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Interplay between Kondo tunneling and Rashba precession
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The influence of Thomas-Rashba precession on the physics of Kondo cotunneling through quantum dots is
analyzed. It is shown that this precession is relevant only at finite magnetic fields. Thomas-Rashba precession
results in peculiar anisotropy of the effective g factor and initiates dephasing of the Kondo cotunneling amplitude
at low temperature, which is strongly dependent on the magnetic field.
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I. INTRODUCTION

Spin precession due to Rashba coupling1 in a 2D electron
gas (2DEG) is a specific manifestation of the fundamental
Thomas effect of spin precession in magnetic component
of electromagnetic field due to spin-orbit interaction. This
relativistic effect is strongly enhanced in semiconductors, and
in particular in 2DEG in semiconductor heterostructures.2

A necessary precondition for the occurrence of Thomas-
Rashba (TR) precession in semiconductors is an asymmetry
of confinement potential characterized by a vector �n pointing
along the electric field. An interesting physical situation may
show up when the TR precession is noticeable in 2DEG
in which magnetic impurities are immersed. Since electron
scattering by magnetic impurities results in the Kondo effect,
a natural question is whether and how the Kondo scattering is
sensitive to the TR spin precession. Prima facie it seems that
this precession is irrelevant to the physics of Kondo screening.
In the presence of spin-orbit coupling, the degenerate two-
level system is composed of spiral states (Kramers pair),
determined by the spirality winding number (and not by
the spin-projection quantum number as in systems respecting
spin-rotation invariance). But this distinction simply leads to
re-scaling of the Kondo model’s parameters without affecting
the Kondo physics. This direct reasoning is supported by
basic arguments3 stating that, due to time-reversal symmetry,
spin-orbit scattering does not suppress the Kondo effect
even though it breaks spin-rotation invariance. Subsequent
investigations4,5 confirmed this conclusion. At finite exter-
nal magnetic field, time-reversal invariance is broken, and
additional mechanisms affecting Kondo cotunneling arise
together with the conventional Zeeman splitting of the impurity
levels, as was demonstrated in Ref. 3 for the case of dirty
metals.

On the other hand, it has been argued6 that an admixture
of nonzero angular modes of spiral states in a 2DEG with TR
precession5 might cause an enhancement of the Kondo tem-
perature TK due to renormalization of the effective exchange
integral. Similar arguments apply for noncentrosymmetric
cubic crystals.7 A special case of the Kondo effect in the
presence of local Rashba coupling in quantum wires has
recently been considered, where it is shown8–10 that the Rashba
effect may be the source of resonant states in the bands and
thereby induce the Kondo effect. It has been also noticed11

that the shift of the band edge due to the Rashba splitting of
the band states in 2DEG may slightly change TK . Thus, there
are cases where Rashba-type spin-orbit coupling affects the
Kondo physics.

In the present paper we discuss the physical content of the
interplay between the TR precession and the Kondo effect
inherent in quantum dots under the constraint of a strong
Coulomb blockade.12 The source of this interlacing may be
due both to the sizable Rashba-type spin-orbit coupling in
the leads and the TR precession in the complex ringlike
geometry of the dots.13–17 We stress the specific features of
Kondo effect influenced by Rashba precession in quantum
dot devices in comparison with that resulting from magnetic
impurities immersed in 2DEG.3,5 As already noted above, the
TR precession is relevant for Kondo cotunneling only under
an external magnetic field. We show here that this relevance
stems from the fact that the spin coordinate axes tilt due to
the TR precession. The tilting axes for the dot and the leads
are distinct, and it is not possible to match two reference
frames in the presence of an external magnetic field. As a
result of the TR effect, the Kondo scattering becomes fully
anisotropic, and this anisotropy is relevant for the screening
mechanism. In addition, the spatial separation of the Kondo
impurity (the localized electron at the dot) and the leads
result in nonlocal indirect exchange, and this nonlocality
is explicitly related to the TR contribution to the indirect
exchange.

Unremovable mismatch of local magnetic axes is a salient
feature of Dzyaloshinskii-Moriya exchange in some low-
symmetry magnetic crystals.18 It will be shown that the indirect
exchange between spins in the dot and in the leads mediated
by Rashba coupling has the same vector structure as the
Dzyaloshinskii-Moriya interaction between adjacent localized
spins. The relevance TR effect to indirect exchange has been
perceived in previous studies. In particular, the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) interaction between localized
spins in 2DEG with Rashba-type spin-orbit coupling is
characterized by the above mentioned mismatch of local
magnetic axes.4,19,20 Similar mismatch occurs in devices
consisting of QD with Rashba interaction in contact with
two ferromagnetic leads21 and in systems consisting of two
magnetic impurities in a ring pierced by electric and magnetic
fields.15
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II. INTERPLAY BETWEEN KONDO COUPLING AND
THOMAS-RASHBA PRECESSION IN EXTERNAL

MAGNETIC FIELD

Within the analysis of the Kondo effect in a quantum dot
with a fixed (odd) number of electrons in weak tunneling
contact with source and drain leads, the starting point is an
effective spin Hamiltonian supplemented by the TR term,

H = εd

∑
σ

ndσ + U

2

∑
σ

ndσ ndσ̄ +
∑
kσ

εknkσ

+Hcot + HTR + HZ. (1)

The first two terms encode the quantum dot, with electron op-
erators dσ ,d†

σ , number operator ndσ = d†
σ dσ , discrete electron

level εd , and Coulomb blockade energy U . The continuum
(band) states in the leads are characterized by energies εk

and number operators nkσ = c
†
kσ ckσ . Assuming the left (l) and

right (r) leads to be identical, only the even combination ckσ =
(clkσ + crkσ )/

√
2 survives in the effective Hamiltonian. The

next term, Hcot, represents an effective cotunneling resulting
from the Schrieffer-Wolff (SW) transformation applied on the
original Anderson Hamiltonian. The last two terms in Eq. (1)
(HTR and HZ) stand for the TR precession and the Zeeman
spitting of the dot levels in an external magnetic field �H .

In order to expose the key features of the interplay between
TR precession and Kondo cotunneling and to elucidate the
triggering role of magnetic field, we first adopt a phenomeno-
logical approach. Consider a model where both the leads and
the dot are subject to TR precession. Each subsystem i = l (for
lead), d (for dot) is characterized by its own TR coupling with
a Rashba vector �ni and coupling strength �wi . (The microscopic
substantiation for this model will be presented at the end of this
section.) The effective spin Hamiltonian Hs for the lead-dot
device in an external magnetic field �H (entering through the
the Zeeman Hamiltonian HZ) has the form

Hs = HTR + HZ + Hcot = �nd · (�S × �wd )

+ �nl · (�σ × �wl) + �hd · �S + �hl · �σ + J �S · �σ . (2)

Here �S is the dot electron spin-1/2 operator, �σ =∑
kk′

∑
σσ ′ c

†
kσ �τck′σ ′ is the lead spin-1/2 conduction electrons

operator, �τ is the vector of Pauli matrices, and �hi = giμB �H .
The TR coupling is given by �wi = αi �pi , where αi and �pi

are TR coupling constants and momentum operators for dot
and lead subsystems. Here the operator �pi is defined in local
coordinates. The choice of these coordinates is described
below for two specific models of local dot-lead contact. The
external magnetic field �H fixes the direction of the original
z axis of the spin coordinate system, but in the general, the
vectors �wd, �wl are not parallel and have different moduli. In
many cases the factors gi are also different in magnitude and
sometimes they even have opposite signs, so we retain the
index i in the Zeeman terms as well.

It is seen from Eq. (2) that the spin precession described by
HTR results in a rotation of the spin axes determined by the
Zeeman term HZ, but the rotation angles are diff erent for
the dot and the lead subsystems,

�S ′ = T(�d,�d )�S, �σ ′ = T(�l,�l)�σ, (3)

where T(�,�) is an appropriate rotation matrix (see below). In
the simplest case where both Rashba vectors are parallel to the
z axis but the coupling constants are different in magnitude,
�ni = (0,0,1), �wi = (wix,wiy,0), the dot Hamiltonian

HZ + HTR = hdzSz + (hdx + wdy)Sx + (hdy − wdx)Sy (4)

is transformed to a new spin frame by means of the rotation
matrix,

T(�d,�d )

=

⎛
⎜⎝

cos �d cos �d − cos �d sin �d sin �d

sin �d cos �d 0

− sin �d cos �d sin �d sin �d cos �d

⎞
⎟⎠ . (5)

The Euler angles are given by the equations

tan �d = |wd |
hdz

, tan �d = wdy + hdx

wdx − hdy

. (6)

Thus, the quantities w2
d⊥ = w2

dx + w2
dy and h2

d⊥ = h2
dx + h2

dy

define the modulus of a planar component of an effective
magnetic field �2

⊥ = w2
d⊥ + h2

d⊥. Similar transformation for
the Hamiltonian H

(l)
Z + H

(l)
TR yields analogous equations to (6)

for the Euler angles (�l,�l), with wl,hl substituted for wd,hd .
In all realistic models �wd �= �wl . However, at �H = 0 in

square geometry (wix = wiy),�d = �l = π/4, �d = �l =
π/2, and the rotation of spin coordinates is the same for both
subsystems. Figure 1 illustrates this rotation. At finite H , each
subsystem lives in its own spin coordinate system. It follows
from Eq. (3) that in this case the cotunneling part of the spin
Hamiltonian (2) acquires the form

Hcot = J̃ �S ′(
d ) · �σ ′(
l), (7)

(see Refs. 15,19, and 21). Here 
d(l) = {�d(l),�d(l)}. Thus
we conclude that the unified spin coordinate system for the
dot and the leads shown in Fig. 1 may be established only
at zero magnetic field �H = 0. Otherwise, one deals with an
anisotropic Kondo cotunneling, and this anisotropy is relevant
when �H �= 0.22

The indirect exchange Hamiltonian (7) may be reduced to
the familiar Dzyaloshinskii-Moriya form at strong magnetic
field hiz � wi . In this case the angle �i � π/2, so that
sin �i ≈ wi/hiz, cos �i ≈ 1. On the other hand, the differ-
ence between �d and �l can be substantial, especially when

z

x

y y’

x’

x"

y"

z’z"

Θ

Φ

FIG. 1. Rotation of spin axes induced at �H = 0 by HTR. The
two Euler angles are � = π/2, � = π/4. Intermediate and final
coordinates are indicated by primes and double primes, respectively.
Initial, intermediate, and final coordinates are shown by solid, dashed,
and bold dashed lines, respectively.
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FIG. 2. Spin rotation in the presence of Rashba vector �n directed
along z. mx,my are components of unit vector in the (xy) plane.

the planar magnetic field hi⊥ is comparable with wi . In this
case the axes mdz,mlz of the spin reference frames for �S ′ and
�σ ′ are nearly parallel, whereas the divergence between the in-
plane projections {mdx,mdy} and {mlx,mly} may be noticeable.
One may then choose the frame Ml = {mlx,mly,mlz} connected
with the leads as the common reference frame for spins �S and
�σ and then expand the rotated spin �S ′ (3) around the spin �S
determined in the frame Ml . Neglecting the small difference of
the projections along z, the tilt angle φ of the dot spin can be
presented by the vector equality

�S ′ = �S + φ (�nl × �S), (8)

(see Fig. 2). Here we used the fact that the Rashba vector �nl

coincides with mlz. The angle φ ∼ �d − �l is assumed to be
small. Otherwise, a more general expression

�S ′ = �S + sin φ[(�n × �S)] + cos φ[�S − �n(�n · �S)] (9)

should be used instead of (8).
Substituting Eq. (8) into (7), we arrive at the effective

cotunneling Hamiltonian expressed in the reference frame Ml

related to the leads

Hcot = J �S · �σ + �j · (�S × �σ ), (10)

where �j = Jφ�n is the TR-induced anisotropic component of
the exchange coupling constant.

A microscopic substantiation of the phenomenological
assumption (3) should now be presented. The TR precession
in 2DEG is presented by continuous set of vectors �wl(�k) = α�k,
where �k is the wave vector in the 2D Brillouin zone.5 To reduce
this continuum to a single vector, one should explicitly take
into account the spatial nonlocality of the lead-dot indirect
exchange induced by cotunneling processes.

In realistic devices, the TR coupling exists in the planar
leads, and there is no generic spin-orbit interaction in the dot.
Then the lead continuum is encoded in Kondo cotunneling
through the properties of the band electrons in the point �R,
which denotes the “entrance” coordinate of the tunneling
channel relative to the dot spin position (located at at �R = 0).
Taking into account the nonlocality of electron cotunneling,
one should write the effective spin Hamiltonian obtained by
means of the SW transformation in the form

Hcot = J �S · �σ �R, (11)

where �σ �R = ∑
�k�k′

∑
σσ ′ c

†
�kσ

�τc�k′σ ′ exp[i(�k − �k′) �R]. Then the

TR field is presented by its local component in the point �R
(see, e.g., Ref. 19):

H loc
TR = αl(�σ × r̂)F (R). (12)

Here r̂ = �R/R is a unit vector along �R and F (R) is the form
factor arising within the procedure of Fourier transformation.
This means that the planar TR components of the effective
magnetic field in the leads are the components of the vector
�wl = αF (R)r̂ .

Another system where the conjecture expressed in Eq. (3)
is realized consists of a quantum dot possessing TR coupling
term, whereas the spin-orbit interaction in the leads is
negligible. This regime may be realized, e.g., in a transition
metal-organic complex adsorbed on a metallic substrate in
contact with a nanotip of a tunneling microscope. In this type
of devices the source of the TR term is the asymmetry of
the electric field induced by the nanotip, and the vector �w
in Eq. (2) contains the matrix elements of the momentum
operator in the basis of molecular orbitals of a complex. We
consider the simplest situation where only one such vector
may be introduced thus neglecting the multiorbital effects in
the interplay between Kondo and Rashba phenomena. Then it
is natural to choose the frame for the leads with the axis σz ‖ hz

and two other axes oriented in such a way that the system of
coordinates Md{mdx,mdy,mdz} is only slightly tilted relative to
the reference frame of Fig. 2. Then one may adjust the two
coordinate systems by means of the vector equality

�S ′ = �S + φ((�nd × �S)) (13)

like in Eq. (8) and thereby arrive at the same anisotropic spin
Hamiltonian (10), which describes the interplay between TR
and Kondo mechanisms.

III. SCALING ANALYSIS OF ANISOTROPIC
THOMAS-RASHBA EXCHANGE HAMILTONIAN

Based on the above analysis, we now study the inter-
play between the TR precession and the Kondo effect in
the weak-coupling regime T � TK , where the RG scaling
approach for identifying the fixed points is applicable. In the
two limiting cases of strong and weak magnetic field, the
general Hamiltonian (7) is reducible to a simplified effective
Hamiltonian (10), as discussed below.

A. Strong magnetic field

Following our analysis of the previous section, the
anisotropic Thomas-Rashba exchange Hamiltonian reads

H =
∑
kσ

εknkσ + �hd · �S + J �S · �σ + �j (�S × �σ ). (14)

This form entails a Rashba vector that is parallel to the
z axis and a strong external magnetic field �H ‖ ẑ, so that
�hd = {wdx,wdy,h} and h � wd . The second term is the spin
Hamiltonian of the isolated dot

HZ + HTR = hzSz + 1
2 (wdS

+ + w∗
dS

−), (15)
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where wd = wdy + iwdx . The last two terms in Eq. (14) form
the cotunneling part, rewritten as

Hcot = 1
2 (J−σ+S− + J+σ−S+) + JσzSz, (16)

with

J± = J (1 ± iφ), (17)

and φ ≈ |wd |/h. Thus, the spin-related part of the above
Hamiltonian is generically anisotropic (see Refs. 16 and 17).
To expose the evolution (flow) of the anisotropy parameters
we define

J+ − J− = 2iJφ ≡ 2ijTR, (18)

where jTR = Jφd is the modulus of the Kondo-Rashba
vector coupling in the Hamiltonian (14). It is readily seen
from Eq. (18) that the magnetic anisotropy induced by TR
precession increases on approaching the standard infinite fixed
point and hence it is relevant. A similar conclusion about
the relevance of the Dzyaloshinskii-Moriya type exchange
parameter was made in Ref. 16

In the weak-coupling limit one may study the Kondo
problem using a “poor man’s scaling” perturbative approach.23

In our case with the TR term present, deviation from the
standard scaling paradigm arises already in zero order in
the exchange constant because the Kondo problem should be
solved in the presence of an effective “magnetic” field given
by Eq. (15). Using the pseudofermion representation for spin
operator �S = ∑

σσ ′ f †
σ �τfσ ′ , we rewrite (15) as

HTR + HZ = h

2
(f †

↑f↑ − f
†
↓f↓) + 1

2
(wdf

†
↑f↓ + w∗

df
†
↓f↑).

(19)

In accordance with the arguments adduced in the previous
section, this “zero-order” Hamiltonian cannot be diagonalized
by means of rotation of the spin coordinate frame. There-
fore the bare Matsubara spin-fermion propagators gσσ ′(τ ) =
−〈Tτfσ (τ )f †

σ ′(0)〉 and their Fourier transforms gσσ ′(ε) form a
2 × 2 matrix:

ĝ =
(

g↑↑(ε) g↑↓(ε)

g↓↑(ε) g↓↓(ε)

)
. (20)

Here

gσσ = (ε − σ̄ h/2)/(ε2 − �2), g↑↓ = w∗
d/2(ε2 − �2),

g↓↑ = wd/2(ε2 − �2), (21)

ε is the Matsubara frequency, and � = √
h2 + |w2

d |/2 is
the modulus of the effective magnetic field, including the
contribution of TR precession. Both Zeeman components
contribute to each of these functions. In the spinor represen-
tation the pseudofermion propagator may be represented as a
combination of the “normal” (spin conserving) and anomalous
terms:24

ĝ = ĝ‖ + ĝ⊥ ≡ g0Sz + g1�nd · (�S × �wd ) (22)

[the explicit form of g0 and g1 is easily derived from (21)].
The scaling equations for the Kondo effect derived in a

single-loop approximation Fig. 3 acquire the following form:

dJ‖
dη

= −J+J−,
dJ±
dη

= −J±J‖. (23)

FIG. 3. Left panel: Diagram contributing to scaling equations in
a single-loop leading logarithm approximation. Right panel: Leading
logarithmic correction to the spin-fermion self-energy in the limit
of strong magnetic field h � |wd |. Dashed and double-dashed lines
stand for the longitudinal and transversal components of spin-fermion
propagator (20), solid lines correspond to electron propagators, and
vertices J are denoted by circles.

Here and below we turn to dimensionless coupling constants
J → ν0J , etc., where ν0 ∼ D−1

0 is the electron density of
states in the leads assumed to be constant in the vicinity of the
Fermi level. The scaling variable is defined as η = ln(D/D0).

Unlike the standard flow equations,23 the transverse com-
ponents of the exchange parameters are complex (17). With
the help of (18) we transform (23) into

dJ

dη
= −(

J 2 + j 2
TR

)
,

djTR

dη
= −JjTR. (24)

The second equation describes the evolution of the imaginary
TR correction to the transverse part of the exchange vertex.
Here and below the index 0 labels the initial scale of the energy
and coupling parameters of the Hamiltonian (14).

Integration of Eqs. (24) with the boundary conditions
J (0) = J0,jTR(0) = j0 gives (within logarithmic accuracy)

J (η) = J̃0

1 − J̃0η
, jTR = j0

1 − J̃0η
. (25)

Here J̃0 = √
J 2

0 + j 2
TR. This result means that although the

imaginary TR component of the exchange anisotropy increases
with reduction of the energy scale, its contribution to the real
longitudinal parameter J (η) results only in the enhancement
of the Kondo temperature from TK = exp(−1/J0) to T̃K =
exp(−1/J̃0) and does not influence the fixed point. One should,
of course, remember that the Kondo resonance is in fact split
by the effective magnetic field � entering the poles of the
spin-fermion propagators (21), where the axial component of
this field ∼|wd | arises due to the TR precession.

The effective field � is also affected by the interplay
between Kondo cotunneling and TR precession. Whereas
only the diagonal part ĝ‖ of the bare spin propagator (22)
contributes to the system of scaling equations (24), the
transverse component ĝ⊥ renormalized by Kondo cotunneling
enhances the planar component of the effective magnetic field.
In the limit |wd | � h the off-diagonal spin-fermion propagator
has the form

ĝ⊥(ε) ≈ S+wd + S−w∗
d

2h
· g1(ε),

(26)

g1(ε) =
(

1

ε − �
− 1

ε + �

)
.

Since there is no counterpart to this propagator in the Green’s
functions of band electrons, the Kondo loops in the self-
energies containing ĝ⊥ generate extra terms, which do not
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FIG. 4. TR corrections to the self-energies of spin-fermion
propagators in the limit of weak magnetic field h � |wd |. Circles and
squares mean the vertices ∼J , which conserve and do not conserve
the total spin, respectively (see the text for details).

conserve spin, namely contain the factors S±σz + Szσ
±. The

corresponding diagrams are shown in the right panel of Fig. 3.
The “anomalous” transverse propagators ĝ⊥ defined in

Eq. (26) are responsible for rescaling the axial components
of the magnetic field �h (15). The lowest order diagrams
contributing to the self-energy of ĝ⊥ are shown in Fig. 4. The
explicit expressions for the self-energy diagrams for ĝ⊥(ε) and
ĝ1(ε) are

�⊥(ε) = S+wd + S−w∗
d

8h
· �1(ε),

(27)
�1(ε) = J 2T 2

∑
ω1ω2,k1k2

Gk1 (−ω1)Gk2 (ω2)g1(ε + ω1 + ω2).

Here Gk(ω) are the bare propagators for conduction electrons
in the leads. In terms of real frequencies we find that the leading
logarithmic term of this self-energy has the form

Re�1(ε) = 2(�0J )2h ln
D0

max{(|2� − ε|),T } , (28)

(cf. similar estimates for self-energies of spin fermion propa-
gators describing singlet-triplet configuration in quantum dots
with even occupation at finite bias25). The imaginary part of
the self-energy Im�1(ε) ∼ J 2T is irrelevant. Inserting these
estimates in (27), we find that this self-energy enhances both
real and imaginary parts of the planar magnetic field. At
T > |2� − ε| corrections to the planar components of the
effective magnetic fields may be estimated as

δwd

|wd | ∼ (ρ0J )2 ln
D0

T
. (29)

Thus, we have found that the magnetic anisotropy induced
by the TR precession is enhanced due to the interplay between
this precession and the Kondo cotunneling. In the limit of
strong field h � wd this enhancement acquires the form of
a “dynamical” contribution to the planar magnetic field (see
also Ref. 16). This “random” field reminds us of the effect
of exchange anisotropy induced by an edge spin coupled to
an open spin-one-half antiferromagnetic Heisenberg chain.26

The Kondo-induced component of the planar field is weak
at T � TK , |δw|⊥/TK ∼ j�. However, it generates its own
energy scale

T ∗ = TK exp

(
−1

j

)
, (30)

where the precession-induced magnetic field becomes compa-
rable with the static magnetic field �.

B. Weak magnetic field

In the limit of the weak field (or strong TR interaction),
namely, wd � h, the general phenomenological analysis of
Sec. II points toward another way to arrive at a Dzyaloshinskii-
Moriya form for the TR corrections to the effective exchange
Hamiltonian. Let us consider a model with nonlocal exchange
between the dot and the leads with the effective exchange
given by the Hamiltonian (11) in the absence of TR precession.
Assume that the Rashba vectors are parallel in both lead and dot
systems, �nl ‖ �nd ‖ z but wd �= wl . Then the spin Hamiltonian
acquires the form (7).

In accordance with the kinematic scheme of Fig. 1, at zero
magnetic field and square (xy) symmetry, the Euler angles are
�l = �d = π/2 and �l = �d = π/4. The difference between
the coordinates (x ′′,y ′′,z′′) for lead and dot spins at small h =
hz is proportional to the deviation of �d and �l from π/2,
namely π/2 − �i = ϕi , where ϕi ≈ h/wi . Then the mismatch
between the directions of the vectors �S and �σR is small like in
Fig. 2, but the axis �n is directed along the coordinate z′′ = x

of Fig. 1. Returning to the original to frame (x,y,z) we write
the bare dot spin Hamiltonian in the form (15), and matching
the angles 
d → 
l means applying the transformation

�S ′ = �S + ϕ (�n × �S), (31)

where ϕ = |ϕd − ϕl| and only the x component of the
vector product survives. The TR correction to the exchange
Hamiltonian acquires the form

δHcot = iϕJ

2
[Sz(σ

− − σ+) + (S− − S+)σz]. (32)

In this limit the main contribution to the spin-fermion
propagators (20) is given by the off-diagonal components gσσ̄ ,
while the residues of the longitudinal components gσσ contain
small parameter ϕ. Thence the“anomalous” contribution to
the Kondo loops (Fig. 4) gives the leading contribution to the
scaling equations for the vertices iκ = iϕJ (32),

∂κ

∂η
= −κJ, (33)

which implies scaling evolution of κ similar to that of jTR

(24), (25). Then we get an expression for the longitudinal
component of the self-energy given by the diagrams depicted
in Fig. 4:

�‖(ε) = iϕ(wd − w∗
d )Sz

4
�1(ε). (34)

As in Eq. (28), the logarithmic renormalization arises in
the self-energy for real frequencies, and the magnetic field
enhancement can be estimated similarly to (29)

δh

h
≈ (ρ0J )2 ln

D0

max{|2� − ε|,T } . (35)

Thus we have found that the interplay between the Kondo
scattering and the TR precession in the case where the Rashba
vector is parallel to a magnetic field results in logarithmic
enhancement of the planar and the z component of the effective
magnetic field in the limits of strong and weak external
field, respectively. This interplay disappears in zero field in
agreement with the general symmetry considerations.3

155129-5



K. KIKOIN AND Y. AVISHAI PHYSICAL REVIEW B 86, 155129 (2012)

IV. CONCLUSIONS

The main result of our analysis of the kinematics of
the Rashba effect in a system “quantum dot plus metallic
reservoir” stems from the fact that the TR precession in one
subsystem is “exported” to another subsystem by the tunneling
processes (see, e.g., Ref. 16). Due to this export, the TR
precession always exists both in the dot and in the leads, and
the inequality �d �= �l for the Euler angles related to the
quantization axes in the two subsystems [see Eqs. (3)–(7)]
arises in an external magnetic field, so that the magnetic
quantization axes are never matched. In the limits of strong
and weak magnetic field the Hamiltonian (7) is reducible to
the Dzyaloshinsky-Moriya like form. This conclusion is quite
general, and one may expect similar mismatch in complex
quantum dots, where each constituent dot will be characterized
by its own set of Euler angles 
di .

As to the physical manifestations of the interplay between
Kondo cotunneling and Thomas-Rashba precession, the main
effect is the sharp anisotropy of the g factor due to the
influence of the precession on the direction of the effective
field �hd [see, e.g., Eq. (15)]. Due to the contributions of Kondo

processes, this effect is temperature dependent and may be
quite noticeable in the case of weak magnetic field (35).
Another possibility of direct observation of Kondo-Rashba
interplay is offered in Refs. 16 and 17. The finite bias anomalies
of differential conductance depend on the effective magnetic
field � (21). Due to broken inversion symmetry the differ-
ential conductance becomes asymmetric with respect to the
bias.

We restricted our study to the case of local TR effect in
the leads (12). The theory may be generalized for the case of
an “itinerant” quantization axis following the rotation of the
quantization axis in the 2D Brillouin zone. In this case the
higher angular harmonics of the electron states in the leads5

should be involved.

ACKNOWLEDGMENTS

The authors are grateful to M. N. Kiselev, A. Nersesyan,
and A. A. Zvyagin for valuable comments. Discussions with
Y. Oreg at the initial stage of this work are highly appreciated.
The research of Y.A. is partially supported by ISF Grant No.
173/2008.

1Yu. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
2E. I. Rashba, in Problems of Condensed Matter Physics, edited by
A. L. Ivanov and S. G. Tikhodeev (Clarendon Press, Oxford, 2006),
p. 188.

3Y. Meir and N. S. Wingreen, Phys. Rev. B 50, 4947 (1994).
4K. V. Kavokin, Phys. Rev. B 69, 075302 (2004).
5J. Malecki, J. Stat. Phys. 129, 741 (2007).
6M. Zarea, S. E. Ulloa, and N. Sandler, Phys. Rev. Lett. 108, 046601
(2012).

7L. Isaev, D. F. Agterberg, and I. Vekhter, Phys. Rev. B 85, 081107(R)
(2012).

8D. Sanchez and L. Serra, Phys. Rev. B 74, 153313 (2006).
9R. Lopez, D. Sanchez, and L. Serra, Phys. Rev. B 76, 035307
(2007).

10Q. Q. Xu, B. L. Gao, and S. J. Xiong, Physica B 403, 1686
(2008).
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