevant for the sum, namely,
for n � 	̄ and for m ∼ 	̄, when n � n2. In either case,

ln
(	̄2 + n2)1/2 + [	̄2 + (n + 1/2)2]1/2

(	̄2 + n2)1/2 + [	̄2 + (n − 1/2)2]1/2
≈ n

2(	̄2 + n2)
.

(3.8)

With this simplification, the sum over n can be evaluated
exactly. Performing summation, and adding the O(T ) contri-
bution from the static part of the polarization bubble, we obtain

�kF
(πT,T ) = πT λ − A2T

2

2πv2
F

(
K + π ln 2

4

)
, (3.9)

where λ ∼ (A2	)/v2
F is a nonuniversal constant and

K = 0.9160 is the Catalan’s constant (K + π ln 2/4 = 1.460).
We see that �(πT,T ) does contain a universal, i.e.,
cutoff-independent T 2 term. We recall that there is no such
term in D > 2, when the self-energy is analytic to order T 2.

The presence of such a term in D = 2 implies that the first-
Matsubara rule breaks down once the self-energy becomes
nonanalytic.

For completeness, we also reproduced Eq. (3.9) by evalu-
ating first Im�R

kF
(ω,T ) and then evaluating �kF

(πT,T ) using
the general KK relation between the Matsubara self-energy
and Im�R

kF
(ω,T ):

�kF
(ωm,T ) = 2ωm

π

∫ ∞

0
dω

Im�R
kF

(ω,T )

ω2 + ω2
m

. (3.10)

Applying spectral representation to Eq. (3.4) and integrating
over the momentum, we obtain for ω > 0

Im�R
kF

(ω,T ) = A2

4π2v2
F

∫ 	−ω

−	

d��[nB (�) + nF (� + ω)]

× ln
[
√

	2 − �2 +
√

	2 − (� + ω)2]2

ω|ω + 2�| ,

(3.11)

if ω < 2	 and Im�R
kF

(ω,T ) = 0 otherwise. To logarithmic
accuracy, this expression reduces to Eq. (3.1).

155136-8



FIRST-MATSUBARA- . . . . I. FERMIONIC SELF-ENERGY PHYSICAL REVIEW B 86, 155136 (2012)

Substituting (3.11) into (3.10) and setting ωm = πT , we
find that the main logarithmic term in Im�R

kF
(ω,T ) contributes

only to theO(T ) term in �kF
(πT,T ). The violation of the first-

Matsubara rule comes from the subleading O(ω2) and O(T 2)
terms. We obtained the first term in Eq. (3.9) analytically and
reproduced the second term by integrating over ω in Eq. (3.10)
numerically.

A complete expression for �kF
(πT,T ) to second order

in the interaction contains contributions from diagrams in
Figs. 1(a) and 1(b). Each of these diagrams contains con-
tributions from the interaction with momentum transfers
equal to zero and to 2kF with amplitudes U (0) and U (2kF ),
correspondingly. Collecting all these contributions, we obtain
a complete result for �kF

(πT,T ) to second order in the
interaction as12,30

�kF
(πT,T ) = πT λ − T 2

2EF

[3u2(0) + 2u2(2kF )

− 2u(0)u(2kF )]

(
K + π ln 2

4

)
, (3.12)

where u(q) = mUq/(2π ). The combination of the coupling
constants in Eq. (3.12) can be expressed via the spin and charge
components of the forward scattering (f ) and backscattering
(b) amplitudes 
f and 
b, defined by



f,b

αγ ;βδ = 
f,b
c δαβδγ δ + 
f,b

s σ αβ · σ γ δ, (3.13)

where subscripts c and s stand for “charge” and “spin,”
respectively. To first order in Uq,


f
c = −
f

s = u(0), 
b
c = 2u(0) − u(2kF ), 
b

s =−u(2kF ).

(3.14)

Using these relations, one can reexpress Eq. (3.12) as

�kF
(πT,T ) = πT λ − T 2

8EF

(
K + π ln 2

4

)

×[
2
{(


b
c

)2 + 3
(

b

s

)2} + (

f

c

)2 + 3
(

f

s

)2]
.

(3.15)

Equation (3.15) can be extended to a FL with an arbitrary
interaction. One can show, using the same arguments as
in Refs. 12 and 32, that the self-energy still contains the
same combination of forward-scattering and backscattering
amplitudes, except for in a general case 
b

c,s and 

f
c,s are

expressed not via u(0) and u(2kF ), but rather via fully renor-
malized four-fermion vertices 
(k,k; k,k), 
(k,−k; k,−k),
and 
(k,−k,−k,k), which may depend on both transferred
and total momenta. Explicitly, we have


f
c = Z2m∗

2π

(k,k; k,k); 
f

s − Z2m∗

2π

(k,k; k,k)


b
c = Z2m∗

2π
[2
(k,k,−k; k,−k) − 
(k,−k; −k,k)] ,


b
s = −Z2m∗

2π

(k,−k; −k,k). (3.16)

A complete expression for the self-energy at the first Matsubara
frequency is

�kF
(πT,T ) = πT λ − T 2

8EF

(
K + π ln 2

4

)
m∗

mZ

×[
2
{(


b
c

)2 + 3
(

b

s

)2} + (

f

c

)2 + 3
(

f

s

)2]
.

(3.17)

There is one additional complication: The result in Eq. (3.17)
is actually based on the expansion of the polarization bubble in
frequency: for free fermions, this amounts to replacing (3.3) by
�q(�n) = −(m/π ) (1 − |�n|/vF q). The static part of �q(�n)
produces the T term in Eq. (3.17), while the (smaller) dynamic
part produces the T 2 term. At weak coupling, one can safely
set the lower limit of integration over q to zero because
the contribution from the region q � �/vF ∼ T/vF produces
only higher than T 2 terms. In a generic FL, an expansion of the
polarization bubble is possible for |
�n|/vF q � 1, where 


is the largest of the scattering amplitudes in Eq. (3.15). When

 
 1, which happens either when the interaction is strong
or when the system is near a Pomeranchuk instability,15 the
condition vF q 
 |
�n| sets a new lower cutoff for integration
over q. We consider the case of large 
 in Sec. IV, where we
show that the existence of this cutoff affects the prefactor for
the T 2 term in Eq. (3.17), which gets smaller as 
 increases.

The consequences of the first-Matsubara rule for the de
Haas–van Alphen (dHvA) oscillations in a 2D FL were ana-
lyzed in Refs. 3 and 4, where it was shown that the amplitude of
these oscillations contains neither a T 2 ln T nor a T 2 term re-
sulting from the self-energy of quasiparticles. This result seems
to contradict Eq. (3.17), which shows that the self-energy eval-
uated at ωm = πT does have a T 2 term. In fact, there is no con-
tradiction because Eq. (3.17) refers to the self-energy evaluated
on the FS, i.e., for εk = 0, while the dHvA amplitude contains
the self-energy evaluated at the “Matsubara mass shell,”
defined by a solution of the equation G−1

k (ωm) = 0. It turns out
that these two self-energies do have different T dependences.
The amplitude of dHvA oscillations in any thermodynamic
quantity contains the following dimensionless combination:5

AdHvA = iT

2πωc

∑
ωm>0

∫
dεkGk(ωm) exp

(
2πi

εk

ωc

)
, (3.18)

where ωc is the cyclotron frequency. For simplicity, we omit
O(εk) and O(ωm) terms in �k, which only renormalize the
effective mass entering the cyclotron frequency, and focus
on terms of order T 2 ln T and higher. We also focus on the
weak-coupling regime, when the Matsubara mass shell can be
determined perturbatively; to lowest order in the interaction,
the mass shell simply coincides with the pole of the Matsubara
Green’s function εk = iωm. Substituting the self-energy (3.15)
evaluated at εk = iωm into Eq. (3.18) and integrating over εk,
we obtain

AdHvA = T

ωc

∑
ωm>0

exp

(
−2π

ωm + �̃(ωm)

ωc

)
, (3.19)

where

�̃(ωm) = −A2T

2π

∫ 	/vF

0
dq q

∑
�n

sgn(ωm + �n)|�n|
(vF q)2 + �2

n

.

(3.20)
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For high enough temperatures, i.e., for T � ωc, one needs
to keep only the ωm = πT term in the sum of Eq. (3.19).
This is where the first-Matsubara rule becomes useful because
the Matsubara sum in Eq. (3.20) vanishes for ωm = πT , and
AdHvA reduces to the free-electron result (modulo renormalized
effective mass) with no extra T -dependent terms.

A related point is the difference in the behavior of the
self-energy at finite T and at T = 0. At T = 0, the perturbation
theory in 2D for the self-energy diverges near the mass shell,
and needs to be resummed to eliminate these divergences.12,29

The mass-shell singularity shows up already in the second-
order self-energy at T = 0, which is obtained by replacing
the Matsubara sum in Eq. (3.5) by an integral over �n. To
logarithmic accuracy, this yields

�k(ωm,T = 0)

= − A2

8π2v2
F

[(
ω2

m + 1

4
(ωm + iεk)2

)
ln

	

ωm + iεk

+
(

ω2
m − 1

4
(ωm + iεk)2

)
ln

	

ωm − iεk

]
. (3.21)

The mass-shell singularity in this equation is manifested as a
divergence of the first logarithmic term at εk = iωm. However,
if we keep T in Eq. (3.5) finite, integrate over q at finite εk,
and then rearrange the resulting Matsubara sum, we obtain
to logarithmic accuracy and for Matsubara frequencies with
m = O(1)

�k(ωm,T ) = − A2T

2πv2
F

ωm−πT∑
2πT

|�n|

× ln
	2

(2�n − ωm − iεk) (ωm + iεk)
. (3.22)

The limit of T → 0 in this equation reproduces Eq. (3.21)
with the same mass-shell singularity at εk = iωm. However, at
ωm = πT , the sum in Eq. (3.22) contains no terms and thus
the mass-shell singularity in �k(πT,T ) is absent. This is the
reason why the mass-shell singularity does not show up in the
dHvA amplitude.

B. Higher-order terms in canonical Fermi liquids (2 < D < 3)

In canonical FLs, the first-Matsubara rule holds to order
T 2. Let us now verify whether it also holds to higher orders
in T . To obtain �k(πT,T ) beyond the T 2 order, we need to
go beyond the approximation we used in Sec. II, where we
assumed that the interaction connects only the points right on
the FS.

We verified that, as in 2D, the terms relevant to our analysis
come both from small momentum transfers and momentum
transfers near 2kF . Consider for definiteness a small momen-
tum contribution to in Fig. 1(a). The corresponding formula
for the self-energy is given by Eq. (2.2). To single out potential
terms in �kF

(πT,T ) beyond the T 2 order, we subtract from
the integrand in Eq. (2.2) its expression for the case when the
effective interaction connects the points right on the FS. We
parametrize the measure of the D-dimensional integral over
q as dD−1q⊥dq‖, where a (D − 1)-dimensional vector q⊥ lies
in the plane tangential to the FS and q‖ is along the normal
to the FS, and replace the integral over q‖ by that over the
fermionic dispersion in the final state εkF +q ≈ vF q‖ ≡ ε. As
before, we neglect the static part of �q(�n), which contributes
only to the O(T ) term in �, and approximate the dynamic
part of �q(�n) by the |�n|/q = |�n|/

√
q2

⊥ + q2
‖ form. Using

these simplifications, we express the part of the self-energy
not captured in Sec. II as

δ�(πT,T )

= −iADT
∑
�n

|�n|
∫

qD−2
⊥ dq⊥dε

(2π )D
1

i(πT + �n) − ε

×
⎛
⎝ 1√

v2
F q2

⊥ + ε2 + �2
n

− 1√
v2

F q2
⊥ + �2

n

⎞
⎠ , (3.23)

where AD = 2νDπ
D−1

2 /
[(D − 1)/2]U 2
q=0, 
[x] is the

gamma function, and νD is the density of states per spin
projection in D dimensions. Because �kF

(πT,T ) obtained
in Sec. II contains only linear-in-T terms and thus satisfies the
first-Matsubara rule, potential deviations from this rule are due
to δ�(πT,T ). Integrating over q⊥ and ε in (3.23), we find that
δ�(πT,T ) contains a contribution

δ�(πT,T ) = AD

T

vD
F

∑
�n

|�n|(πT + �n)|πT + �n|D−3QD

(
�n

πT + �n

)

= AD

T D

vD
F

(2π )D−1
	̄∑

n=1

n

[
(n + 1/2)D−2QD

(
n

n + 1/2

)
− (n − 1/2)D−2QD

(
n

n − 1/2

)]
, (3.24)

where 	̄ = 	/2πT , and

QD(z)

= 2
∫ 	̄

0

∫ 	̄

0

dx xD−2dy

(2π )D

√
x2 + y2 + z2 − √

x2 + z2

(y2 + 1)
√

x2 + z2
√

x2 + y2 + z2
.

(3.25)

The sum in Eq. (3.24) contains a contribution from the
upper limit, which just adds an extra piece to the O(T )
term, but it also contains a 	-independent contribution from
n = O(1), which yields δ�(iπT ,T ) ∝ T D . We see therefore
that the full �kF

(πT,T ) = O(T ) + δ�(πT,T ) contains a T D

term, i.e., the first-Matsubara rule breaks down at order T D

in conventional FLs. Still, �kF
(πT,T ) and �kF

(ωm,T ) for
|ωm| 	= πT are qualitatively different: the next term after T in
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�kF
(ωm 	= πT,T ) is T 2, while in �kF

(πT,T ) it is T D , which
for D > 2 is much smaller than T 2. We verified that in the
limit D → 2, the result matches the second term in (3.9). For
arbitrary 2 < D < 3, the sum has to be evaluated numerically.

The case D = 3 is special because Q3 diverges logarithmi-
cally. In this case, we have, after integrating over x in Eq. (3.25)
and neglecting nonlogarithmic terms,

δ�(πT,T )

= A3
4T 3

πv3
F

∑
n

|n|(n + 1/2)
∫ 	̄

0
dy

√
y2 + z2

y2 + 1
, (3.26)

where z = n/(n + 1/2). By power counting, δ�(πT,T ) scales
as T 3, but there is an additional logarithm, which can be
captured by expanding the integral in Eq. (3.26) in 1/n to
order 1/n3. The prefactor of the universal T 3 term is 1/|n|,
and the sum T 3/|n| yields a T 3 ln 	/T term in �kF

(πT,T ).
Expanding the integrand of Eq. (3.26) in 1/n, integrating over
y, and collecting the prefactors for the T 3 ln 	/T term, we
obtain

δ�(πT,T ) = A3
T 3

15πv3
F

ln
	

T
. (3.27)

The complete result in 3D again contains the contributions
from Figs. 1(a) and 1(b) and includes terms coming from both
forward scattering and backscattering.

Note that the signs of δ�(πT,T ) are different in 2D and 3D
[cf. Eqs. (3.9) and (3.27)], i.e., the prefactor of the T D term
vanishes at some D in-between 2 and 3.

C. Noncanonical Fermi liquids: 1 < D < 2

The analysis for 1 < D < 2 parallels that in the previous
section. The extra term in the self-energy at ωm = πT , given
by (3.24), is still of order T D , and its prefactor is expressed via
forward-scattering and backscattering amplitudes. The only
difference between the D < 2 and D > 2 cases is that, for
D < 2, the T D term is larger than the T 2 one, and the first-
Matsubara rule breaks down completely, i.e., the next term
after T in �kF

(ωm,T ) is of order T D for all ωm including
ωm = ±πT .

IV. THE FIRST-MATSUBARA-FREQUENCY RULE
NEAR QUANTUM CRITICALITY

A. Local approximation

So far, we found that in a generic FL, either conventional or
unconventional, the terms of order T D in the self-energy do not
distinguish between the first and other Matsubara frequencies,
i.e., the prefactor of the T D term in �kF

(ωm) is nonzero for
all m.

We now show that a different situation emerges when the
system is tuned to the vicinity of a Pomeranchuk transition,
at which a FL becomes unstable towards condensation of
particle-hole excitations with zero-momentum transfer. A
Pomeranchuk instability can occur in either the spin or
charge channel. A magnetic (spin) instability is likely to
trigger preemptive transitions33,34 and, to keep the discussion
focused on the first-Matsubara rule, we only consider here
a Pomeranchuk instability in the charge channel. In the

bulk of this section, we focus on long-wavelength (q = 0)
Pomeranchuk instability (a quantum phase transition with
dynamical exponent z = 3). At the end of this section, we
briefly discuss the first-Matsubara rule near an instability at
finite q in a system on lattice (a quantum phase transition with
dynamical exponent z = 2).

Near a Pomeranchuk instability, interactions generate a
large length scale ξ (the correlation length) which diverges
at the transition. In D � 3, a divergence in ξ brings the upper
boundary of FL behavior down from O(EF ) to ωFL ∝ ξ−3.15

At large enough ξ , ωFL becomes smaller than 	, and the
low-energy theory with the upper cutoff 	 describes now
both the FL and non-FL regimes. We first consider the case
of �,T � ωFL and then discuss the first-Matsubara rule at
energies above ωFL.

The observation, which is most relevant to our analysis,
concerns the low-energy cutoff in the integration over bosonic
momentum q in the formula for the self-energy, once we cast
it into the form of Eq. (3.4). As we mentioned in Sec. III A, the
T D term in �kF

(ωm) with a prefactor that does not show any
special features at m = 0,−1 is obtained by setting the lower
momentum cutoff to zero. This approximation can be justified
at ξ = O(1) ∼ k−1

F , at least at weak coupling, but not at large
ξ . To show this, we follow earlier work35 and assume that,
near a Pomeranchuk instability with some angular momentum
�, the fermionic self-energy given in Eq. (3.4) can be viewed
as resulting from an exchange of low-energy and overdamped
collective excitations. The propagator of these excitations at
small q is given by

χq(�n) = χ0

q2 + ξ−2 + γ�q(�n)
, (4.1)

where γ depends on the original fermion-fermion interaction
and fermionic dispersion and, in general, is different for
different �. As before, we keep only the dynamic part in
�q(�n).

The one-loop self-energy is given by

�kF
(ωm,T ) = iT

∑
�n

∫
dDq

(2π )D
GkF +q(ωm + �n)χq(�n).

(4.2)

An order-of-magnitude estimate for �kF
(ωm,T ) can be ob-

tained by expanding χq(�n) as

χq(�n) = χq(0) − χ0γ ξ 4�q(�n). (4.3)

Substituting this expansion into Eq. (4.2) and comparing the
result to (3.4) in Sec. III A, and to its extension for an arbitrary
interaction in Eq. (3.15), we see that χ0γ ξ 4 plays the same role
as the combination of the 
2 terms in Eq. (3.15), i.e., the overall
prefactor of the dynamic part of �kF

(ωm,T ) scales as ξ 4.
Let us now look more carefully at the limits of integration

over q, which need to be imposed to ensure self-consistency
expansion (4.3) for χq. Because �q(�n) scales as |�n|/q
at the smallest �n, the expansion in �q(�n) in Eq. (4.3)
holds only for q > γ |�n|ξ 2, which sets the lower limit in
the integral over q. The upper limit is set by ξ−1. Now, we
expand the dispersion as εkF +q = vF q‖ + q2

⊥/2m∗ and express
q‖ as q‖ = εkF +q/vF − q2

⊥/(2vF m∗). Consider momentarily a
free-fermion propagator in Eq. (4.2). Typical εkF +q are then
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of order ωm + �n, i.e., of order T for Matsubara indices
m,n ∼ 1. Since we expect the T D term to come from the
region when both typical q‖ and q⊥ are also proportional to T ,
the q2

⊥/2m∗ term is of order T 2 and can be neglected compared
to εkF +q. Hence, typical q‖ ∼ εkF +q/vF , and typical q ∼√

q2
⊥ + [(ωm + �n)/vF ]2. For large ξ and n,m ∼ 1, (ωm +

�n)/vF ∼ �n/vF is then smaller than the lower limit for q,
which is γ |�n|ξ 2. For γ vF ξ 2 
 1, one can approximate q by
q⊥. This is equivalent to factorizing the momentum integral
in (4.2) as

∫
dεkF +qGkF +q(ωm + �n)

∫
dD−1q⊥χq⊥(�n). In

this approximation, the dynamic part of the self-energy in
Eq. (4.2) reduces to

�kF
(ωm,T ) = T

2vF

∑
�n

sgn(ωm + �n)χL(�n), (4.4)

where

χL(�n) =
∫

dD−1q⊥
(2π )D−1

χq⊥(�n). (4.5)

Because χL(�n) is an even function of �n, the right-hand side
of (4.4) vanishes at |ωm| = πT , i.e., the first-Matsubara rule
holds. For all other frequencies, such that |ωm| 	= πT but still
|ωm| ∼ T , �kF

(ωm,T ) behaves as T Dξ 2D in nonconventional
FLs, and as

�kF
(ωm,T ) = T 2ξ 6−D{1 + O((T ξ 3)D−2)} (4.6)

in conventional FLs.
We refer to an approximation, in which the momentum

integral is factorized, as the local approximation. The name
reflects the fact that the fermionic self-energy in this ap-
proximation is a convolution of the density of states (the
Green’s function integrated over fermionic dispersion) and
the local susceptibility, obtained by integrating the nonlocal
susceptibility over D − 1 components of q⊥.

If we keep ωm + �n in q and compute �kF
(ωm,T ) without

making any approximations, we find that the T D term in
�kF

(ωm,T ) is present for all ωm; however, its prefactor has
different dependences on ξ for |ωm| = πT and all other ωm.
For |ωm| 	= πT , the T D term in �kF

(ωm,T ) is present even
in the local approximation, and the prefactor of this term
scales as ξ 2D . For |ωm| = πT , the prefactor is zero in the
local approximation, and scales as ξ 2(D−2) if we compute
�kF

(πT,T ) in (4.2) using a free-fermion propagator. Using
a free-fermion propagator at large ξ is, however, not justified
because the mass renormalization term λωm in �kF

is also
proportional to ξ [this term involves a static susceptibility
χL(0)]. Including this term into the Green’s function affects
the estimate for a typical εkF +q, which now becomes of order
(1 + λ)|ωm + �n|/vF . Accordingly, the prefactor of the T D

term scales as λ2ξ 2(D−2) at |ωm| = πT . At one-loop order,
λ ∝ ξ 3−D (∝ ln ξ in D = 3) and, hence, the self-energy at
the first Matsubara frequency scales as �kF

(πT,T ) ∝ T Dξ 2.
Still, for all D > 1, this is parametrically smaller than the
self-energy at larger Matsubara frequencies, which, we remind,
scales as T 2ξ 6−D in conventional FLs, and as T Dξ 2D in
nonconventional FLs.

The main outcome of this analysis is that, near a Pomer-
anchuk instability, the first-Matsubara rule approximately

holds, even if far from the instability this rule is broken, as it
happens in nonconventional FLs. The distinction between the
prefactors of T D terms in �kF

(ωm,T ) likely persists to higher
orders in the loop expansion, even if higher-order corrections
are not small. To verify this, we analyzed two- and three-loop
contributions to the self-energy near a charge Pomeranchuk
transition in D = 2. We recall that in D = 2, the self-energy
at a generic ωm scales as T 2ξ 4. In 2D, a two-loop self-energy
is small compared to the one-loop one [Eq. (4.2)], only if one
extends the theory to N fermionic flavors and takes the N 
 1
limit.10,11 The three-loop self-energy is not small even in the
large-N limit (Refs. 13, 14, and 17), and higher-order terms
even bring in additional logarithmic singularities.14,17,36 We
computed two- and three-loop contributions to the self-energy
along the Matsubara axis, and found that in both contributions
the prefactor for the T 2 term still vanishes at ωm = ±πT

if the local approximation is imposed, and scales as ξ 2

beyond this approximation. Higher-order corrections may,
in principle, generate additional logarithms and eventually
change the scaling of �kF

(π,T ) with ξ from ξ 2 to ξβ with
β < 2. However, because the one-loop results for �kF

(πT,T )
and �kF

(ωm,T ) with |ωm| 	= πT differ substantially (by a
factor of ξ 2 in D = 2), it is likely that the difference between
the prefactors of T D terms in �kF

(πT,T ) and in �kF
(|ωm| 	=

πT,T ) holds to infinite order in the loop expansion.
The difference between �kF

(πT,T ) and �kF
(|ωm| 	=

πT,T ) becomes particularly pronounced right at the Pomer-
anchuk instability. Now ωFL = 0, and the self-energy exhibits
a non-FL behavior at any finite ω or T . The self-energy for
generic ωm 	= ±πT can be divided into two parts: dynamic
�d and static �s. The dynamic part comes from processes
with nonzero energy transfers, corresponding to �n 	= 0 in
the Matsubara sum of Eq. (4.2). The critical form of the
dynamic part is obtained by replacing ξ−3 in Eq. (4.6) by
T , which gives �d

kF
(ωm,T ) ∼ T D/3. The static part comes

from scattering of static critical fluctuations, corresponding
to a single term with �n = 0 in Eq. (4.2). At finite ξ , this
contribution behaves as �s

kF
(T ) ∝ T ξ 3−D . At ξ → ∞, the

static contribution diverges for D � 3.6,37 This divergence is
usually regularized by introducing a temperature-dependent
correlation length ξ (T ), which remains finite at T > 0 even
right at criticality. On general grounds, one can postulate that
ξ (T ) ∝ T −βT with βT > 0, and hence �s

kF
(T ) ∝ T 1−βT (3−D).

At the one-loop level, βT = 1/2 (modulo logarithms) for 2D
quantum critical systems with dynamical exponents Z = 2 and
3,37 but higher-order corrections may change the exponent. We
will treat βT as a phenomenological parameter of the theory.
Comparing the exponents of the dynamic and static parts of
the self-energy, we see that, for any D < 3, the leading T

dependence of the self-energy is given by the dynamic part if
βT < 1/3 and by the static part if βT > 1/3.

For the first Matsubara frequency, the static part of the
self-energy is the same as for all other ωm, but the dynamic
part is different. To obtain �d

kF
(πT,T ) at criticality, we

reevaluate the self-energy diagram in (4.2) by replacing the
frequency in the denominator of the Green’s function by
the self-energy at the same frequency. Now, typical εkF +q ∼
�kF

(ωm + �n,T )|ωm+�n∼T ≡ �̄(T ). Expanding the bosonic
propagator to leading (second) order in εkF +q and performing
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power counting, we obtain

�d
kF

(πT,T ) ∝ T
D−2

3 �̄2 ∝
{

T D−2/3, if βT < 1/3

T
D+4

3 −2βT (3−D), if βT > 1/3

(4.7)

where we replaced �̄ by �d and �s for βT < 1/3 and
βT > 1/3, correspondingly. We see that �d

kF
(πT,T ) re-

mains smaller than �d
kF

(ωm 	= πT,T ): the ratio of the two
behaves as �kF

(πT,T )/�d ∝ T 2(D−1)/3 for βT < 1/3, and
�kF

(πT,T )/�d ∝ T (D+1)/3−βT (3−D) for βT > 1/3. The expo-
nent is positive for any D > 1 in the first expression and for
1/3 < βT < (D + 1)/3(3 − D) in the second one. In both
cases, the ratio of the self-energy at the first Matsubara
frequency to that at a generic frequency scales to zero as T goes
to zero. This smallness is a manifestation of the first-Matsubara
rule at criticality.

B. Scaling form of the self-energy in the local approximation

A nontrivial aspect of the first-Matsubara rule near a
Pomeranchuk instability shows up when we consider the
self-energy along the real frequency axis. At order T D , both the
real and imaginary parts of �R

kF
(ω,T ) are rather complicated

functions of ω and T , and the extension of �R
kF

(ω,T = 0)
to finite T by no means implies that ω is replaced by√

ω2 + π2T 2. Still, within the local approximation, we obtain,
analytically continuing (4.4) to real frequencies,

Im�R
kF

(ω,T ) = 1

2πvF

∫
d�ImχR

L (�) [nB(�) + nF (�+ ω)] .

(4.8)

The right-hand side of Eq. (4.8) is an analytic function of
complex variable ω → z = z′ + iz′′ within the stripe |Imz| �
πT (see Fig. 2). Within this stripe, one can then analytically
continue Im�R

kF
(ω,T ) into the complex plane by just replacing

ω → z. Aa a result, Im�R
kF

(iπT ,T ) is still given by (4.8),
but with iπT instead of ω in the right-hand side of this
equation. Because nB(�) + nF (� + iπT ) = 0, Im�R

kF
(ω =

iπT ,T ) vanishes. The full �R
kF

(iπT ,T ) vanishes by the first-
Matsubara rule, hence, Re�R

kF
(ω,T ) must also vanish [up to a

O(T ) term], if we replace ω by iπT . These two requirements
then set nontrivial constraints on the scaling functions of
ω/T in Im�R

kF
(ω,T ) ∝ |ω|DfID(|ω|/T ) and Re�R

kF
(ω,T ) ∝

ω|ω|D−1fRD(|ω|/T ): both fID(x) and fRD(x) must vanish at
x = iπ .

In the next two sections, we obtain explicit forms of
fID(|ω|/T ) and fRD(|ω|/T ) for near-critical FLs in D = 2
and 3 and show that they satisfy the constraint.

1. D = 2

We again use (4.1) for χq(�n). In D = 2, we have

ImχR
L (�) = χ0γ ξ 4

πvF

� ln
ωFL

|�| , (4.9)

where ωFL ∼ 1/(γ ξ 3) is the upper boundary of the FL
behavior. The imaginary part of the self-energy is given by

Im�R
kF

(ω,T ) = B0

∫
d�� ln

ωFL

|�| [nB(�) + nF (� + ω)] ,

(4.10)

where B0 = χ0γ ξ 4/(2π2v2
F ). The real part of the self-energy

is obtained via the KK relation. We skip the details of
calculations and show only the final results. It turns out that
the real part of the self-energy (the one which does not contain
logarithms) can be computed exactly, up to the term of order
ω which we omit below. The real part of the self-energy is an
odd function of the frequency at k = kF . For ω > 0, we find

Re�R
kF

(ω,T ) = −B0

4

[
πω2 + 4πT 2

(
π2

12
+ Li2[−e−ω/T ]

)]
,

(4.11)

where

Lis(y) =
∞∑

k=1

zk

ks
(4.12)

is a polylogarithmic function. This expression can be cast into
the scaling form Re�R

kF
(ω,T ) = ω|ω|fR2(|ω|/T ). For ω =

iπT , −e−ω/T = 1 and Li2(1) = π2/6. Substituting these rela-
tions into (4.11), we find that Re�R

kF
(iπT ,T ) = 0, as expected.

The imaginary part of the self-energy is given by Eq. (4.10)
in the form of a one-dimensional integral. The formula for
Im�R

kF
(ω,T ) can be simplified if we extract from it the leading

logarithmic term. Combining the remainder of Im�R
kF

(ω,T )
with Re�R

kF
(ω,T ), we obtain

�R
kF

(ω,T ) = i
B0

4
(ω2 + π2T 2) ln

e(ωFL)2

π2T 2

+ i
B0

4

(
ω2 + π2T 2

3

)
ln

π2T 2

−ω2

+ 2iB0T
2
∫ ∞

0
x Li2(−e−πx)

×
(

1

x2 − (ω/πT )2
− 1

x2 + 1

)
, (4.13)

where ln(−ω2) = ln ω2 − iπ sgnω. In Eq. (4.13), we singled
out the leading, logarithmic term in Im�R

kF
(ω,T ), and the rest

has the form ω2fI2(|ω|/T ). The scaling function is rather
nontrivial, yet we see from (4.13) that �R

kF
(iπT ,T ) vanishes,

as it should.
In Appendix C, we discuss several subtle issues related to

analytic continuation of the self-energy to the complex ω plane
in a situation when either Re�R

kF
(ω,T ) or Im�R

kF
(ω,T ) can not

be evaluated explicitly and has to be kept in an integral form,
as in Eq. (4.10).

2. Subleading terms in D = 3

A very similar situation emerges in 3D systems if we go
beyond the leading ω2 + π2T 2 term in the self-energy and
consider the subleading terms of order T 3 and ω3. At T = 0,
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the real part of the self-energy scales as ω3 ln |ω| and the
imaginary part scales as |ω|3. At finite T , both parts contain
scaling functions of |ω|/T . The situation is somewhat similar
to that in D = 2 in a sense that the behavior is marginal due
to logarithms.

Using χq(�n) from Eq. (4.1), we obtain

ImχR
L (�) = χ0γ ξ 3

8vF

� − χ0γ
2ξ 6

4πv2
F

�|�| + · · · . (4.14)

Substituting this form into Eq. (4.8), we obtain after some
algebra an explicit expression for Im�R

kF
(ω,T ) to order ω3,T 3:

Im�R
kF

(ω,T )

= C0(ω2 + π2T 2) + D0

{ |ω|
3

(ω2 + π2T 2)

+ 4T 3(Li3(−e|ω|/T ) − ζ (3))

}
, (4.15)

where C0 = χ0γ ξ 3/(32πv2
F ), D0 = χ0γ ξ 6/(24π2v3

F ), and
ζ (x) is the zeta function. Using that Li3(1) = ζ (3), one can
immediately verify that Im�R

kF
(iπT ,T ) = 0, as it should. This

happens despite that the functional form Im�R
kF

(ω,T ) is rather
complicated at order ω3,T 3; e.g., the prefactor of the ω3 term
is not the same as the prefactor of the T 3 term.

The real part of the self-energy contains logarithms and has
to be left in an integral form. The calculation of Re�R

kF
(ω,T )

using the KK formula, Eq. (2.15), requires some care as the
integral is formally infrared divergent, if we use Eq. (4.15)
for Im�R

kF
(ω,T ). The recipe is to (i) start with the general

expression for Im�R
kF

(ω,T ) in Eq. (4.8); (ii) substitute it
into the KK formula and obtain Re�R

kF
(ω,T ) in the form

of a double integral; (iii) keep the full form of ImχR
L (�)

(without expanding it) at intermediate stages of the calculation,
and change the order of integrations when it is convenient;
(iv) use the fact that ImχL(�) vanishes in the infrared and
also that ReχR

L (0) = (2/π )
∫ ∞

0 d� ImχR
L (�)/�. Evaluating

Re�R
kF

(ω,T ) this way, we obtain

Re�R
kF

(ω,T ) = ω
ReχR

L (0)

2πvF

+ 1

3π2vF

ω(ω2 + π2T 2)
∫ ∞

0
ImχR

L (x)
x dx

(x2 − ω2)2
+ ω

π2vF

∫ ∞

0
ImχR

L (x)dx

[
1

2ω
ln

x + ω

x − ω
− 1

x

− xω2

3(x2 − ω2)2

]
+ 4ω

π2vF

∫ ∞

0
ImχR

L (x)x dx

∫ ∞

0

y dy

ex/T + 1

[
1

(x2 + y2 − ω2)2 − 4x2y2
− 1

(x2 − ω2)2

]
, (4.16)

where all integrals are to be understood as principal values. The last two integrals are ultraviolet convergent for ImχR
L (x) given

by (4.14). The second term in Eq. (4.16) is singular, but only logarithmically, and accounts for the ω3 ln |ω| term in Re�R
kF

.
Substituting χR

L (ω) from Eq. (4.14) and combining Im�R
kF

(ω,T ) and Re�kF
(ω,T ), we obtain from (4.16)

�R
kF

(ω,T ) = ω
ReχR

L (0)

2πvF

+ iC0(ω2 + π2T 2) + D0

π
ω(ω2 + π2T 2) ln

[
ω2

FL

−eω2

]
+ 5D0ω

3

3π

− 4D0

π
ω

∫ ∞

0

dx

x2 + ω2
[x(x2 + π2T 2) + 6T 3(Li3(−ex/T ) − Li3(1))]. (4.17)

Equation (4.17) is a complete expression for the self-energy in
a 3D FL within the local approximation.

One can easily make sure that �R
kF

(ω,T ) in Eq. (4.17) is an
analytic function of ω in the upper half-plane, hence, it can be
straightforwardly continued from the real axis into the upper
half-plane just by replacing ω by a complex z. At z = iπT ,
the second and third terms vanish, while the last two terms
cancel each other, i.e., at the first Matsubara frequency, the
self-energy contains a linear-in-T term but no terms of higher
power of T , in agreement with the first-Matsubara rule.

C. Marginal FL

As another illustration, we consider the self-energy in
a marginal FL (MFL).38 The term marginal FL refers to
a situation when the imaginary part of the self-energy is
comparable to ω, hence by the Landau criterion, the system is
at the boundary between FLs and non-FLs. By the KK relation,
if Im�(ω,T = 0) ∝ |ω|, then Re�(ω,T = 0) ∝ ω ln(	/|ω|).

Because in a generic nonconventional FL Im�R(ω,T ) ∝
ωDfID(|ω|/T ), the MFL behavior formally emerges when
D approaches one. This limit is, however, special, and we
follow earlier work39 and assume that the MFL behavior is
associated with some sort of quantum criticality rather than
with D = 1. Specifically, the MFL behavior emerges if one
assumes ImχR

L (�,T ) to be a scaling function of �/T such that
ImχR

L (�,T = 0) = const × sgn(�) and ImχR
L (�,T ) ∝ �/T

for � � T .39 A simple model form of ImχR
L (�,T ) satisfying

these conditions is

ImχR
L (�,T ) = χL0 tanh

�

T
. (4.18)

This expression is valid for � smaller than some cutoff energy
E∗. At larger �, ImχR

L (�,T ) must decrease. To simplify
calculations, we impose a hard cutoff, i.e., set ImχR

L (�,T )
to be given by (4.18) for |�| < E∗ and ImχR

L (�,T ) = 0 for
|�| > E∗.

155136-14



FIRST-MATSUBARA- . . . . I. FERMIONIC SELF-ENERGY PHYSICAL REVIEW B 86, 155136 (2012)

FIG. 3. (Color online) Red line: exact scaling function fIM (x)
in Im�R(ω,T ) for the marginal FL model [Eq. (4.20)]. Blue line:
a scaling function obtained by replacing ω → √

ω2 + π 2T 2 in
Im�R(ω,T = 0). Square-root approximation (4.21) is practically
indistinguishable from exact fIM (x) in the interval of x shown in
the figure.

The first-Matsubara rule states that the self-energy
at the first Matsubara frequency must be �kF

(πT,T ) =
πT χL(0,T )/(2πvF ). In all examples considered so far, we
assumed that D > 1 and hence dropped this term, as it was
of different order than the T D term, which was our primary
interest. Now, Im�R

kF
(ω ∼ T ,T ) = O(T ), and we should keep

all O(T ) terms.
Substituting Eq. (4.18) into Eq. (4.8), we obtain

Im�R
kF

(ω,T ) = χL0

2πvF

∫
d� tanh

�

T
[nB(�) + nF (� + ω)] .

(4.19)

Because the integral converges at large �, and we are interested
in ω,T � E∗, we can safely extend integration over � to the
whole real axis. At T = 0, we have from (4.19) Im�R

kF
(ω,0) =

χL0ω/2πvF , and at ω = 0, Im�R
kF

(0,T ) = χL0πT/2πvF .
When ω and T are both finite, integration in Eq. (4.19) yields

Im�R
kF

(ω,T ) = T χL0

2πvF

fIM

(
ω

T

)
,

(4.20)

fIM (x) = (π/2)(ex + 1)2 + x(e2x − 1)

e2x + 1
.

Function fIM (x) is plotted in Fig. 3.
Expanding (4.20) in ω/T and casting the result into the

form of a square root, we obtain, approximately,

Im�R
kF

(ω,T ) ≈ χL0

2πvF

√
π2T 2 + ω2

π (4 − π )

2
. (4.21)

This form is obviously different from
√

π2T 2 + ω2 obtained
by by replacing ω by

√
π2T 2 + ω2 in the T = 0 result.

Nevertheless, by substituting x = iπ into (4.20), we find that
fIM (iπ ) vanishes, as it should by the first-Matsubara rule.

The analysis of Re�R
kF

(ω,T ) = ωfRM (ω/T ) requires more
effort as one has to take care of the upper cutoff of the theory.
The calculation is similar to the one we did for D = 3 in
the previous section. We use Im�R

kF
(ω,T ) in the form of

Eq. (4.19), but keep the limits of the integration over � as −E∗
and E∗ and set E∗ to infinity only at the end of calculation.
Without that, we would not reproduce the first-Matsubara rule
for Re�kF

(ω,T ). Substituting Im�R
kF

(ω,T ) from Eq. (4.19)

into the KK formula, we obtain after some algebra

fRM (x) = 2

π

∫ ∞

0

dy

y2 − x2
[fIM (y) − y] + 2

π

∫ ∞

0

dy

y2 − x2

× (y − ln[1 + ey−Ē∗
]), (4.22)

where Ē∗ = E∗/T . Both integrals are convergent and are
easily evaluated numerically.

At x = iπ , the first integral yields (2/π ) × 0.963 51,
while the second integral gives (2/π )(ln Ē∗ + 1 − ln π ) ≈
(2/π )

(
ln Ē∗ − 0.144 73

)
, up to terms exponentially small in

E∗, which we neglect. Combining the two last expressions, we
obtain

fRM (iπ ) ≈ 2

π
(ln Ē∗ + 0.818 78). (4.23)

According to the first-Matsubara rule, the result in
Eq. (4.23) should be exactly the same as ReχR

L (0,T )
[then Re�R(iπT ,T ) = i(T/2vF )fRM (iπ ) becomes equal to
i(T/2vF )ReχR

L (0,T )]. The static local susceptibility is ob-
tained by applying the KK transformation to ImχR

L (ω,T ) in
Eq. (4.18):

ReχR
L (0,T ) = 2

π

∫ Ē∗

0

tanh x

x
dx

≈ 2

π

(
ln Ē∗ −

∫ ∞

0

dx ln x

cosh2 x

)

≈ 2

π
(ln Ē∗ + 0.818 78), (4.24)

again, up to terms exponentially small in Ē∗. Comparing
Eqs. (4.23) and (4.24), we see that they are equal, as it should
be, according to the first-Matsubara rule.

D. Finite-q instability

The discussion above is valid for a Pomeranchuk instability
at q = 0, when the dynamical exponent z is equal to 3. In
lattice systems, an instability may also occur at finite q, in
which case z = 2, up to fluctuation corrections from multiloop
diagrams.6,16,40 Such an instability is often called either spin-
density wave (SDW) or charge-density wave (CDW), depend-
ing on whether it occurs in the spin or charge channel. The
z = 2 case is more involved because typical q along the FS now
scale as q⊥ ∝ |�n|1/2, while q‖ still scale as �(ωm + �n,T ).
The one-loop self-energy for z = 2 problem scales as ω(D−1)/2,
hence for �n ∼ ωm, typical q⊥ are of order |�n|(D−1)/2. Local
approximation is valid if typical q‖ � q⊥, and is only justified
for D > 2. At D = 2, q⊥ and q‖ are of the same |�n|1/2

order. The local approximation in this case can be imposed
by extending the system to a large number of fermionic flavors
N , and the analysis up to two loops indeed shows that the
local approximation, and the first-Matsubara rule associated
with it, become exact at N = ∞. For a z = 2 transition,
the first-Matsubara rule implies that �(ωm,T ) evaluated at
a generic ωm 	= ±πT contains a T 1/2 term ( or a T 2ξ 3 term
in the FL regime), but the prefactor of this term vanishes at
ωm = ±πT . The vanishing is not exact, however, because
some of the higher-order contributions to �(ωm,T ) can be
viewed as coming from processes with small momentum
transfers, mediated by small-q collective excitations of critical

155136-15



ANDREY V. CHUBUKOV AND DMITRII L. MASLOV PHYSICAL REVIEW B 86, 155136 (2012)

z = 2 modes, and higher-order contributions to �(ωm,T ) from
such processes do not vanish at N = ∞ (Refs. 13, 14, 16,
and 17). Still, in D = 2, a local propagator of the collective
mode made of two z = 2 excitations scales as χL(�n) ∝∫

dq dq ′d�
′
nχ (q

′
,�

′
n)χ (q + q ′,�n + �

′
n) ∝ ln |�n| and is

weaker than χL(�n) ∝ 1/
√|�n|. As a result, the prefactor of

the T 1/2 term in �(ωm,T ), although does not vanish exactly at
ωm = ±πT , is nevertheless reduced by a factor of | ln T |/T 1/2.
Contributions to this prefactor from even higher orders form
series in | ln T |n/T 1/2 and may potentially give rise to an
additional anomalous power T η/T 1/2. The first-Matsubara
rule then remains meaningful as long as η < 1/2.

V. SUMMARY

In this paper, we analyzed in detail the fermionic self-energy
�(ω,T ) in a FL at finite temperature T and frequency ω.
Our main goal was to understand how general is a certain
property of the self-energy, the first-Matsubara-frequency
rule. This rule states that the self-energy �(ωm,T ), evaluated
at discrete Matsubara points ωm = πT (2m + 1), exhibits a
special behavior at the first fermionic Matsubara frequency:
namely, �(πT,T ) does not contain terms higher than OT . As
a particular manifestation of this rule, the imaginary part of
the self-energy on the FS in a conventional 3D FL behaves
as Im�(ω,T ) ∝ ω2 + π2T 2, with exactly a π2 factor in front
of the T 2 term, and Re�(ω,T ) contains an ω term but no
ωT term. We found that the rule is not an exact one, i.e.,
�(πT,T ) in a generic FL does contain higher than linear
terms in T . Still, the first term after O(T ) in �(πT,T ) in
any dimension 1 < D � 3 is of order T D (T 3 ln T in 3D).
In D > 2, this term is parametrically smaller than the T 2

term which is present in �(ωm,T ) for |ωm| 	= πT . We found
that the T D term comes from only forward and backward
scattering, and is expressed in terms of fully renormalized
amplitudes for these processes. We further showed that the
first-Matsubara-frequency rule becomes exact in the local
approximation, when the interaction can be approximated by
its value for the initial and final fermionic states right on the
Fermi surface. In this approximation, which is justified, e.g.,
near a Pomeranchuk instability even if the vertex corrections
are non-negligible, the T D term and all higher-order terms
in �(πT,T ) vanish, and only the O(T ) term survives. The
first-Matsubara-frequency rule then imposes two constraints
on the scaling form of the self-energy: upon replacing ω by
iπT , Im�R(ω,T ) must vanish and Re�R(ω,T ) must reduce
to an O(T ) form. We considered several examples of the
first-Matsubara rule, and argued that these two constraints
should be taken into consideration in extracting scaling forms
of �R(ω,T ) from experimental and numerical data.
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APPENDIX A: EVALUATION OF THE MATSUBARA
SELF-ENERGY USING THE EULER-MACLAURIN

SUMMATION FORMULA

In this Appendix, we show how to reproduce the first-
Matsubara rule for the fermionic self-energy by using the
Euler-Maclaurin (EM) formula for summation over the Mat-
subara frequencies. Unexpectedly, the calculations involving
the EM formula turn out to be quite involved, and to
reproduce the first-Matsubara rule, one has to keep not only
the “conventional” terms in the EM formula, with the integral
over a bosonic Matsubara frequency �n and the sum over the
derivatives of the summand at n = 0, but also the remainder
term, which is often neglected when the EM formula is applied
in practice.

To be specific, we consider Eq. (4.2) for the self-energy
�kF

(ωm,T ) and set ωm = πT , which gives

�kF
(πT,T )

= iT
∑

n

∫
dq‖dD−1q⊥

(2π )D
1

iπT (2n + 1) − vF q‖
χq(�n)

(A1)

with q = (q‖,q⊥). We assume that the local approximation is
valid, i.e., that typical q‖ are small compared to typical q⊥,
and the dependence of the bosonic propagator on q‖ can be
neglected. Within this approximation, Eq. (A1) simplifies to

�kF
(πT,T ) = T

2vF

χL(0) + T

2vF

∞∑
n=1

χL (2πT n)

× [sgn(2n + 1) − sgn(2n − 1)], (A2)

where

χL(2πT n) =
∫

dD−1q⊥χq⊥(2πnT )/(2π )D−1. (A3)

The first term in Eq. (A3) is proportional to T , and the second
term vanishes identically because for any n � 1, sgn(2n +
1) = sgn(2n − 1) = 1. Hence, �kF

(πT,T ) does not contain
terms beyond O(T ), in accordance with the first-Matsubara
rule.

An unexpected complication arises when one attempts to
reproduce the vanishing of the second term in Eq. (A2) by
applying the EM formula to the sum over n. Under the
condition that χ̄ (x) and its derivatives vanish at x → ∞, which
we assume to hold in our case, the EM formula reads as41

∞∑
n=1

f (n) =
∫ ∞

0
f (x)dx − f (0)

2
−

N∑
p=1

B2p

f (2p−1)(0)

(2p)!
− RN,

(A4)
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where Bk are the Bernoulli coefficients, f (n) is the nth
derivative of f , and RN is the Poisson remainder term

RN =
∫ ∞

0

BN ({1 − x})
N !

f (N)(x)dx, (A5)

where BN (x) is Bernoulli polynomial, and {1 − x} denotes the
fractional part of 1 − x.

In applications of this formula, it is often assumed that the
remainder term RN tends to zero in the limit N → ∞ and is
thus dropped. We show that in our case the remainder term
can not be neglected and one should use the full EM formula
[Eqs. (A4) and (A5)] instead of the truncated one.

Indeed, in our case,

f (x) = T

2vF

χL(2πT x)[sgn(2x + 1) − sgn(2x − 1)]. (A6)

The first term in the right-hand side of (A4) is the integral∫ ∞
0 f (x)dx. By integrating f (x) from (A6) over x, we obtain∫ ∞

0
f (x)dx = T

vF

∫ 1/2

0
dx χL(2πT x)

= T

2vF

χL(0) + πT 2

4vF

χ ′
L(0) + · · · , (A7)

where the ellipsis stands for the terms of higher order in
T . Combining (A7) with the boundary term −f (0)/2 =
−(T/2vF )χL(0), we see that the linear-in-T term cancels, but
the quadratic term contributes

�1 = T 2χ ′
L(0)

π

4vF

(A8)

to �kF
(πT,T ).

This T 2 term would violate the first-Matsubara rule and
must be canceled by the terms with the derivatives f (n)(0).
Because the derivatives of sgn(2x + 1) and of sgn(2x − 1)
vanish at x = 0, one has to differentiate only χL(2πT x). A
T 2 contribution to �kF

(πT,T ) comes from the first derivative
of f (x), i.e., from the p = 1 term in the sum over p in the
right-hand side of (A4). Terms with p > 1 contribute higher
powers of T . Using that B2 = 1/6, we find the T 2 contribution
from the infinite sum with the derivatives f (n)(0) as

�2 = −T 2χ ′
L(0)

π

6vF

. (A9)

The sum �1 + �2 = T 2χ ′
L(0)π/(12vF ) is nonzero.

The sum over p in Eq. (A4) can be safely extended
to infinity as only the p = 1 term contributes a T 2 to the
self-energy. If we used the truncated EM formula without the
remainder term, we would have then obtained an incorrect
result that �kF

(πT,T ) does contain a T 2 term. In fact,
the counterterm canceling the parasitic �1 + �2 contribution
comes from the remainder term RN in Eq. (A5), even if we
take the N = ∞ limit. Indeed, let us focus on the T 2 term
in the self-energy and replace χL(2πT x) by 2πT χ ′

L(0)x. We
then have

f (x) → π
T 2

2vF

x[1 − sign(2x − 1)]. (A10)

One can easily make sure that f (x) and its derivatives are
nonzero only in the interval 0 < x � 1/2, where the fractional

part of 1 − x in the argument of the Bernoulli polynomial in
Eq. (A5) is equal to just 1 − x. Furthermore, the derivatives
f (n)(x) with n � 2 vanish at the boundaries of the integral in
Eq. (A5), hence, one can integrate by parts N − 2 times and
the boundary terms vanish. Using the property of Bernoulli
polynomials B ′

N (x) = NBN−1(x) and applying it N − 2 times,
we rewrite RN as

RN = T 2

2vF

χ ′
L(0)

∫ 1

0
B2(1 − x)

d2

dx2
{x[1 − sign(2x − 1)]} .

(A11)

Using that d/dx[1 − sgn(2x − 1)] = −2δ(x − 1/2) and also
that B1(1/2) = 0 and B2(1/2) = −1/12, we obtain after
integrating in Eq. (A11) by parts

�3 = −RN = T 2

vF

χ ′
L(0)B2(1/2) = −T 2χ ′

L(0)
π

12vF

. (A12)

Combining the three contributions, we see that �1 + �2 +
�3 = 0, as it should.

An alternative way to compute the sum over bosonic
Matsubara frequencies using the EM formula would be to
“smear” the discontinuity in f (x) by integrating over q‖ in
Eq. (A1) in finite limits −Q < q‖ < Q and take the limit
Q → ∞ only at the last stage. In this scheme, the remainder
term R∞ does not contribute, but terms with p ∼ πT/Q

become relevant in the sum over p in Eq. (A4). This calculation
is, however, more involved than the one we presented above,
and we did not find a clear proof that the contribution from
p ∼ πT/Q exactly cancels �1 + �2.

APPENDIX B: DEPENDENCE OF THE SELF-ENERGY ON
THE UPPER CUTOFF OF LOW-ENERGY THEORY

In this Appendix, we show that the prefactor of the linear-
in-T term in the fermionic self-energy at the first Matsubara
frequency �kF

(πT,T ) = λT depends on the ratio of the Fermi
energy EF = vF kF /2 to the upper cutoff of the low-energy
theory denoted as 	. The result shown in Eq. (2.33) with
the “mass renormalization factor” λ ∝ �(0) corresponds to
the situation of 	 � EF , when integration over intermediate
energies in the expression for the self-energy [Eq. (2.30)] can
be extended to infinity. In the opposite limit of 	 � EF , λ

is much smaller. To see this, we note that typical momentum
transfers q = |k − k′| are of order kF , hence, typical internal
energies in the self-energy diagram are of order EF . The
integration over εk′ in Eq. (2.30) in finite limits changes
the factor of sgn(ωm + �n) to (2/π ) arctan [	/(ωm + �n)],
which becomes small when typical �m ∼ EF is much larger
than 	. The polarization operator also changes, but the �(0)
term remains the same because it comes from the smallest
frequencies. To simplify the computations, we keep �q(�n)
in the same form as before, but replace vF q by EF , i.e., we
set �q(�n) = −�(0)(1 − |�n|/

√
�2

n + E2
F ). Substituting this

expression along with the result of integration over εk′ into the
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self-energy, we obtain

�kF
(πT,T )

= λT
2

π

∑
�n

⎛
⎝1 − |�n|√

�2
n + E2

F

⎞
⎠ arctan

	

πT + �n

= λT
2

π

[
arctan 2	̄ +

∞∑
n=1

(
1 − n√

n2 + ĒF

)

×
(

arctan
	̄

n + 1/2
− arctan

	̄

n − 1/2

)]
, (B1)

where λ ∝ |�0| is the same as in Eq. (2.33), 	̄ = 	/2πT , and
ĒF = EF /2πT . For 	̄ 
 ĒF , the term (1 − n/

√
n2 + Ē2

F )
decreases rapidly for n � ĒF , when the difference between
two arctangent functions is still small, of order ĒF /	̄. Then,
the first term in the last line in Eq. (B1) is the dominant one, and
using that arctan 2	̄ ≈ π/2, one recovers �kF

(πT,T ) = λT

with λ = �(0). In the opposite limit of ĒF 
 	̄, the first term
can be approximated by unity for all n up to n ∼ ĒF 
 	̄.
Because the difference of the two arctangents scales as 1/n2

for n 
 	̄, and
∞∑

n=1

(
arctan

	̄

n + 1/2
− arctan

	̄

n − 1/2

)
= − arctan 2	̄,

(B2)

the contribution to the sum from positive n almost cancels that
from n = 0. A straightforward analysis shows that in this limit,
λ is small and scales as λ ∼ (	/EF ) ln EF /	.

APPENDIX C: ANALYTIC CONTINUATION OF THE
SELF-ENERGY IN THE LOCAL APPROXIMATION IN 2D

In this Appendix, we discuss some subtleties of analytic
continuation of the self-energy into the complex ω plane in a
situation when either Re�R(ω,T ) or Im�R(ω,T ) cannot be
evaluated explicitly and have to be kept in an integral form, as
in Eq. (4.10). One can use the fact that the integral converges
in the ultraviolet and modify the integrand by shifting the
variable. By doing so, one can obtain several different formulas
for Im�R(ω,T ), which all nevertheless yield the same result
along the real frequency axis. The danger of this trick is that, by
shifting variables, one imposes the dependence on the external

ω onto ImχR
L which, in D � 2, is a nonanalytic function of

its argument. As a consequence, if one now performs analytic
continuation just by replacing ω → z, one obtains a branch cut
which stretches down to Imz → 0, and the self-energy will not
obey the first-Matsubara rule at z = iπT . To make sure that
this rule is satisfied, one has to use the Cauchy formula for
analytical continuation which, in this case, is not equivalent to
just replacing ω by a complex z. As an illustration, we consider
Eq. (4.10) in the form it was presented in Ref. 29:

Im�R(ω,T )

= B0

4

{
(ω2 + π2T 2) ln

e	2

π2T 2
+ ω2 ln

π2T 2

ω2

+ 1.1217π2T 2 + 2
∫ ∞

0

1

ex/T + 1

[
ω ln

(
x − ω

x + ω

)2

+ x ln
x4

(x2 − ω2)2

]}
. (C1)

Along the real frequency axis, this formula yields exactly
the same result as Eq. (4.13). However, if we formally
replace ω by iπT + δ, with infinitesimally small δ > 0, before
integrating over x in the last term in Eq. (C1), we obtain
(B0π

2T 2/4)(0.17 + iπ ), which obviously does not satisfy the
first-Matsubara rule. The reason is that the ω dependence is
under the logarithm in the last, integral term of (C1), and
each of the two logarithms there has a branch cut. Let us
set ω = πT eiφ and vary φ between zero (the real axis) and
π/2 (the first Matsubara frequency along the imaginary axis).
To understand what is going on, it is enough to move only
a little off the real axis, i.e., to consider only small φ. The
branch cuts in the first and second logarithms in the integral
term of Eq. (C1) are at x = 1 and cos 2φ, correspondingly.
Each of them gives rise to a discontinuity in the imaginary
part (ln z = ln |z| + iπ argz, and the argument of z changes
discontinuously at the branch cut). At φ = 0, the discontinu-
ities coming from the two logarithms cancel each other, but
at finite φ there is a range of x in-between 1 − φ2/4 and 1,
where the arguments add up to almost 2π . This additional
contribution makes Im�R(T ,πT eiφ) to be different from the
one obtained by analytical continuation of Eq. (C1). For
small φ, the difference is (π2T 2/8) × (2πi)(φ2/4)/(eπ + 1).
We verified numerically that this expression is exactly the
difference between the analytical continuation of (C1) and the
brute-force replacement ω → πT exp(iφ) in Eq. (C1).
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M. Zacharias, P. Wölfle, and M. Garst, ibid. 80, 165116 (2009);
M. Garst and A. V. Chubukov, ibid. 81, 235105 (2010); E. Fradkin,
S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie,
Annu. Rev. Condens. Matter Phys. 1, 153 (2010).

36A. V. Chubukov, Y.-B. Kim, and S. S. Lee (unpublished).
37A. J. Millis, Phys. Rev. B 48, 7183 (1993).
38See, e.g., C. M. Varma, Z. Nussinov, and W. van Saarloos, Phys.

Rep. 361, 267 (2002), and references therein.
39E. Abrahams and C. M. Varma, Proc. Natl. Acad. Sci. USA 97,

5714 (2000).
40Ar. Abanov and A. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).
41E. Weisstein, Quantum Calculus: MathWorld, A Wolfram Web

Resource, edited by V. Kac and P. Cheung (Springer, Berlin, 2001).

155136-19

http://dx.doi.org/10.1103/PhysRevLett.94.156407
http://dx.doi.org/10.1103/PhysRevB.71.205112
http://dx.doi.org/10.1103/PhysRevB.71.205112
http://dx.doi.org/10.1103/PhysRevB.80.165102
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.81.045110
http://dx.doi.org/10.1103/PhysRevB.81.045110
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/10.1088/1367-2630/12/10/105007
http://dx.doi.org/10.1103/PhysRevB.82.045121
http://dx.doi.org/10.1103/PhysRevB.82.045121
http://dx.doi.org/10.1103/PhysRevB.78.035103
http://dx.doi.org/10.1103/PhysRevB.86.155137
http://dx.doi.org/10.1103/PhysRev.121.942
http://dx.doi.org/10.1103/PhysRevB.4.302
http://dx.doi.org/10.1103/PhysRevB.26.4421
http://dx.doi.org/10.1103/PhysRevB.53.9964
http://dx.doi.org/10.1103/PhysRevB.54.11561
http://dx.doi.org/10.1103/PhysRevB.53.7403
http://dx.doi.org/10.1103/PhysRevB.53.7403
http://dx.doi.org/10.1103/PhysRevB.55.R7363
http://dx.doi.org/10.1103/PhysRevB.65.180202
http://dx.doi.org/10.1103/PhysRevB.65.180202
http://dx.doi.org/10.1103/PhysRevB.68.155113
http://dx.doi.org/10.1103/PhysRevB.71.075112
http://dx.doi.org/10.1103/PhysRevB.74.075102
http://dx.doi.org/10.1103/PhysRevB.84.205131
http://dx.doi.org/10.1103/PhysRevB.73.045128
http://dx.doi.org/10.1103/PhysRevB.73.045128
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/RevModPhys.77.579
http://dx.doi.org/10.1103/PhysRevB.74.220402
http://dx.doi.org/10.1103/PhysRevB.74.220402
http://dx.doi.org/10.1103/PhysRevB.79.075112
http://dx.doi.org/10.1103/PhysRevB.79.075112
http://dx.doi.org/10.1103/PhysRevB.73.045127
http://dx.doi.org/10.1103/PhysRevB.72.035114
http://dx.doi.org/10.1103/PhysRevB.80.165116
http://dx.doi.org/10.1103/PhysRevB.81.235105
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
http://dx.doi.org/10.1103/PhysRevB.48.7183
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1073/pnas.100118797
http://dx.doi.org/10.1073/pnas.100118797
http://dx.doi.org/10.1103/PhysRevLett.93.255702



