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Imaginary-time quantum many-body theory out of equilibrium: Formal equivalence to Keldysh
real-time theory and calculation of static properties
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We discuss the formal relationship between the real-time Keldysh and imaginary-time theory for nonequi-
librium in quantum dot systems. The latter can be reformulated using the recently proposed Matsubara-voltage
approach. We establish general conditions for correct analytic continuation procedure on physical observables,
and apply the technique to the calculation of static quantities in steady-state nonequilibrium for a quantum dot
subject to a finite bias voltage and external magnetic field. Limitations of the Matsubara voltage approach are
also pointed out.
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I. INTRODUCTION

Experimental investigation of solids is in most cases
concerned with observation of static or dynamic properties in
a weakly perturbed macroscopic system. Therefore, standard
techniques from equilibrium statistical mechanics are usually
sufficient, possibly supplemented by linear-response theories
to account for transport. Equilibrium statistical mechanics is
based on the Gibbsian approach where the statistical density
matrix of a state s at energy Es and particle number Ns is given
by the Boltzmann factor e−β(Es−μNs ) with inverse temperature
β = 1/kBT and the chemical potential μ. The big success
in the theoretical description of quantum systems in thermal
equilibrium is based on the fact that both the thermal average
and time evolution are based on the same operator, and one
can use the concept of Wick rotation to formulate a theory
which actually condenses both types of dynamics into a single
complex Matsubara frequency theory.

The advances in experimental methods over the past two
decades have, however, opened the access to studies, where
time dependencies on the scale of internal time scales become
visible,1 or where mesoscopic systems can be driven out of
thermal equilibrium in a controlled way and various properties
can be experimentally observed,2–5 both in steady- and time-
dependent states. Therefore, one pressing question to modern
quantum many-body theory is how one can describe generic
nonequilibrium situations in macroscopic or mesoscopic sys-
tems. For the latter the paradigms are the single-electron
quantum dot and nanowires, where a tremendous amount of
data on transport or transient response has been collected over
the past 10 years.6,7

Out-of-equilibrium many-body theory is an emerging
field which poses an extreme challenge. There are many
attempts to use existing theoretical approaches, the most
popular being the ones based on the Keldysh formulation
of perturbation theory.8 In particular, the growing interest in
transport through mesoscopic systems triggered a variety of
applications of this technique; for example, direct perturbation
theory with respect to different zeroth order Hamiltonians,9–11

functional renormalization group methods,12,13 real-time

diagrammatic approaches,14 or direct numerical evaluation
of the real-time propagators.15–21 There are many other
ideas, for example, based on the concept of infinitesimal
unitary transformations.22 A comprehensive overview can, for
example, be found in Refs. 23 and 24.

An early attempt to formulate an out-of-equilibrium version
of statistical mechanics for steady-state properties of general
quantum many-body systems is due to Zubarev,25 who tried
to construct a time-independent density matrix formalism by
solving the equation of motion within the scattering state
formalism. This approach has later been revisited by Hershfield
in the context of transport through quantum dot systems.26

The main problem with these, in principle exact formulations,
is that they cannot be readily applied because they require
the solution of the Lippmann-Schwinger equation27 for the
scattering states, which amounts to knowing the full solution
itself. Some efforts have been made to directly implement
Hershfield’s density matrix within finite-order perturbation
theories,28–30 but they have proven quite cumbersome to be
extended to infinite orders. There have been other attempts
to tackle this problem by utilizing advanced nonperturbative
tools of quantum many-body theory like Bethe ansatz31 or an
extension of Wilson’s numerical renormalization techniques.32

However, the former approach could only be applied to a very
specific model, while the latter may lack a thorough foundation
regarding the proper steady-state limit.33

In the present manuscript we focus on a different way to
extend the theoretical framework of equilibrium quantum me-
chanics to steady-state nonequilibrium for quantum impurity
models via an imaginary-time theory. We especially discuss
the possibility to deform the complex time contour for physical
observables in equilibrium to the Keldysh contour appropriate
for nonequilibrium, as proposed by Doyon and Andrei.34

One fundamental problem that arises in any such attempt
stems from the fact that the nonequilibrium steady-state
Boltzmann factor and the time-evolution operator now have
a fundamentally different structure, and thus a straightforward
Wick rotation is not possible. As an alternative procedure,
we show that, by introduction of Matsubara voltage,35 the
problem of the dual operators can be resolved and a consistent
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theory for steady-state nonequilibrium based on auxiliary
statistical mechanical problems formulated.

As the first step we need to properly define in what sense
we achieve a steady state in a quantum impurity model. This
is done in Sec. II together with a discussion of the general
structure for Keldysh perturbation theory, the problem of
analytical continuation, and the idea of the Matsubara voltage
formulation. The equivalence of the Keldysh real time and the
Matsubata voltage perturbation theory for the steady state will
be shown in Sec. III for the single-impurity Anderson model. In
Sec. IV we derive expressions for calculating static observables
on the impurity via an analytical continuation procedure from
the Matsubara voltage description. As summary, Sec. V will
conclude the paper.

Since many details are rather technical and not really
necessary to understand the main line of argument, we included
them in a series appendices, which will be referred to when
necessary.

II. MANY-BODY THEORY OFF EQUILIBRIUM

A. Convergence to steady-state nonequilibrium

To establish a steady-state nonequilibrium, one requires the
system to be in the infinite-size limit. In mesoscopic systems,
such as quantum dots, this requirement means that the size of
the reservoirs L should be the largest scale and this limit should
be taken before any others. The time tW for the wake of the
perturbation occurring in the quantum dot region to reach the
edge of the reservoir with the Fermi velocity vF (tW = L/vF )
should be greater than any time scale used for the turn-on of the
perturbation or measurements. This ensures that the reflected
wave does not interfere with the formation of the steady state
and its measurements. Alternatively, the reciprocal vF /L also
represents the level spacing of the continuum states, which
sets the smallest energy scale in the model.

As in conventional many-body theory, we start with a
perturbation which we turn on infinitesimally slow with a rate
η−1 as

V̂ (t) = V̂ eηt (1)

for the time interval t ∈ [−T ,0], where T is some initial
time which eventually will be sent to infinity. For t > 0, the
perturbation remains constant at the full strength, V̂ (t) = V̂ .
The above discussions lead to the relation between the three
energy scales (we set h̄ = 1),

vF

L
� 1

T
� η. (2)

In his original proposal,9 Hershfield assumed the presence of
an external relaxation process to derive the time-independent
density matrix in the limit T → ∞. Recently Doyon and
Andrei34 have shown that for mesoscopic systems infinite
reservoirs provide a relaxation process and any assumption
of an additional external relaxation source is not necessary.
This suggests that we can do away with the adiabatic factor
eηt in a time-dependent theory as long as the limit L → ∞
is taken first. Here we show through an explicit calculation
that the adiabatic factor eηt is not necessary for the steady
state if local measurements are made near the quantum dot,36

henceforth abbreviated as QD.

Our model system consists of a QD connected to two
fermionic reservoirs labeled by α = L,R (or ±1, respectively,
when the reservoir index is taken numerically). We include the
single-particle tunneling between the leads and the QD into the
noninteracting part of the Hamiltonian, which then becomes
the resonant level model (RLM),

Ĥ0 =
∑
αkσ

εαkσ c
†
αkσ cαkσ + εd

∑
σ

d†
σ dσ

−
∑
αkσ

tα√
�

(d†
σ cαkσ + H.c.). (3)

Here, c
†
αkσ is the creation operator of conduction electrons for

the reservoir α with energy εαkσ at the continuum index k and
spin σ ; d†

σ creates an electron on the QD orbital and tα is the
tunneling integral. � is the normalization due to the volume
of the reservoirs. This Hamiltonian can be diagonalized by the
scattering state operators ψ

†
αkσ given by the formal Lippmann-

Schwinger operator equation,

ψ
†
αkσ = c

†
αkσ − tα√

�

1

εαkσ − L0 + i0+ d†
σ , (4)

with the Liouville operator acting on the operator space as
L0O = [Ĥ0,O]. This equation can be easily solved as

ψ
†
αkσ = c

†
αkσ − tα√

�
gd (εαkσ )d†

σ

+
∑
α′k′σ

tαtα′

�

gd (εαkσ )c†α′k′σ

εαkσ − εα′k′σ + i0+ , (5)

with the bare retarded Green’s function for the QD, gd (ω) =
(ω − εd + i
)−1. Here, 
 = π (t2

L + t2
R)N (0) is the hybridiza-

tion broadening, and we assume for simplicity a flat density
of states (DOS) N (0) for both reservoirs. With this simple
DOS, we suppress the reservoir and spin indices in εαkσ unless
necessary.

In the Hamiltonian (3), we represent the QD by a single level
under the assumption that the QD level spacing is large enough
that the interlevel transition does not alter strong correlation
physics of single-level QD transport in a fundamental way.
As the QD becomes large, the multiorbital nature of the QD
becomes important and we need to introduce the interlevel
physics. Orbital-fluctuation physics of a QD is an important
problem for inelastic transport process, but the full many-body
treatment of such physics has so far been quite limited.37,38

The range of validity of the imaginary-time theory has been
discussed in Ref. 39 regarding the level-connectivity, and we
limit our discussion here to single-orbital QD with on-site
Coulomb interaction, namely, the Anderson impurity model.

According to Hershfield,9 the nonequilibrium steady state
created by a shift of chemical potential on the source (drain)
reservoir by �/2 (−�/2) can be described by a density matrix,

ρ̂0 = exp[−β(Ĥ0 − �Ŷ0)], (6)

with the so-called Y operator defined as

Ŷ0 = 1

2

∑
kσ

(ψ†
LkσψLkσ − ψ

†
RkσψRkσ ). (7)

Since Ŷ0 is diagonal in the eigenoperator basis, [Ĥ0,Ŷ0] = 0,
and ρ̂0 is time independent. It is important to realize that the
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convergence factor i0+ in the denominator of the Lippmann-
Schwinger equation determines that the one particle states c

†
αkσ

originate from the infinite past inside the reservoir of infinite
size. Thus the limit L → ∞ has already been taken implicitly
before the perturbation is turned on.

B. Real-time theory for open system

In addition to the noninteracting part H0, the full Hamilto-
nian H of the system will in general also contain an interaction
we will denote as V̂ in the following. For a general observable
Â, we define its nonequilibrium expectation value as

lim
T →∞

〈Â(T )〉 = lim
T →∞

Tr(eiĤT Âe−iĤT ρ̂0)

Trρ̂0
, (8)

where Â has been evolved with the full Hamiltonian Ĥ

during the time interval −T < t < 0. Unlike Eq. (1), here we
take V̂ (t) = V̂ for −T < t < 0. Defining the time-dependent
operator Â(t) in the Heisenberg picture, Â(t) = eiĤ t Âe−iĤ t ,
Â(t) satisfies d

dt
Â(t) = i[Ĥ ,Â(t)] and

Â(t) = Â + i

∫ t

0
dt ′[Ĥ ,Â(t ′)]. (9)

One can now form the average with respect to ρ̂0, to obtain

〈Â(T )〉 = 〈Â〉0 + i

∫ 0

−T

dt ′〈[Ĥ ,Â(t ′)]〉0

= 〈Â〉0 + i

∫ 0

−T

dt ′〈[V̂ ,Â(t ′)]〉0. (10)

For the existence of a well-defined limit 〈Â(∞)〉, one must
show that36 ∫ 0

−∞
dt〈[V̂ ,Â(t)]〉0 < +∞. (11)

To this end one argues that as long as V̂ and Â are operators
local to the quantum dot,40 the time evolution of Â(t) will
decay as electrons travel away and the integral is finite.

To make the argument concrete, we consider as example
the usual on-site Coulomb interaction,

Ĥ = Ĥ0 + V̂ with V̂ = Und↑nd↓, (12)

and Ĥ0 defined in Eq. (3), and measure the current through
the dot, Â = Î . With the requirement that the current through
the L/R leads, IL/R , is the same, the current operator Î can be
symmetrized as Î = (t2

RÎL + t2
LÎR)/(t2

L + t2
R) and

〈Î 〉 = −itLtR√
�

(
t2
L + t2

R

) ∑
kσ

[〈d†
σ (tRcLkσ − tLcRkσ )〉 − H.c.]

= tLtR

t2
L + t2

R

i

�

∑
kk′

(g∗
d (k) − gd (k′))

× [
tLtR〈ψ†

LkψLk′ − ψ
†
RkψRk′ 〉

− (
t2
L − t2

R

)〈ψ†
LkψRk′ + ψ

†
RkψLk′ 〉]. (13)

We evaluate Eq. (10) using Wick’s theorem. Due to the
commutator inside the expectation value, only connected con-
tractions between any V̂ and Î (t) will contribute. Therefore any
nonvanishing Wick’s contractions must have an even number

of contractions connecting V̂ and Î (t) and contain factors
of 〈ψαkσ (0)ψ†

αkσ (t)〉0 or 〈ψ†
αkσ (0)ψαkσ (t)〉0. More specifically,

the first-order perturbation involves factors like

〈[V̂ ,Î0(t)]〉0 ∝ 1

�2

∑
kk′

[g∗
d (k) − gd (k′)]gd (k)g∗

d (k′)

× [fL(k) − fL(k′)]e−i(εk−ε′
k)t + · · · . (14)

Here fα(k) = [1 + eβ(εk−α�/2)]−1 (α = L,R or +1, − 1, re-
spectively) is the Fermi-Dirac function within the α reservoir.
Summation over the continuum variables k,k′ leads to terms
of the form,

〈d†(t)d(0)〉 = 1

�

∑
kα

t2
α |gd (k)|2fα(k)e−iεk t

� 1

�

∑
k

t2
α |gd (k)|2e−iεk t ∝ e−
|t |. (15)

Note that the inequality holds both for equilibrium and
nonequilibrium. Therefore, the following expression,

〈[V̂ (sk),[. . . ,[V̂ (s1),Î0(t)] . . .]〉0 ∝ e−
·min{|s1−t |,...,|sk−t |},
(16)

holds to any order of the perturbative expansion in V , and the
integral over t , Eq. (11), becomes convergent. This shows that
the steady-state limit of the nonequilibrium is well defined
due to the built-in exponential time dependence e−
|t | and the
physics is invariant regardless of the adiabatic factor eηt in
Eq. (1).

We stress here that the above conclusion on the adiabatic
rate η holds on the condition that the many-body interaction V̂

and the observable Â are short ranged from the QD. Generally,
the two different limits of adiabatic (η � 1/T ) and sudden
(η � 1/T ) switching of interaction lead to different global
quantum states. However, the main difference in the wave
functions in the two limits is located at the front of the
propagating wave from the QD region and local observables
near the QD reach the same steady-state values. As pointed out
by Doyon and Andrei,34 the infinite reservoirs [Eq. (2)] absorb
excess energy in the switching process and carry it away from
the QD.

We caution that, although the convergence factor eηt is
not necessary for a time-dependent theory, such adiabatic
factor should be treated carefully in a time-independent theory,
like the steady-state nonequilibrium. Such a situation arises
in particular when we perform a Fourier transformation to
represent a steady-state quantity in a spectral representation
with sinusoidal basis. For instance, let us express a steady-state
quantity A as an integral over a time-dependent function F (t),

A =
∫ 0

−∞
F (t)dt, (17)

where the integral is absolutely convergent without any
adiabatic factor eηt . We write F (t) in a spectral representation
as

F (t) =
∫ ∞

−∞

dω

2π
F̃ (ω)e−iωt , (18)
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with the Fourier component F̃ (ω), and the quantity A becomes

A =
∫ 0

−∞
dt

[∫ ∞

−∞

dω

2π
F̃ (ω)e−iωt

]
. (19)

If we now want to express A via a spectral representation,
we need to change the order of integrals. However, e−iωt is
an oscillatory function and we have to insert a regularization
factor eηt to unambiguously allow the integral exchange. Then,

A =
∫ ∞

−∞

dω

2π
F̃ (ω)

[∫ 0

−∞
dte−i(ω+iη)t

]

=
∫ ∞

−∞

dω

2π

iF̃ (ω)

ω + iη
, (20)

where the limit η → 0 has to be taken after the integral has
been evaluated.

Thus, the regularization factor iη appears explicitly in time-
independent theories. A possible way to avoid it is to use an
imaginary-time formulation, which is built on a finite contour
cut off by a finite temperature and therefore does not need
such a regularization factor. It is thus one of our goals to
clarify under what conditions a regularization is not necessary
and justify the use of an imaginary-time theory.

C. Conventional analytic continuation

In this subsection, we discuss conventional arguments of
the analytic continuation of a real-time theory to an imaginary-
time theory. We furthermore illustrate why such deformation
of time contour fails for a steady-state nonequilibrium, closely
following the argument by Doyon and Andrei.34

In equilibrium, the thermal average of an observable Â is
given as

〈Â〉 = lim
T →∞

TrS(0, − T )ρ̂0S(−T ,0)Â

TrS(0, − T )ρ̂0S(−T ,0)
, (21)

with the time-evolution operator S(t1,t2) = e−itH (t1−t2) with the
full Hamiltonian Ĥ and the noninteracting density matrix ρ̂0 =
e−βĤ0 . We consider that the limit T → ∞ exists as discussed
in the previous section. In the interaction picture with V̂I (t) =
eitĤ0 V̂ e−itĤ0 , the above relation can be rewritten as

〈Â〉 = lim
T →∞

TrSI (0, − T )ρ̂0SI (−T ,0)Â

TrSI (0, − T )ρ̂0SI (−T ,0)
, (22)

with

SI (t2,t1) = T exp

[
−i

∫ t2

t1

dsV̂I (s)

]
, (23)

with the time-ordering operator T defined as the time moving
in the direction from the right argument t1 to the left argument
t2. Using the relation,

SI (b,a) = e−icH0SI (b + c,a + c)eicH0 , (24)

one can write

SI (0, − T )ρ̂0 = ρ̂0SI (−iβ, − iβ − T ), (25)

t = 0

t = −iβ

t = −T

t = −T − iβ

t = 0

t = −iβ

(a) (b)

FIG. 1. (a) Keldysh contour for real-time diagrammatics. If the
time evolution along the dashed line does not contribute an extra
factor, the whole contour can be deformed to one along the imaginary
time from t = −iβ to t = 0 as shown in (b).

in a similar manner as Ref. 34. Then 〈Â〉 is written as

〈Â〉= lim
T →∞

Trρ̂0SI (−iβ, − iβ − T )SI (−T ,0)Â

Trρ̂0SI (−iβ, − iβ − T )SI (−T ,0)

= lim
T →∞

〈SI (−iβ, − iβ − T )SI (−T ,0)Â〉0

〈SI (−iβ, − iβ − T )SI (−T ,0)〉0
. (26)

If we can insert the factor SI (−iβ − T , − T ) [denoted as
a dashed line in Fig. 1(a)] between SI (−iβ, − iβ − T ) and
SI (−T ,0), one can close the time contour and analytically
continue to the contour along the imaginary time (0, − iβ)
[Fig. 1(b)].

Using the Wick’s theorem and the linked-cluster theorem,
the perturbation terms contributing to 〈Â〉 are of the type,

〈VI (s1)VI (s2) . . . VI (sn)Â(0)〉0,connected, (27)

where the time s = 0 for Â and the interaction times
{s1, . . . ,sn} are all interconnected by Wick’s contractions.
When the interaction V̂ and the observable Â are operators
local to the QD, one can use the relation Eq. (15). We
consider a case that one of sk in 〈VI (s1) . . . VI (sn)Â〉0,con

belongs in the interval [−T , − iβ − T ]. In its connected
Wick’s contractions the operators in Â may be eventually
linked to sk via a forward sequence {s ′

0 = 0, . . . ,s ′
p−1,s

′
p = sk}

and a backward sequence {s ′′
0 = sk, . . . ,s

′′
q−1,s

′′
q = 0}. For the

forward sequence {s ′
0 = 0, . . . ,s ′

p−1} with the times on the real
axis, we can use Eq. (15),

e−

∑p−1

n=1 |s ′
n−s ′

n−1| ∼ e−
max{|s ′
1|,...,|s ′

p−1|}. (28)

Similar expression holds for the backward sequence. For the
last term involving sk ∈ [−T , − iβ − T ], we have a con-
traction of 〈d(s ′′

1 )d†(sk)〉〈d(sk)d†(s ′
p−1)〉. For −β < Im(sk) <

0, the two factors remain finite and give a contribution
proportional to e−
(|T +s ′

p−1|+|T +s ′′
1 |). Therefore, when one of

the interaction events occurs on the contour [−T , − iβ − T ],
the corresponding term becomes exponentially small. When
traced with local operator Â, the factorization of the time
contour34 holds

SI (−iβ, − iβ − T )SI (−T ,0) → SI (−iβ,0). (29)

This shows that the Wick rotation between real-time and
imaginary-time theory is valid in equilibrium and

〈Â〉 = 〈SI (−iβ,0)Â〉0

〈SI (−iβ,0)〉0
. (30)

Next we ask whether the same argument can be extended to
the steady-state nonequilibrium with the initial density matrix
at time t = −T given by ρ̂0 = e−β(Ĥ0−�Ŷ0). In order to move
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(a () b) (c)

Â Â Â

ρ0 t1t2

s1s2s3

FIG. 2. (a) Keldysh contour in forward direction. Crosses mark interaction points V̂ and the dot an observable Â. (b) Reversed series of
scattering points. (c) Backward Keldysh contour with scattering events equivalent to (a) if Â is written in terms of QD operators.

ρ̂0 in Eq. (21) to the leftmost position in the trace, we write
Ĥ = Ĥ� + V̂ � with Ĥ�

0 = Ĥ0 − �Ŷ0 and V̂ � = V̂ + �Ŷ0.
Defining V �

I (t) = eitĤ�
0 V̂ �e−itĤ�

0 , we can utilize the same
argument as before to write

〈Â〉 = lim
T →∞

〈S�
I (−iβ, − iβ − T )S�

I (−T ,0)Â〉0

〈S�
I (−iβ, − iβ − T )S�

I (−T ,0)〉0
. (31)

However, unlike in equilibrium, we cannot use Eq. (15) for a
contraction containing V �

I (s) since V̂ � = V̂ + �Ŷ0 contains
spatially extended operators c

†
αkσ cα′k′σ ′ with contributions well

away from the QD. Furthermore, V �
I (s) = eisĤ�

0 V̂ e−isĤ�
0 +

�Ŷ0 with a constant of motion Ŷ0 with respect to Ĥ�
0 , and

V �
I (s) would never lead to an exponential decay for the

interactions occurring on the dashed contour in Fig. 1(a).
This shows that a straightforward analytic continuation of the
nonequilibrium Keldysh contour to an imaginary-time one is
not possible.

D. Matsubara voltage

Recently, one of the authors and Heary35 proposed that,
by introducing a Matsubara term to the source-drain voltage,
one can extend the equilibrium formalism such that the per-
turbation expansion of the imaginary-time Green function can
be mapped to the Keldysh real-time theory. The unperturbed
Hamiltonian is written as

K̂0(iϕm) = Ĥ0 + (iϕm − �)Ŷ0, (32)

with the Matsubara voltage ϕm = 4πm/β with integer m. We
take the many-body interaction V̂ as perturbation.

The noninteracting Hamiltonian appears in the perturbative
expansion in two ways: first in the thermal factors e−βK̂0 , and
second in the time evolution e−τK̂0 for the imaginary-time
variable τ ∈ [0,β). The main trick of this formalism is that
in the thermal factor iϕm-dependence drops out as follows.
Since [Ĥ0,Ŷ0] = 09, e−βK̂0 = e−β(Ĥ0−�Ŷ0)e−iϕmβŶ0 . Since, with
respect to the noninteracting scattering state basis, Ŷ0 is
diagonal and has (half)-integer eigenvalues, e−iϕmβŶ0 = 1, and
we have the important identity,

e−βK̂0(iϕm) = e−β(Ĥ0−�Ŷ0) = ρ̂0. (33)

Therefore, the equivalence of the imaginary-time and real-
time formalism crucially rests on how the double analytic
continuation iϕm − � → 0 and τ → it is performed. Since
the iϕm dependence in the thermal factor completely drops out,
the analytic continuation only concerns the time evolution. For
τ ∈ [0,β), e−iϕmτ Ŷ0 �= 1, and iϕm dependence does not drop
out. Thus, one could argue that as iϕm − � → 0 and τ → it

are taken in that order,

e−τ [Ĥ0+(iϕm−�)Ŷ0] → e−τĤ0 → e−itĤ0 . (34)

However, as we will point out in detail later, integrals over
interaction times may create energy denominators of the type
(Kn − Km)−1 in the perturbation expansions, with Kn being
the nth eigenvalue of K̂0. In such cases, the details of the path in
the complex plane, along which the analytic continuation εϕ ≡
iϕm − � → ±i0+ is taken, become relevant. On the other
hand, in the real-time theory, the convergence factor iη in the
energy denominators determines what poles should be chosen.

III. PERTURBATION EXPANSION

A. Real-time expansion

In this section, we investigate under what conditions the role
of the regularization factor η of the time-independent real-time
theory becomes unimportant. We assume that a perturbation
expansion of Eq. (22) exists. To better illustrate the mathemat-
ical structure we choose the fifth-order contribution (as shown
in Fig. 2) and introduce a spectral representation with respect
to the noninteracting scattering state basis. For the particular
time ordering considered in Fig. 2(a), the expression reads

Sa = (−i)5Tr

[∫ −∞

0
ds3

∫ s3

0
ds2

∫ s2

0
ds1

× V̂I (s3)V̂I (s2)V̂I (s1)Â

×
∫ 0

−∞
dt2

∫ 0

t2

dt1V̂I (t1)V̂I (t2)ρ̂0

]
. (35)

Here we use the notation for intermediate times such that ti are
for the forward contour (−∞ → 0, upper time contour) and
si for the backward (lower) contour. We redefine the time as
t ′1 = t1, t ′2 = t2 − t1, t ′i = ti − ti−1, etc., and the upper part of
the Keldysh contour becomes∫ 0

−∞
dt2

∫ 0

t2

dt1V̂I (t1)V̂I (t2)

=
∫ 0

−∞
dt ′2

∫ 0

−∞
dt ′1V̂I (t ′1)V̂I (t ′1 + t ′2) (36)

=
∫ 0

−∞
dt ′2

∫ 0

−∞
dt ′1e

iH0t
′
1 V̂ eiH0t

′
2 V̂ .

For a spectral representation with respect to energy eigenstates,
we introduce the convergence factor eη(t ′1+t ′2) for the reasons
discussed in Sec. II A. Then with respect to the noninteracting
scattering-state Fock basis |n〉 and |p〉,

(−i)2〈p|
∫ 0

−∞
dt2

∫ 0

t2

dt1V̂I (t1)V̂I (t2)|n〉

=
∑

q

VpqVqn

(En − Ep + iη)(En − Eq + iη)
. (37)
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One can do the same for the lower part of the Keldysh contour,

(−i)3〈n|
∫ −∞

0
ds3

∫ s3

0
ds2

∫ s2

0
ds1V̂I (s3)V̂I (s2)V̂I (s1)|l〉

=
∑
mk

VnmVmkVkl

(En − Em − iη)(En − Ek − iη)(En − El − iη)
.

(38)

Therefore the above expression Sa can be written as

Sa =
∑

nmklpq

VnmVmkVkl

(En − Em − iη)(En − Ek − iη)(En − El − iη)

×Alp

VpqVqn

(En − Ep + iη)(En − Eq + iη)
ρn. (39)

Note that all energy denominators consist of one energy
anchored at |n〉 where ρ̂0 acts at t = −∞ and the other energy
of intermediate states |m,k,l,p,q〉. For the forward contour,
the state |n〉 contributes the energy En + iη in the energy
denominator, and En − iη for the backward contour.

We now consider a counter-time-ordering as depicted in
Fig. 2(b) where the number of scattering events on the lower
and upper branches are swapped. After an explicit calculation
by applying the same rules as before, one gets

Sb =
∑

nmklpq

VnqVqp

(En − Eq − iη)(En − Ep − iη)

×Apl

VlkVkmVmn

(En − El + iη)(En − Ek + iη)(En − Em + iη)
ρn.

(40)

Starting with the state |n〉, the numerator
VnqVqpAplVlkVkmVmnρn in Eq. (40) represents the reversed
process of ρnVnmVmkVklAlpVpqVqn in Eq. (39). The factor
ρnVnmVmkVklAlpVpqVqn is understood as the amplitude of the
following process:

Sa : |n〉 V̂−→ |q〉 V̂−→ |p〉 Â−→ |l〉 V̂−→ |k〉 V̂−→ |m〉 V̂−→ |n〉. (41)

The many-body interaction can be written in terms of four
scattering state operators as V̂ = ∑

v1234ψ
†
1ψ

†
2ψ3ψ4. With the

on-site Coulomb interaction,

V̂ = U
∑
{α,k}

t1t2t3t4g
∗
1g2g

∗
3g4ψ

†
1↑ψ2↑ψ

†
3↓ψ4↓, (42)

where the shorthand notations ti = tαi
/
√

�, gi = gd (ki), and
ψ

†
iσ = ψ

†
αikiσ

have been used. Note that any creation of

a particle ψ
†
i is associated with the factor tig

∗
i , and the

annihilation ψj with tj gj . For the observable Â we consider
a one-body operator Â = ∑

a12ψ
†
1ψ2 for simplicity. The

operator V̂ creates up to two particle-hole pairs of type ψ ,
and for a nonzero matrix element 〈n|V |m〉, |n〉, and |m〉 differ
only by up to one particle-hole pair per spin channel. Thus,
in the above process Eq. (41), which starts and ends with |n〉,
the product of creation operators ψ

†
αkσ must match that of

annihilation operators ψαkσ . Therefore, the matrix element for
the process Eq. (41) must be of the form,

Sa : |t1g1|2|t2g2|2 . . . tigiaij tj g
∗
j . (43)

Similarly, the process for Sb term,

Sb : |n〉 V̂−→ |m〉 V̂−→ |k〉 V̂−→ |l〉 Â−→ |p〉 V̂−→ |q〉 V̂−→ |n〉
(44)

must contain the same set of {ψ†,ψ} with the same states, only
in the reversed order. The matrix element for the process then
becomes

Sb : |t1g1|2|t2g2|2 . . . tj gjaji tig
∗
i . (45)

If the operator Â satisfies the following property,

gd (ki)aij [gd (kj )]∗ = gd (kj )aji[gd (ki)]
∗, (46)

the matrix elements for counter-contours (a) and (b) match,
that is,

VnmVmkVklAlpVpqVqn = VnqVqpAplVlkVkmVmn. (47)

With this condition, Sa(η) = Sb(−η), and Sa + Sb, inside the
expression for 〈Â〉, is independent of the sign of η and has
a well-defined limit of η → ±0. The above argument can be
repeated for any order of the perturbation expansion, that is,
the use of a spectral representation is permitted and the result
independent of the convergence factor η provided that the
contour has itself as the counter-contour, Sa(η) = Sa(−η).

Which of the physically interesting operators do satisfy
the above condition Eq. (46), respectively, (47)? It is easy
to see that it is true for any operator Â which is a simple
function of ndσ = d†

σ dσ . The occupation number operator can
be expressed in terms of ψ

†
αkσ as

n̂dσ =
∑

kk′,αα′

tαtα′

�
g∗

d (εk)gd (ε′
k)ψ†

αkσψα′k′σ , (48)

and Eq. (46) is satisfied. A general two-body operator,

Â =
∑
1234

a1234ψ
†
1ψ

†
2ψ3ψ4,

also falls into this class if it satisfies

gd (ki)gd (kj )aijnm[gd (kn)gd (km)]∗

= gd (kn)gd (km)anmij [gd (ki)gd (kj )]∗. (49)

Unfortunately, the current operator Eq. (13) does not satisfy
the condition Eq. (46), and a direct analytic continuation is
not available, as we will discuss shortly. Therefore, we have
to resort to the Meir-Wingreen formula,41 which relates the
current to the spectral function.

We have so far ignored coinciding energy denominators in
the perturbation expansion leading to overlapping δ functions.
For the sake of simplicity we consider a second-order con-
tribution from Eq. (22). By expanding it into different time
orderings, we obtain∫ T

0
dt1

∫ T

t1

dt2ρ̂0V̂I (t2)V̂I (t1)Â

+
∫ 0

T

dt1

∫ T

0
dt2V̂I (t1)ρ̂0V̂I (t2)Â

+
∫ 0

T

dt1

∫ t1

T

dt2V̂I (t1)V̂I (t2)ρ̂0Â. (50)
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We now introduce the convergence factor eηt and take T → ∞
to obtain the expression,

∑
nml

[
ρn

(En − Em + iη)(En − El + iη)

+ ρm

(Em − En + iη)(Em − El − iη)
(51)

+ ρl

(El − En − iη)(El − Em − iη)

]
VnmVmlAln,

which needs precaution when the two energies in the denomi-
nators become equal, because the contribution will be a product
of two δ functions with the same argument. One must be careful
when one performs the limit T → ∞. To see this let us go
back to the time-dependent description. By keeping T finite,
contributions of the form δ(En − Em)2 will actually amount
to terms proportional to T 2 from the integrals. Combining all
three integrals we obtain the coefficient to the T 2 term (i.e., δ2

term) proportional to∑
nml

(ρn − 2ρm + ρl)VnmVmlAln

× δ(En − Em)δ(Em − El). (52)

In equilibrium ρn = ρm = ρl for En = Em = El and this term
vanishes identically. The argument can be easily extended to
arbitrary orders in the perturbation expansion.

In the case of nonequilibrium the situation is more complex.
Here we discuss in detail what happens to Eq. (52). We
consider the case |n〉 �= |m〉 �= |l〉, while En = Em = El .
Suppressing the δ functions, Eq. (52) has the form,

e−βEn (eβ�Y0n − 2eβ�Y0m + eβ�Y0l )VnmVmlAln.

In the matrix element VnmVmlAln, the transition |n〉 →
|m〉 → |l〉 → |n〉 involves a certain series of particle-hole
excitations. For instance, |n〉 → |m〉 is given by an exchange
of two particle-hole pairs, ψ

†
α1k1σ

ψα2k2σψ
†
α3k3σ ′ψα4k4σ ′ in V̂ ,

and similarly for |m〉 → |l〉 and |l〉 → |n〉. However, since
any creation of ψ

†
αkσ should be matched by ψαkσ only up

to six indices are independent. Given a particular set of the
six indices of wave vectors and spins {k1σ1,k2σ2, . . . ,k6σ6},
different permutations of the above six pairs of {ψ†

kiσi
,ψkiσi

}
in V̂ V̂ Â determines the matrix element VnmVmlAln. Now,
we sum over all possible combinations of reservoir indices
{α1, . . . ,α6} (while keeping the k indices unchanged) for the
all 12 {ψ†,ψ} operators. The matrix element VnmVmlAln ∝∏

i=1,6 t2
αi

|g(εki
)|2. Since the product of |g(εki

)|2 is invariant,
we collect all possible reservoir weights in

∏
i=1,6 t2

αi
eβ�Y0{n,m,l}

and each of the three sums in Eq. (52) become the same, that
is, the whole contribution vanishes. A detailed discussion of
the mathematics can be found in Appendix A.

In summary, if the observable Â satisfies Eq. (46), the
energy integration in the perturbation expansion can be
interpreted as principal valued, similarly to equilibrium. In
Appendix B, we provide as an example the fourth-order
contribution to the QD electron self-energy and show explicitly
that the above properties are satisfied. Since the structures
appearing in higher order are of the same type as discussed

above, we may actually infer that this property holds in any
order of the perturbation expansion.

B. Imaginary-time expansion

Unlike the real-time theory, the imaginary-time description
is formulated on a finite time interval of [0,β), and there is
no need for a convergence factor eηt . Therefore, the energy
integrals appearing in the equilibrium theory are always
principal-value integrals, which we confirmed in the previous
Sec. II C.

In nonequilibrium, with the imaginary-time effective
Hamiltonian K̂(iϕm) = Ĥ0 + εϕŶ0 + V̂ (εϕ = iϕm − �), the
thermal average is defined as

〈A〉 = Tre−βK̂A
Tre−βK̂

. (53)

The Boltzmann factor can be expanded as

e−βK̂ = e−βK̂0Tτ exp

[
−

∫ β

0
dτVI (τ )

]
, (54)

with VI (τ ) = eτK̂0 V̂ e−τK̂0 V̂ andTτ denoting the time-ordering
operator for τ ∈ [0 → β]. We consider a second-order expan-
sion to understand its mathematical structure,

Tr e−βK̂0

∫ β

0
dτ

∫ τ

0
dτ ′VI (τ )VI (τ ′)Â

=
∫ β

0
dτ

∫ τ

0
dτ ′ ∑

nml

ρne
τ (Kn−Km)Vnmeτ ′(Km−Kl )VmlAln

=
∑
nml

[
ρn

(Kn − Km)(Kn − Kl)
+ ρm

(Km − Kl)(Km − Kn)

+ ρl

(Kl − Kn)(Kl − Km)

]
VnmVmlAln. (55)

This expression has the same mathematical structure as in the
real-time theory, Eq. (51). Even though we considered only
one time ordering in the imaginary-time theory, the upper and
lower integral limits in

∫ β

0 dτ
∫ τ

0 dτ ′ combine to create the
same permutation of terms as in the real-time theory.35

We have seen earlier that, in the real-time theory, energy
denominators can be interpreted as principal valued since
all δ-function contributions from the energy poles vanish.
Therefore, if we interpret the energy denominators as principal
valued as iϕm → �,

1

Kn − Km

→ P
(

1

En − Em

)
, (56)

the terms in the imaginary-time theory indeed match those of
the real-time approach.

In Sec. IV A1, we calculate the double occupancy from
the continuous-time quantum Monte Carlo method,42 and
numerically verify that the analytic continuation procedure
outlined so far works accurately in all orders of perturbation
theory as well as for the resummed perturbation series.

C. Single-particle self-energy

The analytic properties discussed so far can be used
to examine the single-particle self-energy for the Anderson
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impurity model. To illustrate how the imaginary-time theory
is applied by using the conventional diagrammatic technique,
we compute the electron self-energy in second order of the
Coulomb interaction. The noninteracting Green’s function can
be easily obtained as

G0(iωn,iϕm) =
∑
αk

|〈ψαkσ |dσ 〉|2
iωn − α

2 εϕ − εk

(57)

=
∑

α

∫
dε

(
α/
)A0(ε)

iωn − α
2 εϕ − ε

, (58)

with 
α = πt2
αN (0) as the hybridization broadening from the

α reservoir. Using the standard imaginary-time perturbation
theory for the second order of Coulomb interaction,35

�(2)(iωn,εϕ)

= U 2

β2

∑
m,l

G0(iωn + iωm − iωl)G0(iωm)G0(iωl), (59)

which we rewrite as

�(2)(iωn,εϕ) =
∑

γ

∫
dε

σγ (ε)

iωn − γ

2 εϕ − ε
, (60)

with the spectral function,

σγ (ω) = U 2
∑

α1−α2+α3=γ

[
3∏

i=1

∫
dεi


αi



A0(εi)

]
[f1(1 − f2)f3

+ (1 − f1)f2(1 − f3)] δ(ω − ε1 + ε2 − ε3), (61)

for the γ -branch cuts (γ = ±1, ± 3), where

A0(ε) = 
/π

(ε − ε0)2 + 
2

denotes the noninteracting spectral function of the QD level
and fα = [1 + e−β(ε−α�/2)]−1 the Fermi-Dirac factor for the
αth reservoir. The branch index γ is the sum of reservoir
indices for the three Green’s functions [Eq. (59)] representing
a particle dressed by a particle-hole pair. The identity, Eq. (33),
manifests in the Fermi-Dirac factor in

f
(
εk + α

2 εϕ

) = f
(
εk − α

2 �
)
. (62)

Summation over γ for the self-energy spectral function,
Eq. (61), leads to the identical retarded self-energy spectral
function in the real-time theory corresponding to the same
diagram. Therefore the procedure of εϕ = iϕm − � → 0
followed by iωn → ω + iη results in the correct retarded
self-energy.

Recently, it has been proposed39 that an inclusion of higher-
order contributions will mainly modify the spectral function
σγ (ε), leading to a εϕ dependence like

�(iωn,εϕ) =
∑

γ

∫
dε

σγ (ε,εϕ)

iωn − γ

2 εϕ − ε
. (63)

Based on this expression, one can fit43 σγ (ε,εϕ) to the
numerical single-particle self-energy generated from quantum
Monte Carlo calculations.44,45 However, in order to establish
the existence of an analytic continuation limit of the imaginary-
time self-energy, one should first show that the real-time

self-energy possesses the analytic property discussed in the
previous section, namely that the energy poles are principal
valued. The rather lengthy and technical argument is provided
in Appendix A for the fourth-order self-energy diagrams. It can
be shown explicitly that contributions involving products of δ

functions with identical argument vanish identically, resulting
in the necessary analytic properties discussed in the previous
section.

Again, investigating the general structures appearing in the
perturbation expansion of the self-energy, we are confident
that this property indeed holds in any order and also survives
the resummation of the series. The latter aspect, however,
cannot be proven rigorously, but is strongly supported by the
numerical evidence from our Monte Carlo simulations.

In a recent work by Dirks et al.46 and an accompanying
paper to this work, a general analytic continuation approach
based on the multivariable complex function theory and
its double analytic continuation of (iωn,iϕm) have been
systematically studied.

D. Forward and backward steady state

We have seen in Sec. III A that we need Eq. (47) for
any sequence of matrix elements in order to establish the
equivalence of the real- and imaginary-time theory. In order
to close the formal discussions, let us re-examine the complex
conjugate of the matrix elements in relation to the forward-
and backward-in-time propagation of scattering state density
matrix.

Assume that we propagate a noninteracting density matrix
ρ0 = exp[−β(H0 − �Y0)] from the initial time t = −T to the
present in the forward direction. Then, according to Gell-Mann
and Goldberger47, we obtain

ρ̂out = η

∫ ∞

0
e−iLT (eiL0T ρ̂0)e−ηT dT

= η

∫ ∞

0
e−iLT ρ̂0e

−ηT dT = η

η + iL ρ̂0

= ρ̂0 + 1

−L + iη
LV ρ̂0, (64)

with LV the Liouvillian representing the interaction parts
not contained in L0. ρ̂out is the fully interacting density
matrix at t = 0 and ρ̂0 noninteracting density matrix at t = 0.
The meaning of the above equation is that we unwind a
noninteracting density matrix to a remote time t = −T and
re-evolve it with full interaction to the present time. By taking
the average over the remote time T , we filter out transient
oscillations.

Alternatively, we can also consider a backward propagation
of density matrix evolving from the remote future by writing

ρ̂in = η

∫ ∞

0
eiLT (e−iL0T ρ̂0)e−ηT dT

= ρ̂0 + 1

−L − iη
LV ρ̂0. (65)

If we initially choose ρ̂0 as the density matrix of a quantum
dot system of disconnected dot and reservoirs, LV = Lt + LU

with both the hopping to the leads and the Coulomb interaction
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on the dot, and we then consider the construction of scattering
states as a two-step process. We first construct the scattering
states with respect to the hopping, and then with respect to the
Coulomb interaction. After the first step, the scattering states
become29

ψ
†
αkσ,out = c

†
αkσ + t√

�
gd (k)d†

σ + · · · , (66)

ψ
†
αkσ,in = c

†
αkσ + t√

�
gd (k)∗d†

σ + · · · , (67)

and we can construct respective scattering-state density matri-
ces ρ̂0t,out and ρ̂0t,in. The coefficients appearing in front of the
dot operators d†

σ ,dσ , etc., for the out- and in-scattering states
are the complex conjugate of each other.

As the second step, the matrix elements of the interaction
V̂ = Und↑nd↓, written in terms of ψαkσ,{out,in} basis, are
complex conjugate to each other, that is, Vnm = V ∗

ñm̃ (with
the tilde denoting the in-scattering basis). We can now repeat
the arguments from Sec. III A for the backward propagation
of the density matrix as shown in Fig. 2(c) and find

Sc =
∑

nmklpq

Vñq̃Vq̃p̃

(En − Eq + iη)(En − Ep + iη)

×Ap̃l̃

Vl̃k̃Vk̃m̃Vm̃ñ

(En − El − iη)(En − Ek − iη)(En − Em − iη)
ρñ.

For observables satisfying Anm = A∗
ñm̃, this expression be-

comes identical to Sa in Eq. (39). The same argument holds
in any order of the perturbation expansion, and we have
TrÂρ̂out = TrÂρ̂in and 〈Â〉 = 1

2 (〈Â〉out + 〈Â〉in). Therefore,
from Eqs. (64) and (65), we have

〈Â〉 = 〈Â〉0 +
〈
Â

1

2

(
1

−L + iη
+ 1

−L − iη

)
LV ρ̂0

〉

= 〈Â〉0 +
〈
ÂP

(
1

−L

)
LV ρ̂0

〉
, (68)

that is, the conditions for replacing the energy denominators by
their principal values, as discussed in Sec. III A, correspond to
a measurement protocol where the observable Â has the same
expectation values with respect to the forward- and backward-
propagating density matrices.

It is interesting to note that the forward and backward
density matrices, Eqs. (64) and (65), have different signs
in the time-evolution operator and are related by a time
reversal (or more appropriately motion reversal48), where
the coefficients to {d†

σ ,dσ ,c
†
αkσ ,cαkσ } are complex conjugates

between ρ̂in and ρ̂out. For Â = d†
σ dσ , its expectation value

is not affected by the motion reversal. The same can be said
for magnetization Â = nd↑ − nd↓. However, expectation value
for current defined as ÎL = itL(c†Lσ dσ − d†

σ cLσ ) is asymmetric
with respect to ρ̂in,out with the motion-reversal property,

〈c†Lσ dσ 〉in = 〈c†Lσ dσ 〉∗out,

etc., and Eq. (68) cannot be applied. As discussed in Sec. III A
below Eq. (47), the same conclusion resulted regarding direct
evaluation for Â = ndσ , but not for the current observable ÎL,R .

It is interesting to note that, in the Gell-Mann and Low
theorem,49 the symmetry between the forward and backward
propagation of a ground state has been used to deform the

Keldysh contour to a straight-line contour. Our work can be
interpreted as an analogy to nonequilibrium steady state with
limited scope, namely, that the theory applies for scattering
problems (i.e., quantum dots coupled to open systems) and that
the forward-backward symmetry has a meaning with respect
to the expectation values of motion-reversal symmetric local
observables.

IV. STATIC EXPECTATION VALUES

A. Theoretical background

We have shown that steady-state expectation values of
certain local observables Â can be obtained from analytical
continuation of expectation values calculated within the
imaginary-time Matsubara-voltage formalism. As long as we
know the analytic structure of these objects, this can be done
easily. However, for a model with true two-particle interac-
tions, one eventually has to resort to numerical evaluations, and
an analytical continuation in general requires a more involved
computational technique. We therefore want to provide in the
following a representation which allows the use of standard
tools from equilibrium many-body theory.

A numerical method gives 〈Â〉(iϕm) and let 〈Â〉(zϕ) be its
analytic continuation. We may write formally,

〈Â〉(zϕ) = 〈Â〉const + χA(zϕ), (69)

where the part χA(z) is holomorphic in the upper and lower
half plane, with singularities only on the real axis. If one can
furthermore show that the zχA(z) is nonsingular in the limit
z → ∞, one can finally infer that a spectral representation
with respect to the jump function on the real axis exists and
hence

〈Â〉(iϕm) = 〈Â〉const +
∫

�A(ϕ)

(iϕm − �) − ϕ
dϕ . (70)

Note that the latter property is not necessarily guaranteed and
has to be proven individually for each observable.

Once the validity of the representation (70) is established,
one only needs to obtain the “spectral function” �A(ϕ). One ev-
ident method to calculate the Matsubara voltage data 〈Â〉(iϕm)
for the observable Â with respect to the effective system with
non-Hermitian Hamiltonian at Matsubara voltage iϕm is via
a QMC simulation.46 For such data with statistical noise,
one then typically employs a maximum-entropy approach
(MaxEnt).50 The implementation of a MaxEnt estimator for
the physical expectation value is rather straightforward. The
values for different iϕm are truly statistically independent, and
only the variance and correlation between imaginary and real
parts of a single iϕm value play a role. However, one still needs
accurate and unbiased measurements of imaginary-voltage
data over a large range of ϕm.46 This latter requirement
makes the use of a continuous-time quantum Monte Carlo
(CT-QMC)42 algorithm mandatory. In particular, the necessary
estimation of the constant offset 〈Â〉const in Eq. (70) is possible
only with CT-QMC, because at present no direct measurement
algorithm for this quantity is available and one must determine
it from the tail of 〈Â〉(iϕm) by fitting it to

〈Â〉(iϕm)
m→∞→ 〈Â〉const + cA

iϕm

+ c̃A

(iϕm)2
+ · · · . (71)
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In practice, a weighted least-square fit yields reliable values
and error bars for 〈Â〉const. Via Gaussian error propagation it
is then possible to incorporate the uncertainty of 〈Â〉const into
the covariance matrix of the quantity 〈Â〉(iϕm) − 〈Â〉const.51

In general, the spectral function �A(ϕ) needs not to be
positive semidefinite, or show any symmetry relations with
respect to ϕ. Since on the other hand the MaxEnt method is
only applicable for the inference of positive definite functions,
a shift function �shift(ϕ) of the spectral function �A(ϕ) has to be
introduced, which makes the to-be-inferred �′

A(ϕ) = �A(ϕ) −
�shift(ϕ) positive. We also employ a symmetry condition,

�shift(ϕ) = �shift(−ϕ), (72)

because with respect to this choice, the physical result,

〈Â〉phys = 1

2

∑
α=±1

〈Â〉(� + αiη) = 〈Â〉const − P
∫

dϕ
�A(ϕ)

ϕ
,

(73)

is robust. In the following we want to prove that the double
occupancy or magnetization obey this constraint (i.e., have a
representation), where 〈Â〉const is a real number, and �A(ϕ) ∈ R
is a real-valued spectral function.

1. Double occupancy

The double occupancy in the Matsubara-voltage represen-
tation is defined as

D(iϕm) := 〈nd,↑nd,↓〉K(iϕm), (74)

where the expectation value is taken with respect to the mth
effective equilibrium system.

We will first show that the representation (70) holds for the
double occupancy, that is, that we have, indeed,

D(iϕm) = D0 +
∫

dϕ
�D(ϕ)

iϕm − � − ϕ
. (75)

We restrict the discussion to the case of particle-hole symmetry
and symmetric coupling to the leads, 
L = 
R . Within
the Matsubara-voltage approach, one can—for fixed iϕm—
employ the standard techniques of equilibrium many-body
theory and obtains the standard result,52

D(iϕm) = 〈n↑〉〈n↓〉+ 1

βU

∑
ωn

�(iϕm; iωn)G(iϕm; iωn)eiωnη.

(76)

Due to particle-hole symmetry, we have 〈n↑〉〈n↓〉 = 1/4.
Furthermore, from the discussion in Sec. III C we can infer
that at least the Green’s function decays like 1/iϕm and hence
allows for the existence of a spectral representation (75), as
long as there is only a single branch cut at Im zϕ = 0.

The real valuedness of spectral function and constant offset
remain to be shown. The general relation G(−iϕm, − iωn)∗ =
G(iϕm,iωn) holds for Green’s function and self-energy. Insert-
ing this into Eq. (76), we find

D(−iϕm)∗ = D(iϕm). (77)

Consequently, the real part of D(iϕm) − D(−iϕm) vanishes.
Using the symmetric coupling to the leads, we have an
invariance of the Green’s function and self-energy under

(iϕm − �) ↔ −(iϕm − �). As a result, D0 is an actual
constant which is obtained for both upper and lower half plane.
Due to the symmetry of Im D(iϕm), D0 is real. By inserting
the representation (75) into Eq. (77) we also see that �D(ω) is
real valued.

For example, let us consider the equilibrium setup (i.e.,
� = 0). At half filling and symmetric coupling to the leads,
the function,

Re D�=0(iϕm) = Re D�=0(−iϕm), (78)

Im D�=0(iϕm) ≡ 0. (79)

This is compatible with a conventional bosonic spectral
representation,

D�=0(iϕm) =
∫

dϕ
�D(ϕ)

iϕm − ϕ
+ D0, (80)

with an antisymmetric spectral function,

�D(ϕ) = −�D(−ϕ); �D(ϕ > 0) < 0, (81)

and the offset D0 > 0. Equation (79) is not evident for
asymmetric couplings or off particle-hole symmetry, because
here G0(iϕm,iτ ) is not real.

2. Magnetic susceptibility

An observable which is much more sensitive to the Kondo
effect is the magnetization M := (〈n↑〉 − 〈n↓〉) in the presence
of a magnetic field B in the z direction, respectively, the mag-
netic susceptibility χ = M/B of the quantum dot, because it
directly probes the spin degree of freedom of the dot electrons.
In equilibrium, a strong dependence on the temperature is
observed, on the scale of the Kondo temperature.53

As for the double occupancy, the validity of a spectral
representation,

M(iϕm) = M0 +
∫

dϕ
�M(ϕ)

iϕm − � − ϕ
, (82)

can readily be confirmed. Starting from the symmetry
G(−iϕm, − iωn)∗ = G(iϕm,iωn), one can again show that
M(−iϕm)∗ = M(iϕm), and the same arguments apply con-
cerning the interchange (iϕm − �) ↔ −(iϕm − �).

B. Numerical effective-equilibrium data

Let us now turn to the discussion of actual numerical data for
magnetization and double occupancy from the quantum Monte
Carlo simulations. As the first step, we analyze these data with
respect to the auxiliary variable ϕm, and want to argue that
they have a physical interpretation with respect to the actual
voltage �. In particular, the convergence of the numerical
procedures described below implies full consistency of the
Matsubara-voltage formalism with regard to the numerical
data.

We find that effective-equilibrium data come along
with characteristic energy scales which—after analytic
continuation—may translate almost directly into energy scales
with respect to the actual source-drain voltage �. It is there-
fore worthwhile to discuss the dependence of the effective-
equilibrium expectation values as a function of ϕm for given
physical parameters β, U , and �.
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ϕ

Φ=0
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(a) U = 3Γ, βΓ = 10

ϕ  Γ

ϕ

Φ=0.25Γ
Φ=0.5Γ
Φ=2.0Γ
Φ=6.0Γ

(b) U = 5Γ, βΓ = 20

ϕ Γ

ϕ Φ=0.25Γ
Φ=0.5Γ

Φ=2.0Γ

Φ=6.0Γ

(c) U = 8Γ, βΓ = 20

ϕ Γ

ϕ

Φ=0.25Γ
Φ=0.5Γ

Φ=2.0Γ

Φ=6.0Γ

(d) U = 10Γ, βΓ = 20

FIG. 3. (Color online) Real part of the effective-equilibrium double occupancy as a function of the Matsubara voltage ϕm at several values
of interaction strength U and bias voltage �.

a. Dependence on �. The first thing to notice is that the
dependence of the shape of the curves M(iϕm) and D(iϕm) on
�, as shown in Figs. 3 and 4(a), is rather moderate: For the
examples considered, we do not observe any new characteristic
energy scales with respect to the Matsubara voltage ϕm

emerging or disappearing as a function of the physical voltage
�. The most striking influence of � is a change of the offset
of the curves D0 and M0. The offset is changed monotonically
as a function of � and cannot explain features such as dips
and peaks which are found in the analytically continued data
(cf. next section). This is the very reason of our claim that
low- to intermediate-energy scales with respect to ϕm rather
directly translate into low- to intermediate-energy scales with
respect to �, although ϕm has no direct physical meaning
itself.

Let us discuss the data plotted in Figs. 3 and 4(a) in
more detail. In Fig. 3, effective-equilibrium double occupancy
curves are shown over a wide range of values of the physical
voltage and Coulomb interaction. Each curve exhibits a dip
at ϕm = 0. As already pointed out above, the dependence on
� is rather mild, except for the offset. The same behavior is
observed for the magnetization in Fig. 4(a) (i.e., the voltage �

merely introduces an overall shift and a moderate smoothening
of the structures).

b. Limiting behavior ϕm → ±∞. For each U and � a
different limit D0 is obtained as ϕm → ∞. If the values β,
U , �, and in particular ϕm are large, the effective-equilibrium
QMC simulations start to suffer from a significant sign
problem. This may result in particularly noisy tails such
as the ones for the data with largest � in Fig. 3(d). In these
cases, the estimate of D0 is subject to much uncertainty and
limits the statistical accuracy of physical expectation values.

c. Dependence on U . As U is increased, the depth of
the dips in the double occupancy curves also increases.
On the other hand, neither the width nor the shape change
significantly. In particular, the emergence of a Kondo scale
TK cannot be inferred from these data. Interestingly, for
small U , the relative contribution of the constant term D0

is large compared to the height of the peak which emerges
around ϕm ≈ 0. As the interaction increases, the central peak
becomes more pronounced, and the physical expectation value
increasingly depends on the structure of the peak.

For the magnetization in Fig. 4(b), a similar picture seems
to emerge at first glance, namely a strong increase of the offset
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(a) U = 8Γ, βΓ = 40, μBB = 0.02Γ

ϕ Γ

ϕ

Γ
Γ
Γ
Γ
Γ
Γ
Γ

Γ

(b) βΓ = 40, μBB = 0.02Γ, eΦ = 0.5Γ

FIG. 4. (Color online) Real part of the effective-equilibrium magnetization as a function of the Matsubara voltage.

M0 with U together with a more pronounced peak structure at
ϕm = 0. The strong increase of both is readily understood as
with increasing U the system forms a local moment which is
aligns with the external field.

d. Kondo effect. Up to now there seems to be no evidence
whatsoever for the presence of the Kondo scale TK in the data
presented so far. On the other hand, the generation of this
many-body scale is usually considered as a crucial test for any
method proposed for studying the Anderson impurity model.
As already pointed out, it is quite apparent from the data in
Fig. 3 that TK obviously does not appear to be relevant for
this quantity; a fact that is already well known in equilibrium.
There the scale TK shows up only in a very indirect way as
renormalization of the zero temperature value, respectively,
the scale regulating the approach to it.54

The situation is different for the magnetization. Here, the
Kondo scale plays a crucial role53 as it determines the field
strength necessary to break up the Kondo singlet. Hence it
must show up in the magnetization; in particular, one must
actually expect a scaling behavior with TK for small enough
fields. Let us therefore plot the magnetization as a function
of Matsubara voltage in the form M(ϕm/TK) for values of U

beyond the weak-coupling regime for fields and voltages much
smaller that the corresponding equilibrium Kondo scales. The
result is shown in Fig. 5. Evidently, the width of the peak in
the effective-equilibrium magnetization data is nicely scaling
with the equilibrium Kondo temperature, that is, for different
values of U the peak structure is essentially left invariant at
fixed values of B, �, and T .

C. Results for real voltages

In this section we will introduce the MaxEnt procedure
used to infer the spectral functions �D(ϕ) and �M (ϕ) from
the effective-equilibrium QMC data. Based on this analytical
continuation, we then will discuss the physical results obtained
from the auxiliary Matsubara voltage data.

1. MaxEnt procedure

Based on the effective-equilibrium data and the exact
relation (70), it is in principle possible to uniquely reconstruct

the spectral function �A(ϕ) and the offset 〈Â〉const. This
is almost completely analogous to the conventional Wick
rotation.

However, because in practice a finite set of data is
considered, the inversion of Eq. (70) is no longer unique. On
top of this, the quantum Monte Carlo data are not exact but
merely Gaussian random variables. One may easily verify that
the noise associated with the variables is amplified by the
inversion of Eq. (70). As a consequence, it will always be
possible to find qualitatively very different functions �A(ϕ)
which are in agreement with the QMC data. In particular,
these functions will yield physically different predictions via
Eq. (73). The problem to obtain physical results from the
effective-equilibrium data is thus ill-posed.

Since essentially the same integral Eq. (70) also re-
lates imaginary-time and real-time properties of conventional
Green’s functions, this issue is well known to the community.50

Although no solution to the problem can be provided, Bayesian
inference provides a framework to systematically incorporate
a priori information about a quantity into an estimate. The
estimate is most likely with regard to the prior information
at hand. The resulting method is called maximum entropy
(MaxEnt).50

Let us consider the situation in which the offset 〈Â〉const

has already been determined via a least-square fit. Via error
propagation it has been possible to determine the covariance
matrix of the quantity 〈Â〉 − 〈Â〉const [i.e., the imaginary-
voltage values of the quantity χA(zϕ) in Eq. (69)]. The
remaining task of the MaxEnt is to infer the spectral function
�A(ϕ). Let us furthermore assume that the data have been
sufficiently transformed with a shift function, such that the
function,

�′
A(ϕ) = �A(ϕ) − �shift(ϕ), (83)

is positive (see Sec. IV A).
The default model for �′

A(ϕ) is then a positive definite
function which in principle should contain features which
determine in particular the high-energy behavior, if known.50

In the case of Green’s functions, perturbation theory or
higher-temperature solutions often give good default models.50

155130-12



IMAGINARY-TIME QUANTUM MANY-BODY THEORY OUT . . . PHYSICAL REVIEW B 86, 155130 (2012)

ϕ

ϕ

(a) U = 5Γ

ϕ

ϕ

(b) U = 8Γ

ϕ

ϕ

(c) U = 10Γ

FIG. 5. (Color online) Kondo scaling analysis of effective-equilibrium magnetization data at μBB = TK/2, e� = TK/4. The analysis
makes use of the equilibrium Kondo temperatures kBTK (U = 5
) ≈ 1

10 
, kBTK (U = 8
) ≈ 1
20 
, kBTK (U = 10
) ≈ 1

40 
. The latter ratios
are chosen to be approximately identical to the results of Haldane’s scaling formula.55

In our case, apart from that we used a shift function to construct
the positive spectrum, nothing is known about the function, so
a flat default model is preferable. As consequence, we use
the shift function itself as the default model in the actual
computation. For simplicity, let us call the to-be-inferred
spectrum �(ϕ) and the default model �def(ϕ).

On the one hand, the default model gives rise to a relative
entropy,50

S =
∫

dϕ

[
�(ϕ) − �def(ϕ) − �(ϕ) log

�(ϕ)

�def(ϕ)

]
,

of the spectral function. On the other hand, the (transformed)
effective-equilibrium simulation data with mean values āi and
covariance Cij yield the measure,

χ2 = 1

2

NQMC∑
i,j

(āi − yi)C
−1
ij (āj − yj ), (84)

for the quality of the fit. Here yi are the fit values which result
from transforming the considered �(ϕ) to the data space, and
NQMC is the number of QMC data points āi . Within the MaxEnt
it follows that a functional Q = χ2 − αS must be minimized,
where α > 0 is some hyperparameter.50

In order to determine α, there are several methods, for ex-
ample, the “historic” and the “classic” MaxEnt.50 The former
extracts information from the Monte Carlo data up to the point
at which the χ2 = NQMC, that is, the MaxEnt regularization
parameter is fixed to the value at which χ2 = NQMC. The latter
(“classic” MaxEnt) extracts information from QMC data to a
larger extent. Based on the probability distribution implied
by the default model and maximum-likelihood functionals, a
posterior probability of the MaxEnt regularization parameter α

is maximized. Because information from the default model is
again incorporated rather explicitly, this strategy is particularly
good for default models which are close to the actual solution.
A rather general feature of “classic” MaxEnt appears to be
that the χ2 value of the inferred estimate is generally much
smaller than the “historic” value of NQMC. Our feeling is that
this aspect makes the “classic” estimate more sensitive to
statistical fluctuations and vulnerable for overfitting, but on
the same side, the estimate is less biased. A similar increase
in fluctuations was pointed out in a recent study.56 At least if
Bayesian evidence coming from the data is weak, the “historic”

MaxEnt, on the other hand is more biased towards the default
model value, since its estimate is more conservative with regard
to the χ2. In our case, the default-model estimate is given by
the constant offset D0, because our default models are chosen
to be even functions with respect to ϕ.

As shift functions, wide Gaussians with width σ = 200
3 


were used, that is,

�shift(ϕ) = λ · e−ϕ2/2σ 2
. (85)

The amplitude of the functions was varied in such a way
that positive functions could be inferred. The different values
for differently scaled functions give rise to a certain interval
of expectation values, which will be plotted as a result, in
the following. An example for the set of inferred functions
obtained for a single nonequilibrium system is shown in Fig. 6.
The left panel shows the actually performed MaxEnt for the
shifted spectral functions, using “historic” MaxEnt. Resulting
from a flat default model for the function �D(ϕ), the shift
function acts as the default model here. In this case, choosing
a parameter λ < 0.01 yields artifacts in the physical solutions,
because the negative regions of �(ϕ) cannot be represented
any more. The corresponding actual spectral functions �(ϕ),
obtained by subtracting the shift function (85) from the data
in the left panel, are shown in the right panel of Fig. 6. The
flat default model represents our lack of prior information
about the solution and the preference of a smooth solution
in case of uncertainty. In general, the different realizations
of a flat default model with the shift functions yields almost
but not exactly the same spectral functions. In case of limited
QMC data quality, it is well known50 that the usage of a flat
default model yields less accurate spectra than an appropriately
constructed more informative default model. For example, in
the case of conventional equilibrium spectral functions of
Fermi or Bose systems, a default model should preferably
obtain the correct low-order moments, which can often be
computed exactly. It can thus be expected that quantities that
are calculated from the spectra inferred using the flat default
model are biased towards a certain value. Nevertheless, an
increase in data quality will eventually reduce the bias of the
estimated quantity. We also expect that the precision of our
method can be increased by the development of default models
which contain additional information like moments. However,
at present this type of information is not yet available.
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(b) resulting spectral functions D(ϕ)

FIG. 6. (Color online) MaxEnt inference process for the double occupancy. Parameters are U = 5, e� = 0.25
, β = 20
−1. Due to lack
of prior knowledge, we use a flat default model, that is, the shift function �shift(ϕ); see Eq. (85). Remember that the actual spectral function
�D(ϕ) was shifted to a positive one, �′

D(ϕ), via Eq. (83). One finds that the different equivalent ways of imposing a flat default model for �D(ϕ)
yield practically the same spectral function. Nevertheless, computing the physical value (73) yields values which are distributed over a certain
range. This range is displayed as error bars in the results, plots Figs. 7 and 8.

In order to obtain a rough estimate on the error of a physical
estimate, we will plot the intervals which are generated by
computing the estimates for different values of λ. Typically,
a range from λ = 0.01 to λ = 0.16 is imposed, unless the
negative regions of �(ϕ) cannot be represented. For the
magnetic susceptibility, the same strategy is used.

2. Double occupancy

We will now discuss the analytically continued data of
the double occupancy and compare it with respect to zero-
temperature second-order perturbation theory.57 In Fig. 7
we show double occupancy data for different values of the

Φ / Γ

〈
↑

↓〉

Γ, β=20Γ−1

Γ, β=20Γ−1

Γ, β=10Γ−1

FIG. 7. (Color online) Double occupancy as a function of the
bias voltage at different values of U , as compared to second-order
perturbation theory. In addition, the dashed lines show the temperature
dependence of 〈n↑n↓〉 in equlibrium as obtained by NRG, assuming
e� = kBT (see text).

Coulomb interaction computed with the two different MaxEnt
estimators.

The complementary behavior of the two estimators may be
well observed in Fig. 7. In the large-bias limit, in which the
perturbation theory may be expected to be correct, the classic
estimator is closer, and the historic estimate is systematically
too high. This is in agreement with our expectation that the
historic estimate will be biased from above in case of rather
weak Bayesian evidence from QMC data, because the ill-posed
continuation problem is particularly severe at high energies.50

Apart from some fluctuations in the “classic” estimator, the
same curves are predicted for small voltages. It is important
to note that error bars in the figures do not denote statistical
errors (which cannot be estimated), but the range of values
which a given set of symmetric default models generates.

As compared to the second-order perturbation theory, we
find that both methods agree perfectly for interaction strength
U = 3
. In addition, both methods predict a minimum in the
double occupancy at voltage e� ≈ 2
 which slowly shifts to
larger values of � and becomes increasingly distinguished
as the interaction is increased. There is, however, a clear
difference concerning the magnitude of this minimum, which
appears much more pronounced in the QMC data as in the
perturbation theory. Note that this seems to be the case for
both MaxEnt estimators. At present the origin of the deviation
is not clear.

One of the issues related to the � dependence of stationary
nonequilibrium quantities is to what extent they can be mapped
onto an effective equilibrium temperature dependence. To
have an idea whether this mapping works, we included
in Fig. 7 also the corresponding curves for 〈n↑n↓〉(T ) as
obtained from an NRG equilibrium calculation, assuming
e� = kBT . Quite apparently, the values at � → 0 nicely
coincide, which also tells us that the Matsubara-voltage QMC
reproduces the proper low bias results even for strong coupling.
Note that perturbation theory here deviates systematically
with increasing U . However, the dependence of 〈n↑n↓〉(�)
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FIG. 8. (Color online) Magnetic susceptibility as a function of
bias voltage in the Kondo regime U = 8
 at μBB = kBTK/2, T =
TK/2. The dot-dashed line represents an equilibrium NRG calculation
for T � TK/2, rescaled in both magnitude and temperature to match
the low-bias behavior of historic MaxEnt (see inset). The double-dot-
dash curve finally is a fit of historic MaxEnt to some scaling function
(see text).

cannot be mapped even qualitatively onto 〈n↑n↓〉(T ) by a
simple ansatz �=̂α · T with some value α for any of the
U values considered here. From this observation we would
thus conclude that such a mapping is—at least for the simplest
possible quantity—not appropriate.

3. Magnetic susceptibility

Similarly, the magnetic susceptibility may be computed as
a function of the bias voltage by analytical continuation of
the QMC data. As an example, we show the result for U =
8
 at the temperature T = TK/2 and magnetic field μBB =
kBTK/2 in Fig. 8. When we compare our continuation results
at � → 0 to the exact low-bias limit (i.e., the equilibrium
value, displayed as a cross in Fig. 8), the historic MaxEnt
is again more strongly biased than the classic MaxEnt (i.e.,
the deviation from the equilibrium value is stronger). With
insufficient QMC information, the outcome is more biased
towards the flat default model and from Eq. (73) the integral
vanishes in such a limit. The constant offset M0 lies below the
actual physical limit, and therefore, as QMC quality improves,
our estimate approaches the correct limit from below. Again,
the classic MaxEnt is subject to stronger fluctuations.

In physical terms, the decay in magnetic susceptibility
is because of the destruction of the Kondo effect due to
the decoherence introduced by the bias voltage. This is in
principle similar to the equilibrium behavior found as a
function of temperature.53 The scale on which the decay
of the magnetization takes place appears to be already
visible within the imaginary-voltage data shown in Fig. 5(b).
Apparently, this is due to the rather weak voltage dependence
of imaginary-voltage data [cf. Fig. 4(a)]. Voltages above
10kBTK were not accessible to the MaxEnt, due to a strong
sign problem occurring for the QMC simulations of the

effective-equilibrium systems associated with the high-ϕm

tails.
We again may compare the voltage dependence of the

stationary nonequilibrium magnetization to the temperature
dependence in equilibrium. Since we here are at a finite
temperature T = TK/2, hence the magnetization is smaller
than the value at T = 0, the natural thing to look at is the
curve M(T ) · [M(TK/2)/M(0)] and rescale temperature with
an appropriate factor. The result is shown as a dot-dashed line
in Fig. 8. Although one can reach a reasonable match for low
voltages, a significant deviation occurs already at moderate
bias. Thus there does not seem to exist a simple mapping
� → T which will bring the curves to overlap (i.e., it again
seems doubtful that one can describe the effect of finite bias
voltage by an effective temperature scale, at least beyond small
bias voltages of the order of the Kondo scale).

On the other hand, a rather good account for all data can be
achieved by the very simple ansatz,

m(�)

B
≈ a

B

1
�̃2√
b2+�̃2

+ c
,

where �̃ := �/(2TK). The result of this fit with a = 0.52,
b ≈ 2, and c ≈ 3 is shown as the double-dot-dash curve in
Fig. 8. Note that this formula gives the right behavior in the
two limits � → 0, viz M/B ∝ 1 − c�̃2 with some numerical
constant c, and � → ∞, viz M/B ∝ 1/�. From scaling
analysis12 one would expect that, in particular, for large bias,
additional logarithmic corrections appear. Due to the limited
data space available we are of course not able to resolve those;
furthermore, it is not clear if these logarithmic corrections will
actually be visible in the intermediate coupling regime studied
here, due to residual charge fluctuations. We therefore view the
above formula as a reasonable description in the regime of bias,
temperature, and field of the order of the Kondo temperature
for the intermediate coupling regime of the SIAM.

V. SUMMARY

The present paper presents a detailed study on how the
imaginary-voltage formalism proposed in Ref. 35 relates to
Keldysh theory. Using series resummations, we are able to
show up to all orders that static expectation values of observ-
ables, which satisfy certain symmetry relations with respect
to the Keldysh contour, map exactly onto the corresponding
expressions in Keldysh perturbation theory. In particular, it
was pointed out that in order to obtain a physical expectation
value, the limiting process iϕm → � has to be taken as
principal value. This prescription ensures, that one generates
the principal-value integrals which emerge in the proper
real-time theory. For dynamical correlation functions, this was
shown explicitly up to fourth order of perturbation theory.

As one important novel result of the present paper we
were able to provide an exact spectral representation for
static expectation values similar to a Lehmann representation.
Based on the representation, using unbiased numerical data
from continuous-time quantum Monte Carlo simulations,
we found that the evaluation of the limiting procedure as
principal-value expression does indeed give real numbers as
physical expectation values. Consequently, the theory is found
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to be fully consistent in this respect beyond the perturbation
arguments given. The double occupancy as a function of
bias voltage computed this way shows features similar to
straightforward second-order perturbation theory, but we find
them to be more pronounced. For the magnetic susceptibility
we were able to give numerical estimates on the destruction
of the Kondo effect. A comparison to equilibrium NRG
shows that the dependence on bias voltage for both, the
double occupancy and the magnetic susceptibility, cannot be
explained by a simple effective-temperature interpretation.
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APPENDIX A: CANCELLATION OF OVERLAPPING
δ FUNCTIONS IN EQ. (52)

With a set of {ψ†
αikiσi

,ψαikiσi
; i = 1, . . . ,6} appearing for

the matrix elements in Eq. (52), we categorize the thermal
factor eβ�Y0{n,m,l} as follows. (i) If Y0n = Y0m = Y0l , Eq. (52)
vanishes. (ii) If only one of Y0n,Y0m,Y0l is different from others,
(Y0n,Y0m,Y0l)∈{(Y0,Y0,Y0 + 1),(Y0+1,Y0,Y0),(Y0,Y0+1,Y0),
(Y0,Y0,Y0 + 2),(Y0 + 2,Y0,Y0),(Y0,Y0 + 2,Y0)} for some
reference value Y0. If we take the case of
(Y0n,Y0m,Y0l) = (Y0,Y0,Y0 + 1), the terms contributing
for the matrix elements Vnm, Vml , and Aln are
from ψ

†
α̃1 k̃1

ψ
†
α̃2 k̃2

ψα̃3 k̃3
ψα̃4 k̃4

, ψ
†
Rk1

ψLk2ψ
†
α̃5 k̃5

ψα̃6 k̃6
, and

ψ
†
Lk2

ψRk1ψ
†
α̃7 k̃7

ψα̃8 k̃8
, respectively, where (k̃1, . . . ,k̃8) is

some permutation of (k3,k3,k4,k4, . . . ,k6,k6). The reservoir
indices should be chosen such that α̃5 = α̃6 and α̃7 = α̃8, and
(α̃1,α̃2,α̃3,α̃4) should satisfy Y0n = Y0m. The α̃i indices are
summed over for L/R. Then the term in Eq. (52) becomes
proportional to

(tLtR)2
(
t2
L + t2

R

)4 ∏
i=1,6

|g(ki)|2eβ�Y0 (1 − 2 + eβ�).

For other combinations of (Y0n,Y0m,Y0l) = (Y0,Y0 +
1,Y0),(Y0 + 1,Y0,Y0) the thermal factor becomes
(1 − 2eβ� + 1) and (eβ� − 2 + 1), respectively, and
all three contributions sum up to zero. With the
case of (Y0,Y0,Y0 + 2), the contribution becomes
(tLtR)4(t2

L + t2
R)2 ∏

i=1,6 |g(ki)|2eβ�Y0 (1 − 2 + e2β�). The
other terms have factors of (1 − 2e2β� + 1),(e2β� − 2 + 1),
and these sum up to zero again.

(iii) When all of Y0n,Y0m,Y0l are different, (Y0n,Y0m,Y0l)
is a permutation of (Y0,Y0 + 1,Y0 + 2). Since V̂ ,Â are at
most two-particle operators the difference of Y values between

states cannot be greater than two. If (Y0n,Y0m,Y0l) = (Y0,Y0 +
1,Y0 + 2), the factor in Eq. (52) becomes proportional to

(tLtR)4
(
t2
L + t2

R

)2 ∏
i=1,6

|g(ki)|2eβ�Y0 (1 − 2eβ� + e2β�).

Permuting (Y0,Y0 + 1,Y0 + 2) the sum of the thermal factors
can easily be shown to be zero.

APPENDIX B: FOURTH-ORDER EXPANSION OF
ELECTRON SELF-ENERGY

We investigate the energy-pole structure in the real-time
perturbation expansion to verify that the δ-function residue
disappears and the energy denominators can be interpreted as
principal valued. In the following we consider the perturbation
expansion for the self-energy in the fourth order of the
Coulomb parameter U , �>

(4)(t,0) according to the time or-
derings along the Keldysh contour [Figs. 9(a)–9(d)]. Different
types of time orderings will be considered shortly. These time
orderings have one of the intermediate times (marked as a
cross) within a finite time interval fixed by time at 0 and t .
Given a time ordering, a particular Wick’s contraction should
be chosen. The chosen Wick’s contraction is according to the
diagrams in (g) and (h) which correspond to the most nontrivial
vertex correction.

(a) (b)

(e)

(d)

t

0

0

t, τs1

s2

1

2

3

4

5

6

7

(g)

(c)

0 τ

s1

s2 β
(f)

s2

s1

s1

s2

s2 s1s2

s1 s1 s2

5

1

s2

s17

3

2

6

4

(h)

t, τ

FIG. 9. (a)–(d) Real-time Keldysh contour for self-energy
�>

(4)(t,0) in the fourth-order perturbation when one intermediate time
is in the finite interval [0,t] and the other time in along the contour
stretching to −∞. The Wick’s contraction is taken as shown in (g)
and (h). The dummy label of (g) is used for time orderings (a), (c),
(e) and the label (h) is used for (b) (d), (f). The cross represents
the intermediate times s1 and s2 for interaction, in addition to the
creation/annihilation points 0 and t .
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We can evaluate each contribution as follows.

Sa = f1f2f̄3f̄4f̄5f6f̄7

∫ 0

−∞
ds1

∫ t

0
ds2e

−i(ε1−ε4−ε5+ε6−iη)s1−i(−ε2+ε3+ε4−ε7)s2−i(ε5−ε6+ε7)t , (B1)

Sb = f̄1f2f̄3f4f5f̄6f̄7

∫ 0

−∞
ds2

∫ t

0
ds1e

−i(ε2−ε3−ε4+ε7)s1−i(−ε1+ε4+ε5−ε6−iη)s2−i(ε1−ε2+ε3)t , (B2)

Sc = f̄1f2f̄3f4f5f̄6f̄7

∫ −∞

t

ds1

∫ t

0
ds2e

−i(ε1−ε4−ε5+ε6−iη)s1−i(−ε2+ε3+ε4−ε7)s2−i(ε5−ε6+ε7)t , (B3)

Sd = f1f2f̄3f̄4f̄5f6f̄7

∫ −∞

t

ds2

∫ t

0
ds1e

−i(ε2−ε3−ε4+ε7)s1−i(−ε1+ε4+ε5−ε6−iη)s2−i(ε1−ε2+ε3)t . (B4)

In these shorthand notations (as discussed in the main text), we omitted the expression U 4[
∏

i

∫
dεi |gd (εi)|2] which is common

to all Si terms. fi = [1 + eβ(εi−αi�/2)]−1 and f̄i = 1 − fi . After some algebra, we get

Sa + Sd = − 2f1f2f̄3f̄4f̄5f6f̄7

(−ε2 + ε3 + ε4 − ε7)(ε1 − ε4 − ε5 + ε6)
[e−i(−ε2+ε3+ε4+ε5−ε6)t − e−i(ε5−ε6+ε7)t ]. (B5)

The exponential terms cancel each other at the energy poles
and (ε2 − ε3 − ε4 + ε7)−1 and (ε1 − ε4 − ε5 + ε6)−1 give a
well-defined principal-valued integral. This is typical behavior
since an integral within a finite interval (0,t) does not need
the convergence factor eηt and, accordingly, principal-valued
integral is enough. The same can be said for the combination
Sb + Sc.

Now, we take the imaginary-time contours in Figs. 9(e)
and 9(f). After straightforward calculations, we have (ε̃i =
εi − αiεϕ/2),

Se = f1f2f̄3f̄4f̄5f6f̄7

× e−(−ε̃2+ε̃3+ε̃4+ε̃5−ε̃6)τ − e−(ε̃5−ε̃6+ε̃7)τ

(ε̃1 − ε̃4 − ε̃5 + ε̃6)(−ε̃2 + ε̃3 + ε̃4 − ε̃7)
(B6)

− f̄1f2f̄3f4f5f̄6f̄7

× e−(ε̃1−ε̃2+ε̃3)τ − e−(ε̃1−ε̃4+ε̃7)τ

(ε̃1 − ε̃4 − ε̃5 + ε̃6)(−ε̃2 + ε̃3 + ε̃4 − ε̃7)
. (B7)

Here (B6) corresponds to Sa of (B1) and (B7) to Sc of (B3).
Similarly for Sf ,

Sf = f̄1f2f̄3f4f5f̄6f̄7

× e−(ε̃1−ε̃4+ε̃7)τ − e−(ε̃1−ε̃2+ε̃3)τ

(ε̃1 − ε̃4 − ε̃5 + ε̃6)(−ε̃2 + ε̃3 + ε̃4 − ε̃7)
(B8)

− f1f2f̄3f̄4f̄5f6f̄7

× e−(ε̃5−ε̃6+ε̃7)τ − e−(−ε̃2+ε̃3+ε̃4+ε̃5−ε̃6)τ

(ε̃1 − ε̃4 − ε̃5 + ε̃6)(−ε̃2 + ε̃3 + ε̃4 − ε̃7)
. (B9)

At the energy poles for εϕ → iη, Sf becomes identical to Se.
Similarly to the real-time diagrams, (−ε̃2 + ε̃3 + ε̃4 − ε̃7)−1

has a well-defined principal-value integral regardless of the
sign of η. Therefore for diagrams Sa − Sf we have correct
analytic continuation of imaginary-time results to those of the
real time via

1

ε̃1 − ε̃4 − ε̃5 + ε̃6
→ P

(
1

ε1 − ε4 − ε5 + ε6

)
. (B10)

In Fig. 10, we consider the remaining time orderings with
the two intermediate interaction points extending to infinity.
These are harder to deal with, as we discuss below, since the

s1 s2 s2 s1

(a)

s2 s1

(c)

(b)

(d)
s1 s2

(e)
s1

s2

(f)
s2

s1

s2 s1(h)(g)
s2s1

FIG. 10. Different time ordering with two intermediate interac-
tion events extend to infinity. (a), (d), (e), (g) use the label in Fig. 1(g)
and (b), (c), (f), (h) use the label in Fig. 1(h).
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energy poles may overlap.

Da = f1f̄2f3f̄4f̄5f6f̄7

0∫∫
−∞

ds1ds2e
−i(ε1−ε4−ε5+ε6−iη)s1−i(ε1−ε2+ε3−ε5+ε6−ε7−iη)s2−i(ε5−ε6+ε7)t , (B11)

Db = −f̄1f2f̄3f4f5f̄6f7

∫
e−i(−ε1+ε2−ε3+ε5−ε6+ε7−iη)s1−i(−ε1+ε4+ε5−ε6−iη)s2−i(ε1−ε2+ε3)t , (B12)

Dc = f1f̄2f3f̄4f̄5f6f̄7

∫
e−i(−ε1+ε2−ε3+ε5−ε6+ε7−iη)s1−i(−ε1+ε4+ε5−ε6−iη)s2−i(ε5−ε6+ε7)t , (B13)

Dd = −f̄1f2f̄3f4f5f̄6f7

∫
e−i(ε1−ε4−ε5+ε6−iη)s1−i(ε1−ε2+ε3−ε5+ε6−ε7−iη)s2−i(ε1−ε2+ε3)t , (B14)

De = −f̄1f̄2f3f4f5f̄6f̄7

∫
e−i(ε1−ε4−ε5+ε6−iη)s1−i(−ε2+ε3+ε4−ε7−iη)s2−i(ε1−ε4+ε7)t , (B15)

Df = f1f2f̄3f̄4f̄5f6f7

∫
e−i(ε2−ε3−ε4+ε7−iη)s1−i(−ε1+ε4+ε5−ε6−iη)s2−i(−ε2+ε3+ε4+ε5−ε6)t . (B16)

After integrals over s1 and s2 it is easy to see that Da(iη) = Dc(−iη) and Db(iη) = Dd (−iη). For De and Df , we can swap the
dummy indices as 1 ↔ 7, 2 ↔ 6, and 3 ↔ 5, and it becomes De(iη) = De(−iη) and Df (iη) = Df (−iη). Therefore, we obtain
the desired result as (B10), ∑

k=a,··· ,f
Dk(iη) =

∑
k

Dk(−iη) =
∑

k

PDk(±iη). (B17)

In deriving these relations, no assumptions of L/R and particle-hole symmetry have been used. One can rewrite Da as

Da = f1f̄2f3f̄4f̄5f6f̄7
e−i(ε5−ε6+ε7)t

ε2 − ε3 − ε4 + ε7

[
1

ε1 − ε2 + ε3 − ε5 + ε6 − ε7 − iη
− 1

ε1 − ε4 − ε5 + ε6 − iη

]
. (B18)

Here the +iη in the denominator will be canceled by Dc and all fractions can be written as principal valued, unless the poles
coincide.

We can now turn to the imaginary-time diagrams Figs. 10(g) and 10(h).

Dg = f1f̄2f3f̄4f̄5f6f̄7

−(ε̃2 − ε̃3 − ε̃4 + ε̃7)

(
− 1

ε̃1 − ε̃2 + ε̃3 − ε̃5 + ε̃6 − ε̃7
+ 1

ε̃1 − ε̃4 − ε̃5 + ε̃6

)
e−(ε̃5−ε̃6+ε̃7)τ

− f̄1f2f̄3f̄4f5f̄6f7

(ε̃2 − ε̃3 − ε̃4 + ε̃7)

e−(ε̃1−ε̃2+ε̃3)τ

(ε̃1 − ε̃2 + ε̃3 − ε̃5 + ε̃6 − ε̃7)
+ f̄1f̄2f3f4f5f̄6f̄7

(ε̃2 − ε̃3 − ε̃4 + ε̃7)

e−(ε̃1−ε̃4+ε̃7)τ

(ε̃1 − ε̃4 − ε̃5 + ε̃6)
. (B19)

After swapping 1 ↔ 7, 2 ↔ 6, and 3 ↔ 5, the first two terms correspond to Da and Dc for εϕ → iη and the third term to De.
Using a similar technique in (B18), we can decouple the product of energy denominators to a sum of simple poles of εϕ and then
by taking the limit Eq. (B10), all energy denominators become principal valued, unless poles coincide.

Now we deal with the case when the δ functions overlap. As discussed in Sec. III A, the double-δ terms manifest as
terms proportional to T 2. The terms Da , Dc, and De have double-δ terms canceled among themselves. At the energy poles
ε1 − ε4 − ε5 + ε6 = 0 and ε2 − ε3 − ε4 + ε7 = 0,

Da = Dc ∝ f1f̄2f3f̄4f̄5f6f̄7
T 2

2
e−i(ε5−ε6+ε7)t . (B20)

For De, we first rewrite ∫ T

t

ds1 =
∫ T

0
ds1 +

∫ 0

t

ds1, (B21)

and note that the second integral with a finite interval should not contribute a δ function. So as long as double δ is concerned, we
only consider the first interval,

De ∝ −f̄1f̄2f3f4f5f̄6f̄7T
2e−i(ε5−ε6+ε7)t → −f1f̄2f3f̄4f̄5f6f̄7T

2e−i(ε5−ε6+ε7)t , (B22)

where at the last step the dummy indices are swapped as 1 ↔ 5 and 4 ↔ 6. Therefore, the double-δ terms disappear in
Da + Dc + De. The same is true with Db + Dd + Df , and it shows that the all-energy poles for the fourth-order vertex
corrections, Figs. 9(g) and 9(h)), are interpreted as principal valued.
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