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Many correlated materials display a quantum-critical point between a paramagnetic and a spin-density wave
(SDW) state. The SDW wave vector connects points, so-called hot spots, on opposite sides of the Fermi surface.
The Fermi velocities at these pairs of points are in general not parallel. Here, we consider the case where pairs of
hot spots coalesce, and the wave vector (π,π ) of the SDW connects hot spots with parallel Fermi velocities. Using
the specific example of electron-doped cuprates, we first show that Kanamori screening and generic features of
the Lindhard function make this case experimentally relevant. The temperature dependence of the correlation
length, the spin susceptibility, and the self-energy at the hot spots are found using the two-particle self-consistent
theory and specific numerical examples worked out for band and interaction parameters characteristic of the
electron-doped cuprates. While the curvature of the Fermi surface at the hot spots leads to deviations from
perfect nesting, the pseudonesting conditions lead to drastic modifications of the temperature dependence of
these physical observables: Neglecting logarithmic corrections, the correlation length ξ scales like 1/T , namely,
z = 1 instead of the naive z = 2, the (π,π ) static spin susceptibility χ like 1/

√
T , and the imaginary part of

the self-energy at the hot spots like T 3/2. The correction T −1
1 ∼ T 3/2 to the Korringa NMR relaxation rate is

subdominant. We also consider this problem at zero temperature, or for frequencies larger than temperature, using
a field-theoretical model of gapless collective bosonic modes (SDW fluctuations) interacting with fermions. The
imaginary part of the retarded fermionic self-energy close to the hot spots scales as −ω3/2 ln ω. This is less
singular than earlier predictions of the form −ω ln ω. The difference arises from the effects of umklapp terms
that were not included in previous studies.
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I. INTRODUCTION

Quantum phase transitions between a Fermi liquid and
magnetic phases have been a subject of experimental and
theoretical investigations for several decades.1–4 The transition
to a spin-density wave (SDW), in particular, is relevant to
problems of current interest. In the cuprates, Daou et al.5

argued that the Fermi surface change associated with this
transition is a key to understanding anomalous normal-state
properties. Recent studies in the pnictides,6–8 heavy-fermion
materials,9 and organic superconductors10–12 focus on the
relation between the SDW and superconductivity. In fact,
strong experimental similarities between quantum-critical
behavior in the organics, pnictides, and cuprates have been
pointed out recently.13

The electron-doped cuprates14 have provided an early ex-
ample where quantum-critical behavior has been inferred from
the temperature dependence of resistivity at low temperature.
It was measured to be linear15 from 35 mK to 10 K in
Pr2−xCexCuO4−δ (PCCO) at doping x = 0.17. More recent
transport16 and thermopower measurements17 also suggest the
presence of a quantum-critical point at a similar doping. The
precise nature of the quantum-critical point remains, however
unclear, as thoroughly discussed in Ref. 14. For example, it
has also been suggested that the quantum-critical point (QCP)
coincides with the onset of superconductivity in the overdoped
regime.18

Here, we study quantum-critical behavior associated with
the transition between a SDW phase and a Fermi liquid when

the wave vector (π,π ) of the SDW connects hot spots with
parallel Fermi velocities. The two Fermi surfaces connected
by (π,π ) in this case are tangent to each other, as shown
in Fig. 1. On a spherical Fermi surface, the Fermi wave
vector would satisfy the condition 2kF = (π,π ). We call
this pseudonesting.19 We will explain why the QCP can be
located at, or close to, the pseudonesting filling nc. This
occurs naturally in the one-band Hubbard model for the
electron-doped cuprates, and we will perform some of our
calculations specifically for this case, although the frequency
and temperature dependencies that we find are valid more
generally. The methods that we describe in the following
can be applied to electron-doped cuprates because these
materials are described by a Hubbard model in an intermediate
coupling regime where one can neglect effects induced by Mott
physics.20–23

The theory of Hertz1,24,25 and Millis26 has formed the basis
for much of the work on quantum-critical phenomena. In this
approach, fermions are integrated out and an effective bosonic
theory for the collective modes is studied using standard
renormalization group methods that can be taken to high
order.27 It has been pointed out by Abanov and Chubukov28

that for a commensurate SDW at the upper critical dimension,
namely d = 2 for z = 2, all the coefficients of the bosonic
theory are singular so that one must treat simultaneously
the bosonic collective modes and the fermions. Metlitski
and Sachdev29 have reexamined this problem and obtained
the non-Fermi liquid behavior at the hot spots, and shown
that the bosonic SDW spectrum does not obey dynamic
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FIG. 1. (Color online) The dashed lines indicate the magnetic
Brillouin zone with ordering vector Q = (π,π ). The arrows give
examples of pseudonesting conditions, namely, of points such that
2kF is equal to the antiferromagnetic wave vector. The (π,π ) ordering
wave vector is defined with respect to the (qx,qy) coordinate system.
In the field-theory approach introduced later, we work in the rotated
(kx,ky) coordinate system.

scaling with z = 2 but instead that a super-power-law form
is obtained. They have also thoroughly discussed the failure of
the 1/N expansion at higher order, leading to a strong-coupling
problem. More recently, it has been argued30 that non-Fermi
liquid corrections are also important away from the hot spots.

An alternate approach is the self-consistent renormalized
theory of Moriya.31,32 It is in the universality class of the
spherical model and as such its critical behavior will not
be exactly that expected for the O(3) model. Nevertheless,
it can be accurate away from the critical point and provide
leading-order estimates for the exponents. The two-particle
self-consistent (TPSC) theory33,34 is a related approach that
has critical behavior similar to that of Moriya, including loga-
rithmic corrections.35 It has the advantage that although it is an
approximate solution to the Hubbard model, it is quantitatively
very close to benchmark quantum Monte Carlo results.33 It
is nonperturbative, does not include any phenomenological
parameters, has internal consistency checks, and satisfies a
number of exact results.

Previous theoretical studies have mostly been done for the
case where the quantum-critical point occurs when the Fermi
velocities at the hot spots that are connected by the SDW are not
parallel, unlike the case of parallel velocities we consider here
(see Fig. 1). Such a case of parallel Fermi velocities is generic
in one dimension, but at first sight appears as an accident in
two dimensions, because upon translation by the (π,π ) SDW
wave vector, the Fermi surfaces touch at only one point. If the

surfaces were flat, we would recover the case of perfect nesting
encountered in one dimension. The curvature here provides a
cutoff, and so we refer to the situation with parallel Fermi
velocities as “pseudonesting.”19 Such Fermi surfaces have
also been studied in three dimensions,36 but in the presence
of this pseudonesting the spin susceptibility is singular in two
dimensions19 and the analysis must be redone. Altshuler, Ioffe,
and Millis37 first looked at the case where the instability is at
2kF , hence connects parallel segments of the Fermi surface,
but the SDW wavelength is not commensurate with the lattice.
They found that the transition is weakly first order with
an intermediate scaling regime when the SDW wavelength
is close to (π,π ). The scaling regime was obtained in a
systematic expansion in a number proportional to the inverse
number of fermion flavors. Krotkov and Chubukov22,38 found
different results for the self-energy. Here, we consider only the
commensurate case. Some of our results differ from those of
previous authors because they overlooked the significance of
the umklapp process shown by the top double arrow in Fig. 1.

We use two different approaches. We obtain finite-
temperature results appropriate for the SDW quantum-critical
point of electron-doped cuprates using TPSC. Then, a field
theory for the spin-fermion model allows us to find the
finite-frequency zero-temperature results and some finite-
temperature results. The results of both approaches are
consistent. We do not, however, consider the possibility of
a first-order transition.37

The rest of this paper is organized as follows. In Sec. II, we
present the model along with general arguments suggesting
why one should expect the antiferromagnetic quantum-critical
point to be located close to pseudonesting, namely, at a filling
where the (π,π ) wave vector connects parts of the Fermi
surface that are tangent, or equivalently with parallel Fermi
velocities. Section III contains the finite-temperature results.
They are obtained with TPSC, which is described in Sec. III A.
Analytical results for the behavior at the QCP are illustrated
with numerical examples appropriate for electron-doped
cuprates in the subsections of Sec. III B. The critical behavior
is obtained in Sec. III C. Zero-temperature finite-frequency
results are treated in Sec. IV with field-theoretical methods.
The Lagrangian appears in Sec. IV A followed by sections
on the polarization bubble (spin susceptibility) in Sec. IV B,
on the electron self-energy in Sec. IV C, and on the
irrelevance of the quartic term in Sec. IV D. An Appendix
on vertex corrections A appears after the summary in Sec. V.
Consistency between TPSC and field-theory results are
pointed out in the field theory Sec. IV.

II. MODEL AND QCP FOR ELECTRON-DOPED
CUPRATES

In this section, we introduce the model and give generic
arguments as to why we expect the quantum-critical point to
often be located close to the filling where translation by the
antiferromagnetic wave vector leads to Fermi surfaces that
are tangent to each other, as illustrated in Fig. 1. While the
frequency and temperature dependencies that we find do not
depend on details of the model, specific numerical examples
at finite-temperature calculations will be performed on the
two-dimensional t − t ′ − U Hubbard model on the square
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FIG. 2. (Color online) Lindhard function near the 2kF point as
a function of doping for U = 6, t ′ = −0.175, and t ′′ = 0.05, values
that are appropriate for electron-doped cuprates. The rapid fall with
filling larger than 1.201, close to the critical filling, is apparent.

lattice at weak to intermediate coupling. The model is given by

H = −
∑

〈i,j〉,σ
ti,j (c†i,σ cj,σ + H.c.) + U

∑
i

ni,↑ni,↓, (1)

where ti,j are the hopping integrals, i,j are the site index,
σ is the spin label, c

†
i,σ and ci,σ are the particle creation and

annihilation operators. Doubly occupied sites cost an energy
U and ni,σ = c

†
i,σ ci,σ . Units are such that h̄ = 1, kB = 1, and

lattice spacing is unity. The kinetic energy of a single-particle
excitation in momentum space is obtained from

εk =
(

−
∑

j

eik·(ri−rj )ti,j

)
− μ(1) (2)

with the sum over j running over all neighbors of any of the
sites i. The chemical potential μ(1) is chosen so that we have
the required density.

One can explain on general grounds the filling where
the QCP is likely to occur. Figure 2 displays the Lindhard
function χ0 along the qy direction for different fillings. Its
maximum is at (π,π ) so it is symmetric in qx and qy . There
are two remarkable features. First, below a certain doping
nc, the maximum value is almost independent of filling,39,40

and second it falls rapidly as soon as the filling exceeds
nc. The filling nc corresponds to the point where the Fermi
surfaces joined by (π,π ) touch instead of intersecting. A
0.3% change in filling leads to almost 10% drop in value
of the susceptibility. If we consider a simple Stoner criterion
for the transition, we would conclude that if U takes the
value Uc = 2/χmax

0 ∼ 2.6, then the QCP would be close to
this filling nc. This does not require fine tuning because
the value of U that should enter the Stoner criterion is
the value renormalized by Kanamori-Brückner screening.41,42

This renormalized value becomes essentially U independent
when U becomes of the order of the bandwidth because
the two-body wave function creates a cusp to minimize
double occupancy41,42 and the renormalized interaction can
not become larger. This maximum renormalized value in

TPSC, Usp, takes a value33 near Uc ∼ 2.6. In addition, in
TPSC, the value of Usp self-consistently adjusts itself to the
value necessary to prevent a finite-temperature phase transition
on the SDW side of the QCP. Although, at sufficiently low
temperature, details will start to matter and one needs to start
to tune the value of U to find the QCP precisely at nc, there
is an intermediate temperature scale that can be quite broad
where fine tuning is unnecessary.

III. FINITE-TEMPERATURE RESULTS AND TPSC

In this section, we use the nonperturbative TPSC
approach.33,34 This approach respects the Pauli principle,
the Mermin-Wagner theorem, and conservation laws. It also
contains quantum fluctuations in crossed channels that lead
to Kanamori-Brückner screening.43 It is valid in the weak- to
intermediate-coupling regime (U � 6t) and not too deep in the
renormalized classical regime where a pseudogap is observed.
It has been benchmarked on quantum Monte Carlo calculations
on the Hubbard model.33,43–47

TPSC has been shown to be in the N = ∞ universality
class of the O(N ) model.48 It has the same critical behav-
ior as Moriya theory and hence has the same logarithmic
corrections.35 These logarithms have the same functional form
as those of the renormalization group asymptotically close
to the quantum-critical point, but in TPSC and in Moriya
theory the mode-mode coupling term does not flow, hence the
corrections may differ in the details from the renormalization
group.1 Quantum-critical behavior of the susceptibility and of
the self-energy in the closely related spin-fermion model has
been discussed by Abanov et al.28

It has been argued from detailed comparisons of numerical
calculations with experiment20,21,38,49,50 that strong-coupling
physics is not important for electron-doped cuprates, at least
not too close to half-filling. Hence, TPSC is appropriate to
study these compounds. It gives a satisfactory description of
angle-resolved photoemission spectroscopy (ARPES) data,51

and the temperature T ∗, where the pseudogap seen in ARPES
opens up experimentally, corresponds to that where the an-
tiferromagnetic correlation length coincides with the thermal
de Broglie wavelength,52 as predicted for two-dimensional
precursors of three-dimensional long-range order.44

Hence, all the numerical results are presented in units where
t = 1, kB = 1, h̄ = 1 (with z component of spin defined by
n↑ − n↓) for values of the Hubbard model hopping parameters
appropriate for electron-doped cuprates, namely, second- and
third-nearest-neighbor hopping t ′ = −0.175 and t ′′ = 0.05.51

Interaction strengths U = 6 and 5.56, again in the range
appropriate for electron-doped cuprates,51 will be considered.

We first present the formalism and then give analytical and
numerical results for the QCP.

A. TPSC

Given the Hubbard model parameters, TPSC has no
adjustable parameter. Irreducible vertices are obtained self-
consistently and in such a way that the Pauli principle and
conservation laws are obeyed. The formal derivation is given
in Refs. 34 and 53. Here, we simply present the equations that
are solved.
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In TPSC, the retarded spin χsp(q,ω) and charge χch(q,ω)
susceptibilities are written as

χsp(q,ω) = χ (1)(q,ω)

1 − Usp

2 χ (1)(q,ω)
, (3)

χch(q,ω) = χ (1)(q,ω)

1 + Uch

2 χ (1)(q,ω)
, (4)

where χ (1)(q,ω) is the noninteracting retarded Lindhard
function at wave vector q and angular frequency ω:

χ (1)(q,ω) = − 2

N

∑
k

f (εk) − f (εk+q)

ω + iη + εk − εk+q
. (5)

Here, f (εk) is the Fermi function (eεk/T + 1)−1, T is the
temperature, and N is the total number of sites. The effective
spin interaction Usp is evaluated without adjustable parameter
using the ansatz33,43

U 〈n↑n↓〉 = Usp〈n↑〉〈n↓〉 (6)

with the local-moment sum rule that follows from the
fluctuation-dissipation theorem

n − 2〈n↑n↓〉 =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

d2q

(2π )2

2

1 − e−ω/T
χ ′′

sp(q,ω),

(7)

where χ ′′
sp = Imχ ′′

sp and 〈n↑n↓〉 is the double occupancy. We
dropped the site index using translational invariance and we
used the Pauli principle to write

S2 ≡ 〈(n↑ − n↓)2〉 = n − 2〈n↑n↓〉. (8)

Similarly, the irreducible vertex Uch entering χch(q) is found
using a sum rule that is the analog of Eq. (7) for spin:

n+ 2〈n↑n↓〉− n2 =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

d2q

(2π )2

2

1 − e−ω/T
χ ′′

ch(q,ω).

(9)

The crossing-symmetric self-energy is obtained from


(2)
σ (k) = Un−σ + U

8

T

N

∑
q

[3Uspχsp(q)

+Uchχch(q)]G(1)
σ (k + q). (10)

The superscript (2) reminds us that we are at the second level of
approximation. G(1)

σ is the same Green’s function as that used
to compute the susceptibilities χ (1)(q). Charge fluctuations
χch(q) are included in numerical calculations but they are
neglected in the analytical results because they are small. Since
the self-energy is constant at the first level of approximation,
this means that G(1)

σ is the noninteracting Green’s function
with the chemical potential that gives the correct filling.
This chemical potential μ(1) is slightly different from the
one that we must use in (G(2))−1 = iωn + μ(2) − εk − 
(2)

to obtain the same density.54 Unless otherwise specified, all
the numerical results in the following are obtained using the
Matsubara frequency version of Eqs. (3) to (10) without any
approximation, hence they are valid at arbitrary distance from
the quantum-critical point.

B. Analytical results with numerical examples
for electron-doped cuprates

We begin below with the Ornstein-Zernicke form of the
spin susceptibility that is usually valid when the correlation
length is large. The case where there is perfect nesting leads us
naturally to the pseudonesting condition relevant for this paper.
The situation, however, is not as simple as usual since the
Ornstein-Zernicke form for the spin susceptibility is incorrect
in our case, as we will explain. The self-energy is treated at
the end of this section.

1. Ornstein-Zernicke form for the susceptibility

a. General case. When the correlation length is large, one
usually assumes that the denominator of the spin susceptibility
can be expanded around the wave vectors Qd , where the
maxima in χ (1) occur in d dimensions. One then obtains

χ ′′
sp(q,ω) = 2

Uspξ 2
0

ω/�0

(ξ−2 + q2)2 + (ω/�0)2
, (11)

where q is measured with respect to the wave vector Qd

where the spin susceptibility is maximum [(π,π ) in our case].
Defining Umf = 2/χ (1)(Qd ,0) as the value of the interaction
at the mean-field SDW transition, the other quantities in the
previous expression are

ξ 2 ≡ ξ 2
0

(
Usp

δU

)
, (12)

δU ≡ Umf − Usp, (13)

ξ 2
0 ≡ − 1

2χ (1)(q,0)

∂2χ (1)(q,0)

∂q2

∣∣∣∣
0
, (14)

1

�0
≡ 1

ξ 2
0 χ (1)(q,0)

∂χ (1)′′(q,ω)

∂ω

∣∣∣∣
ω=0

. (15)

In the expression for the spin susceptibility, the denominators
are expanded around the (π,π ) wave vector.

To obtain analytical results for the imaginary part of
the self-energy 
(2)′′R(kF ,ω; T = 0) in Eq. (10), we use the
spectral representation for the susceptibilities, and for the
Green’s function, perform the sum of the internal Matsubara
frequency and then the analytical continuation neglecting the
charge fluctuations, to obtain


′′R(kF ,ω) = −3UUsp

8

1

2vF

∫
dd−1q‖
(2π )d−1

×
∫

dω′

π
[n(ω′) + f (ω + ω′)]

χ ′′
sp[q‖,q⊥(kF + Qd ,ω,ω′); ω′], (16)

where q⊥, the component of q parallel to the Fermi velocity
vF , is obtained from the solution of the equation

εkF +Qd+q = ω + ω′. (17)

For all Fermi wave vectors, where εkF +Qd
� 0, the above

equation reduces to

v′
F · q � ω + ω′,

where v′
F is the Fermi velocity in the hot region, i.e., where

εkF +Qd
� 0.
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In the asymptotic form of the spin susceptibility (11), the
wave vector appears only in the form q2

‖,q
2
⊥ so that keeping

this general form in the equation for the self-energy equation
(16), we obtain


′′R(kF ,ω) = −3UUsp

8

1

2vF

∫
dd−1q‖
(2π )d−1

×
∫

dω′

π
[n(ω′) + f (ω + ω′)]

χ ′′
sp[q‖,(ω + ω′)/vF ; ω′,T ]. (18)

Normally, one expects ξ0 to be a temperature-independent
constant of the order of the lattice spacing and �0/ξ

2
0 to be a

constant of the order of the Fermi energy. In the case of perfect
nesting, or of pseudonesting, this is not the case.

b. Perfect nesting. Although the case we are interested in
does not correspond to perfect nesting, understanding that case
first will facilitate our task later. There is perfect nesting when
the equality εk = −εk+Qd

is satisfied for all wave vectors, with
Qd the nesting wave vector. This case was treated by Virosztek
and Ruvalds.55 The quantities ξ 2

0 and �0 that are usually
assumed temperature independent here become temperature
dependent. We show this in the following.

For perfect nesting, the Lindhard function becomes

χ (1)(Qd,ω) = 2

N

∑
k

1 − 2f (εk)

ω + iη + 2εk
(19)

so that changing to an energy integral we have

χ (1)′′(Qd ,ω) = −π

∫
dE Nd (E)[1 − 2f (E)]δ(ω + 2E)

(20)

= πNd

(
ω

2

)
tanh

(
ω

4T

)
, (21)

where Nd (E) is the density of states. The real part at zero
frequency on the other hand is given by

χ (1)(Qd ,0) =
∫

dE Nd (E)
[1 − 2f (E)]

2E

= 2
∫ 

0
dE Nd (E)

tanh(E/2T )

2E
. (22)

In two dimensions, there is a well-known logarithmic diver-
gence of the density of states Nd (ω

2 ) at the van Hove singularity.
Neglecting this logarithmic divergence that appears only for
a special filling in the hole-doped case, we take Nd (ω

2 ) as a
constant. In that case, integrating by part and replacing the
upper bound by infinity in the convergent integral, we are left
with

χ (1)(Qd ,0) = Nd (0)

(
ln(x) tanh(x)|


2T

0 −
∫ ∞

0

ln x

cosh2(x)
dx

)

≈ Nd (0) ln

(


2T

)
+ B, (23)

where B is a temperature-independent constant. We also have

χ (1)′′(Qd,ω) ≈ πNd (0)tanh

(
ω

4T

)
. (24)

These results suggest that the quantity �0 defined by Eq. (15)
scales as

�0 ∼ ξ 2
0 T ln(/T ). (25)

Following Ref. 48, we move on to demonstrate analytically
that ξ 2

0 in Eq. (14) scales as ξ 2
0 ∼ 1

T 2 . The 1/T 2 depen-
dence fundamentally comes from the second derivative of
χ (1)(Qd,0) ≈ N (0) ln(

T
) in Eq. (23). We shall now make

this argument more rigorous. Keeping for a while a general
notation where i is some direction in the Brillouin zone, and
q is measured with respect to the center of the zone, one can
write

∂2χ (1)(q,0)

∂q2
i

= −2
∫

BZ

ddk

(2π )d
∂2C

∂ε2
k+q

(
∂εk+q

∂qi

)2

− 2
∫

BZ

ddk

(2π )d
∂C

∂εk+q

∂2εk+q

∂q2
i

, (26)

where

C(εk+q,εk) = f (εk+q) − f (εk)

εk+q − εk
.

Measuring q with respect to Qd we evaluate the above second
derivative at q = 0. As before, for perfect nesting we have

C(εk+Qd+q,εk) = 2f (εk+Qd+q) − 1

2εk+Qd+q
= − tanh(εk+Qd+q/2T )

2εk+Qd+q

(27)

≡ 1

T
F

(
εk+Qd+q

T

)
. (28)

The last equation shows that C scales as T −1 times a function
of εk+Qd+q/T . In the integrals, the derivatives of the type
∂εk+q

∂qi
will not introduce singular terms in temperature. Hence,

replacing them by some average value in the Brillouin zone,
we can change the integration variable to energy and the most
singular terms in temperature will come from

∂2χ (1)(q,0)

∂q2
i

∣∣∣∣
q=0

� −
∫

dE Nd (E)
∂2C

∂E2
(vi)

2 (29)

= 1

T

∫
dE Nd (E)

∂2F
(

E
T

)
∂E2

(vi)
2. (30)

Neglecting the energy dependence of the density of states, we
are left with

∂2χ (1)(q,0)

∂q2
i

∣∣∣∣
q=0

= 1

T 2

∫
dx Nd (0)

∂2F (x)

∂x2
(vi)

2. (31)

Using the definition of ξ 2
0 [Eq. (14)] and the result for �0

[Eq. (25)] above, we have that

ξ 2
0 ∼ 1

T 2
; �0 ∼ ln(/T )

T
. (32)

c. Pseudonesting. In this section, we show that, for the
pseudonesting case, the main contribution to the Lindhard
function at Qd has the same form as in the perfect nesting
case except for a temperature-dependent prefactor. The
previous calculation illustrates that the main contribution to
the quantities of interest, ξ 2

0 and �0, come from nested regions
of the Fermi surface. In the pseudonesting case19 illustrated
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0 π
0

π

~T

~T
0.5

FIG. 3. (Color online) The Fermi surface at the critical filling
nc touches the antiferromagnetic Brillouin zone. The important
integration region is over a rectangle of thickness T and width

√
T .

The critical chemical potential μc where the antiferromagnetic zone
boundary touches (π/2,π/2) on the Fermi surface is the solution
of −2t ′′[cos(π ) + cos(π )] − μc = 0. This corresponds to a filling
nc = 1.2007 for t ′ = −0.175 and t ′′ = 0.05. For U = 6, the critical
filling that we find, nc = 1.200 96, is slightly larger.

in Fig. 3, the Fermi surface displaced by Qd just touches
the original Fermi surface, with the Fermi velocities of the
two surfaces that are parallel at the touching point. Similar
to the perfect nesting case, the most important contribution to
the integral for the Lindhard function around Qd comes from
the regions in k space connected by Qd , with a width around
the Fermi surface that corresponds to an energy range εk � T .
Now, imagine that we divide the integral over k near one of
those points of the Fermi surface, for example, kQ

F = (π
2 , π

2 ),
into two components, k⊥ parallel to the Fermi velocity, i.e.,
perpendicular to the Fermi surface, and k|| parallel to the
Fermi surface at kQ

F . For k near that region of the Fermi
surface, we can write in two dimensions

εk||+k⊥ �
(

∂εk||+k⊥

∂k⊥

)
δk⊥ + 1

2

∂2εk||+k⊥

∂k2
||

δk2
||

� vF δk⊥ + 1

2
κδk2

|| , (33)

where we have measured wave vectors with respect to kQ
F and

used the fact that ∇k||εk||+k⊥ = 0. The quantity κ measures
the curvature of the Fermi surface. From that approximation,
we have εk||+k⊥+Qd

� −vF δk⊥ + 1
2κδk2

|| and thus

εk||+k⊥ − εk||+k⊥+Qd
� 2vF δk⊥ . (34)

Since the terms in δk2
|| cancel out in that expression, this

approximation is valid if the next term in the series of εk||+k⊥
is negligible compared with the first one, namely, if

∣∣∣∣1

2

∂2εk||+k⊥

∂k2
⊥

δk2
⊥

∣∣∣∣ � |vF δk⊥| (35)

and since vF δk⊥ � T , we have the following upper bound for
the temperature:

T �
∣∣∣∣∣∣

v2
F

1
2

∂2εk||+k⊥
∂k2

⊥

∣∣∣∣∣∣ . (36)

Now, for the Fermi function, over a region around kQ
F , we have

f (εk) � f (vF δk⊥) + ∂f (ε)

∂ε

∣∣∣∣
ε=vF δk⊥

(
1

2
κδk2

||

)
+ · · · ,

f (εk+Qd
) � f (−vF δk⊥) + ∂f (ε)

∂ε

∣∣∣∣
ε=−vF δk⊥

(
1

2
κδk2

||

)
+ · · · .

(37)

Since the derivative of the Fermi function is even in ε,

f (εk) − f (εk+Qd
) � 2f (vF δk⊥) − 1 . (38)

The region where this is valid is given by the condition∣∣∣∣1

2

∂2f (ε)

∂ε2

∣∣∣∣
ε=vF δk⊥

(
1

2
κδk2

||

)2

� f (vF δk⊥), (39)

which is satisfied if κδk2
|| � T . Therefore, from (34) and (38),

the Lindhard function takes the form

χ (1)(Qd,ω) = 2

N

∑
k||∈D2

∑
k⊥∈D1

1 − 2f (vF δk⊥)

ω + iη + 2vF δk⊥
+ less singular,

(40)

where D1 is a domain such that vF δk⊥ � T , while D2 is
the domain such that κδk2

|| �T . The integration over D2 thus

gives a factor proportional to
√

T . The integral over δk⊥ can
be transformed into an integral over energy in the same way
as the perfect nesting case, with a constant density of states
determined by the Fermi velocity. The domain delimited by
D1 and D2 is depicted in Fig. 3.

Overall then, the final result will be that

χ (1)′′(Qd ,ω) ∼ T 1/2 tanh

(
ω

T

)
, (41)

where the T 1/2 prefactor comes from the k|| integration. A
similar reasoning leads to

χ (1)(Qd ,0) ≈ T 1/2 ln

(


T

)
+ A, (42)

which means that the regular temperature-independent term
represented here by A dominates at low temperature.

Repeating the same analogous arguments for ∂2χ (1)(q,0)
∂q2

i

, we

find that

ξ 2
0 ∼ T 1/2

T 2
∼ 1

T 3/2
, (43)

which implies from the definition of �0 [Eqs. (15), (41), and
(42)] that

�0 ∼ ξ 2
0 T 1/2 ∼ 1

T
, (44)

the same result for �0, within logarithmic corrections, as if
we had perfect nesting. In three dimensions, the correction
compared to perfect nesting is determined by the area spanned
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FIG. 4. (Color online) ξ0 and �0 evaluated at nc = 1.2007 obtained from the condition that the Fermi surface is tangent to the
antiferromagnetic zone boundary, as explained in the caption of Fig. 3.

by δk||, proportional to δk2
|| ∼ T , hence we would have had

ξ 2
3d,0 ∼ T

T 2 and again �3d,0 ∼ 1
T
.

Results of numerical calculations shown in Fig. 4 confirm
the power-law temperature dependencies found above. At the
actual filling nc where the Fermi surface is tangent to the
antiferromagnetic zone boundary, the power laws extend to
low temperature.

2. Higher order and scaling

Given that ξ0 and �0 are now temperature dependent, we
should check whether the small-q and small-ω expansions of
the denominator that lead to Eq. (11) are still valid. Normally,
the expansion is of the form

χ ′′
sp(q,ω) = 2ξ 2

Uspξ 2
0

Im
1

1 + q2ξ 2 + aq4ξ 2 − iωξ 2/�0
, (45)

with a a constant. Since the function falls on a scale q2 ∼ ξ−2,
the higher-order term aq4ξ 2 ∼ ξ−2 can be neglected. However,
our case is different. The coefficients of the expansion in
powers of q are singular at T = 0. For example, we have
∂4χ (1)(q,0)

∂q4
i

|q=0 ∼ T 1/2

T 4 where the 1/T 4 comes from counting the

powers of T associated with derivatives in Eqs. (29) to (31)
and the T 1/2 from the restriction to the k|| integral as usual.

Knowing the scaling of ξ 2
0 , we can rewrite ∂4χ (1)(q,0)

∂q4
i

|q=0 ∼
ξ 2

0
1
T 2 so that we are left with

χ ′′
sp(q,ω) = 2ξ 2

Uspξ 2
0

Im
1

1 + q2ξ 2 + a′
T 2 q4ξ 2 − iωξ 2/�0

,

(46)

where a′ is a constant. The susceptibility will preserve a scaling
form as a function of q/T and ω/T if the scaling exponent
is z = 1. Indeed, in that case, ξ ∼ 1/T and since �0 ∼ 1/T ,

ξ 2
0 ∼ 1/T 3/2, the susceptibility becomes

χ ′′
sp(q,ω) ∼ 1

T 1/2
Im

1

1 + b′q2

T 2 + c′q4

T 4 − i d ′ω
T

(47)

with b′,c′,d ′ constants. Each higher power of q2 has an addi-
tional power of 1/T 2 coming from the additional derivatives
of the noninteracting susceptibility and the scaling form is
preserved to all orders. For frequency, there are also higher-

order terms (ω/T )3, etc. Hence, we have the general scaling
form

χ ′′
sp(q,ω) = 1√

T
g

(
q

T
,
ω

T

)
. (48)

We check in the following section that this is consistent with
the TPSC self-consistency condition.

C. Quantum-critical behavior

1. Correlation length, spin susceptibility, and NMR relaxation rate

The quantum-critical behavior has been thoroughly studied
in Ref. 35 for the case where the Ornstein-Zernicke form is
valid. This analysis does not apply here because of the more
general form of the spin susceptibility obtained in the previous
section. Nevertheless, it is interesting to note that with the
Ornstein-Zernicke form, one obtains

ξ−2 ∼ T

�0
∼ T 2 (49)

for both perfect nesting and pseudonesting. Hence, simply
taking into account the temperature dependence of �0, we
recover z = 1 scaling, namely,

ξ ∼ 1

T
. (50)

Note that with a temperature-independent value for �0 we
recover the more usual result35,56 z = 2.

The physics of the result for the correlation length
is, however, quite different from the calculation with the
Ornstein-Zernicke form. Indeed, in the latter case, it is the
self-consistency relation (7) that determines the temperature
dependence of the correlation length. In the present case, we
found that temperature dependence in the previous section
without invoking the self-consistency relation. We will show in
Sec. IV D that indeed in our case, the self-consistency relation
leads to irrelevant corrections to the temperature dependence
of the correlation length.

The scaling of the correlation length can be obtained from
numerical calculations by plotting, for example, the inverse of
the width of the real part of the spin susceptibility at zero fre-
quency measured at various fractions of the maximum value.
For U = 5.56, the critical doping corresponds to nc = 1.2007
where the Fermi surface is tangent to the antiferromagnetic

155123-7



BERGERON, CHOWDHURY, PUNK, SACHDEV, AND TREMBLAY PHYSICAL REVIEW B 86, 155123 (2012)

10
−2

10
−1

10
1

10
2

T/t

1/
(π

−
q H

)

(a)
0.5 χ

sp
max

T
−0.94

0.6 χ
sp
max

T
−0.95

0.7 χ
sp
max

T
−0.96

0.8 χ
sp
max

T
−0.97

0.9 χ
sp
max

T
−0.97

ξ
AS

T
−0.97

10
−2

10
−1

10
1

10
2

10
3

T/t

1/
(π

−
q H

)

(b)
0.5 χ

sp
max

T
−1.04

0.6 χ
sp
max

T
−1.04

0.7 χ
sp
max

T
−1.04

0.8 χ
sp
max

T
−1.04

0.9 χ
sp
max

T
−1.04

ξ
AS

T
−1.04

FIG. 5. (Color online) Log-log plot for the temperature scaling of the correlation length. The scaling is estimated from the width measured
along one of the reciprocal lattice wave vectors (π − qH ) at various fractions of the maximum height. On (a), for U = 5.56, the critical doping
corresponds to nc = 1.2007, where the Fermi surface is tangent to the antiferromagnetic zone boundary. The temperature scale is too small to
detect possible logarithmic corrections. The results are consistent with z = 1. On (b), deviations from 1/T occur at low temperature because,
for the chosen value U = 6, the calculation is at the critical doping 1.200 96, slightly away from the point where the Fermi surface is tangent
to the antiferromagnetic zone boundary. Also shown, ξAS obtained from the Ornstein-Zernicke form (12) using Usp from the self-consistency
relation (7).

zone boundary. For that case, Fig. 5(a) shows that whether we
measure the width at half-maximum or at some other fraction
of the maximum, that width scales essentially as 1/T , with
small deviations probably coming from the fact that we have
not reached the asymptotic regime. We also show on this figure
the correlation length ξAS obtained from the Ornstein-Zernicke
form (12) using Usp from the self-consistency relation (7).
Deviations from the 1/T power law occur if we measure the
width of the spin susceptibility too far in the tails, i.e., for a
small fraction of the maximum (not shown). As demonstrated
in Fig. 5(b), deviations from 1/T also occur at low temperature
for a value of U (=6 in the present example) where the critical
point does not occur precisely when the Fermi surface is
tangent to the antiferromagnetic zone boundary.

To conclude this section, we show that one can easily obtain
the temperature scaling for two more quantities. First, from the
general form for the susceptibility [Eq. (45)] used above, the
static susceptibility at (π,π ) scales as

χsp(0,0) = 2ξ 2

Uspξ 2
0

∼ 1√
T

, (51)

which can be checked directly numerically, or more simply de-
duced from the temperature-dependent results for ξ 2 [Eq. (49)]
and ξ 2

0 [Eq. (43)].
Finally, the nuclear magnetic resonance (NMR) relaxation

rate T −1
1 can be obtained from the two-dimensional version of

the Moriya formula

T −1
1 = T lim

ω→0

∫
|Aq|2

χ ′′
sp(q,ω)

ω
d2q, (52)

where |Aq| is proportional to the hyperfine matrix element.
Taking this as a constant and using the general scaling form
(48), a simple change of integration variable shows that

T −1
1 = T lim

ω→0

∫
1√
T

g
(

q

T
, ω
T

)
ω

d2q ∼ T 3/2. (53)

However, the integral over momenta q also contains contri-
butions far from the peak in the susceptibility. There, the

susceptibility is essentially temperature independent. There
is thus a Korringa contribution T −1

1 ∼ T that is dominant at
low temperature.

2. Self-energy

To find the scaling of the self-energy, we use the scaling
form of the susceptibility [Eq. (48)] to rewrite the self-energy
[Eq. (18)] in the form


′′R(kF ,ω) = −3UUsp

8

1

2vF

∫
dd−1q‖
(2π )d−1

×
∫

dω′

π
[n(ω′) + f (ω + ω′)]

× 1√
T

g

(
q‖
T

,
(ω + ω′)/vF

T
;
ω

T

)
. (54)

Specializing to two dimensions and remembering the scaling
of the Bose and Fermi functions with frequency and tempera-
ture, we change integration variables to x = q‖

T
and y = ω′/vF

T

and we are left with


′′R(kF ,ω) = T 3/2S

(
ω

T

)
, (55)

where S( ω
T

) is a scaling function.
The latter result can be checked numerically at ω = 0 where

we expect 
′′R(kF ,0) ∼ T 3/2. Figures 6(a) and 6(c) display
the temperature dependent scattering rate for various angles θ

along the Fermi surface for U = 5.56 and n = nc = 1.2007
and U = 6 and n = 1.200 96, respectively. The line θ = 0
is horizontal in the Brillouin zone appearing in the inset. In
Fig. 6(a), at the hot spot located at θ = π/4, we recover the
predicted result T 3/2. This is best illustrated in Fig. 6(b) by
a plot of the local slope of the preceding log-log plot. As we
move away from the hot spot, Fermi liquid behavior appears
to be recovered. There are well-known logarithmic corrections
in two dimensions57 that may explain why we seem to deviate
from exactly T 2. One also notices that the T 3/2 behavior
occurs over a wider range of angles when the temperature
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FIG. 6. (Color online) On (a), log-log plot of the temperature dependence of the imaginary part of the self-energy at various color-coded
points on the Fermi surface. The color code is in the inset. On (b), the local exponent is given as a function of angle and temperature. The points
near the hot spot at θ = π/4 behave as T 3/2 over the accessible temperature range. Calculations are done with U = 5.56, t ′ = −0.175, and
t ′′ = 0.05 at the quantum critical filling nc = 1.2007. The lower figures are the corresponding results for U = 6, t ′ = −0.175, and t ′′ = 0.05 at
the quantum critical point n = 1.200 96. Since in that case the Fermi surface is not exactly tangent to the antiferromagnetic zone boundary, the
T 3/2 behavior near θ = π/4 is recovered only if the temperature is high enough that details of the Fermi surface can not be resolved. The black
lines on (b) and (d) are the curves defined by Tonset = vF δk⊥(θ )/2 where δk⊥(θ ) is the component of kF − (π/2,π/2) parallel to vF (π/2,π/2)
at a given angle θ .

is high. This is easily understood from Figs. 6(b) and 6(d),
which illustrate how temperature affects the domain where the
pseudonesting occurs in the spin susceptibility. The solid black
line in Figs. 6(b) and 6(d) is defined by Tonset = vF δk⊥(θ )/2
where δk⊥(θ ) is the component of kF − (π/2,π/2) parallel
to vF (π/2,π/2) at a given angle θ . Figures 6(c) and 6(d) are
for U = 6,n = 1.200 96. Since at this quantum-critical point
the Fermi surface is not tangent to the antiferromagnetic zone
boundary, the T 3/2 behavior occurs near θ = π/4 only at high
enough temperature. At low temperature, deviations become
apparent.

When ω � T , the scaling form for the self-energy
[Eq. (55)] predicts 
′′R(kF ,ω) ∼ ω3/2. However, at zero
temperature, or when ω � T , the analytical approach taken
above fails because the expansion of the spin susceptibility
in ω/T and q/T is no longer justified and we can not
expect the latter result to be correct. Nevertheless, TPSC can
be solved numerically. To set the stage for the next section
where calculations are performed analytically directly at zero
temperature, we show in Fig. 7 the result of the numerical
calculations for ω � T for two values of the interaction
strength at a doping near nc. On Figs. 7(a) and 7(b), U = 5.56,
while U = 6 on Figs. 7(c) and 7(d). At the hot spot for
U = 5.56, the scaling of the imaginary part of the self-energy
is very close to the expected result ω3/2. For U = 6, there

is a larger discrepancy with the predicted scaling because at
n = 1.200 96 the Fermi surface does not touch (π/2,π/2)
and thus the present theory does not apply anymore at low
temperature. Away from the hot spot, Fermi liquid behavior
is recovered. Again, logarithmic corrections are inaccessible
from the numerical solution of the full TPSC equations because
of the limited range of available frequencies: scaling is no
longer valid at frequency of the order of the Fermi energy,
while at low frequency there is a saturation arising from
the finite temperature. This saturation is illustrated in Fig. 8.
We discuss analytically the T = 0 regime in the following
section where logarithmic corrections are found. The 1/

√
T

temperature dependence of the static (π,π ) spin susceptibility
obtained above will also be recovered.

IV. FINITE-FREQUENCY T = 0 RESULTS FROM
FIELD THEORY

A. Lagrangian and scaling

In this section, we study the properties of fermionic excita-
tions close to the hot spots within the field-theoretic framework
of a spin-fermion model. This effective low-energy theory
describes fermions with a parabolic dispersion (represented
by fields ψ) interacting with SDW fluctuations [represented
by a O(3) vector field �φ]. As shown in Fig. 1, there are
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FIG. 7. (Color online) On (a) and (c), log-log plot for the frequency dependence of −
′′R(kF ,ω) at various angles along the Fermi surface.
The result of a power-law fit is shown on (b) and (d). The dashed lines on (a) and (c) correspond to the fitted power laws. At the hot spot
located at θ = π/4, −
′′R scales as ω3/2. The frequency range is small because of the low temperature saturation shown on the next figure.
We have verified that the crossover from ω3/2 to the Fermi liquid regime ω2 occurs on a broader angular scale when the temperature is higher,
as expected from the results of Fig. 6. Calculations are done at T = 0.002, t ′ = −0.175, and t ′′ = 0.05 at U = 5.56 and n = nc = 1.2007 for
(a) and (b) and U = 6, n = 1.200 96 for (c) and (d).

four hot spots on the Fermi surface which are connected by
the SDW wave vector Q = (π,π ). Earlier studies22,37 of the
spin-fermion model in the present context did not include the
umklapp processes properly, and we show in the following

FIG. 8. (Color online) Log-log plot for the frequency dependence
of −
′′R at the hot spot for two different temperatures. The saturation
at low frequency occurs at higher frequency when the temperature
is higher. Calculations are done with U = 6, t ′ = −0.175, and
t ′′ = 0.05 at the quantum critical filling nc = 1.201 appropriate for
electron-doped cuprates.

that a correct treatment of these terms modifies the results
drastically.

We start with the two patch (denoted by s = ±) model29,58

in the rotated (kx,ky) coordinate system. The umklapp contri-
butions will be discussed later. In order to simplify the notation,
we have rescaled our coordinates to get rid of the Fermi
velocity and curvature of the Fermi surface. The corresponding
Lagrangian takes the form

L =
∑
s=±

ψ†
s

(
∂τ − is∂x − ∂2

y

)
ψs

+ λ �φ · (ψ†
+�τψ− + ψ

†
−�τψ+)

+ N

2
(∇ �φ)2 + Nr

2
�φ2 + Nu

4
( �φ2)2. (56)

Here, we have promoted each fermion field to have N flavors
(the flavor index is suppressed). The Yukawa coupling λ is
chosen to be O(1). As a result of this, the couplings of all
the bosonic terms in the last line above are scaled by a factor
of N as they will appear naturally upon integrating out the
fermion fields. We do not include the kinetic energy of the
boson (∂τ

�φ)2, as this is an irrelevant term.29

The bare fermion propagator is given by

G0
s (k) = 1

−ikτ + skx + k2
y

, k = (kτ ,k). (57)
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FIG. 9. The polarization bubble for the two-patch theory in
Eq. (56). The internal solid lines in the loop correspond to the
free-fermion propagators (different patches denoted by s = ±) and
the external wavy lines correspond to the boson φa .

The Fermi surfaces are located at kx = k2
y and −k2

y for patch
− and +, respectively. From Fig. 1 we immediately observe
that Q − (0,2π ) and also Q − (2π,0) connect two more points
in the Brillouin zone (BZ). However, it is convenient to fold
back the points within the BZ, which effectively gives rise
to two more patches. These can be described by rotating
the original patches by π/2. Let us denote (ky,kx) by k̃.
Then, the equations of these two additional Fermi surfaces are
given by ky = k2

x, ky = −k2
x . Physically, these two scattering

processes are very different since in the former case, the
�φ fluctuation scatters fermions that disperse strongly in the
direction transverse to the Fermi surface, while in the latter
case, they disperse strongly in the tangential direction. This
will have interesting consequences in the behavior of the
electron self-energy as a function of the external frequency.

The rest of this section is organized as follows: In
Sec. IV B, we compute the random phase approximation (RPA)
contributions to the SDW propagator including both direct as
well as umklapp processes. We then use the dressed bosonic
propagator to evaluate the fermion self-energy in Sec. IV C at
leading order in 1/N .

B. RPA polarization

At T = 0, the one-loop polarization bubble (Fig. 9) for the
two-patch theory is given by

�ab(q) = 2Nδabλ2
∫

dlτ d
2l

(2π )3
[G0

+(l)G0
−(l + q)

+G0
+(l + q)G0

−(l)], (58)

�(q) = N [�0(qτ ,q) + �0(qτ ,−q)], (59)

where we are working with imaginary frequencies qτ and
a,b denote the three SDW polarizations. After performing

the integrals, we obtain22,37

�0(qτ ,q) − �0(0,0) = λ2

√
2π

Re[
√

Eq − i|qτ |]

= λ2

2π

√
Eq +

√
E2

q + |qτ |2, (60)

where

Eq = q2
y

2
− qx. (61)

In the RPA propagator obtained after bubble summation, the
�0(0,0) contribution determines the location of the quantum-
critical point. It is thus convenient to add and subtract this
component to make the integrals convergent. From now on,
we include �0(0,0) in the definition of the bubble.

To make connection with results of the previous sections,
we also quote the results for the bubble at finite temperature.
In this case,

�0(q) = − λ2

4
√

2π

∮
C

dz
1

eβz + 1

1√
Eq − i|qτ | − 2z

, (62)

where the contour C has to be chosen appropriately. Therefore,
the above integral simplifies to

�0(q) = − λ2

√
2π

Re

[ ∫ ∞

−∞
dx

1

eβx + 1

1√
Eq − 2x − i|qτ |

]
.

(63)

On integrating the above equation by parts, we obtain

�0(q) = λ2

16π2

∫ ∞

−∞
dω

β

cosh2[(ω − Eq)/4T ]

×
√

ω +
√

ω2 + |qτ |2, (64)

�0(q) =
√

T f

( |qτ |
T

,
Eq

T

)
, (65)

where

f

( |qτ |
T

,
Eq

T

)
= λ2

16π2

∫ ∞

−∞
dy

1

cosh2[(y − Eq/T )/4]

×
√

y +
√

y2 + |qτ |2
T 2

(66)

as found in Ref. 22.
The RPA propagator for the SDW fluctuations is then given

by

D(q,qτ ) = 1

N

1

q2 + r + [�0(qτ ,q) + �0(qτ ,−q) + �0(qτ ,q̃) + �0(qτ ,−q̃)]
, (67)

where we have included the RPA contribution arising from
all four hot spots on the Fermi surface and q̃ = (qy,qx).
The terms [�0(qτ ,q) + �0(qτ ,−q)] are not equal to
[�0(qτ ,q̃) + �0(qτ ,−q̃)] as was incorrectly assumed by the
authors of Ref. 22. At the quantum-critical filling r = 0, zero
Matsubara frequency qτ = 0 but finite temperature, the q2

term is negligible compared to the contribution of the bubbles
�0. Using the scaling form (65) and keeping only terms linear
in q in Eq [Eq. (61)], one recovers the zero-frequency limit
of the previous result (48) for the spin susceptibility. Naively
doing the analytical continuation in frequency, the full scaling
form would also follow. For the rest of the computations, we
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consider T = 0 and carefully take into account logarithmic
corrections that were beyond the reach of the previous
calculation.

Before we proceed to evaluate the fermionic self-energy, let
us compute the forms of the real and imaginary parts of the re-
tarded polarization bubble at T = 0, �R(q,�), where i|qτ | →
� + i0+. For the imaginary part, we obtain from Eq. (60)

Im�R(q,�) = λ2

2
√

2π
Im[

√
Eq − � − i0+

+
√

Eq + � + i0+], (68)

Im�R(q,�) = −λ2

2
√

2π
[θ (� − Eq)

√
� − Eq

− θ (−� − Eq)
√−� − Eq], (69)

which is chosen in a way such that � Im�R(q,�) < 0. The
real part can also be obtained from Eq. (60) or from the
Kramers-Kronig relation

Re�R(q,�) = λ2

2
√

2π
[θ (Eq − �)

√
Eq − �

+ θ (� + Eq)
√

� + Eq]. (70)

These results agree with those of Refs. 22 and 37. The � � Eq
limit calculated in Ref. 19 also agrees with the above.

−

p−q

p                                q
++

FIG. 10. The electron self-energy 
+(p) at leading order in 1/N .
The �φ propagator includes the one-loop bubbles evaluated earlier.

C. Electron self-energy

We are interested in evaluating the electron self-energy
(Fig. 10) at T = 0, 
(p), which at leading order in 1/N is
given by


±(k,iωn)

= 3λ2

β

∑
�n

∫
d2q

(2π )2
G∓(k − q,iωn − i�n)D(q,i�n).

(71)

After analytic continuation iωn → ω + i0+, we obtain the
following expression for the imaginary part of the retarded
self-energy:

Im
R
±(k,ω) = 3λ2

∫
d2q

(2π )2
[nF (−ξ∓

k−q) + nB(ω − ξ∓
k−q)]ImDR(q,ω − ξ∓

k−q), (72)

where ξ+
k = kx + k2

y and ξ−
k = −kx + k2

y .
At T = 0 and k = 0, we are left with

Im
R
+(0,ω) = 3λ2

∫
d2q

(2π )2
[�(ξ−

−q) − �(ξ−
−q − ω)]ImDR(q,ω − ξ−

−q) = 3λ2

4π2

∫
dqy

∫ −q2
y+ω

−q2
y

dqx ImDR(q,ω − ξ−
−q)

ω→0≈ 3λ2ω

4π2

∫
dqy ImDR(q,ω − ξ−

−q)|qx→−q2
y
. (73)

Note that ξ−
−q = qx + q2

y ≡ 0 for qx → −q2
y . In terms of �R , this can be rewritten as

Im
R
+(0,ω) = 3λ2ω

4π2N

∫
dqy

−Im�tot
R (q,ω)[

q2
y + Re�tot

R (q,ω)
]2 + [

Im�tot
R (q,ω)

]2 , (74)

where �tot
R (q,ω) is the total retarded RPA bubble including direct and umklapp terms and we have ignored the q2

x ∼ q4
y term in

the denominator.
For qx = −q2

y , we get Eq = 3q2
y/2, E−q = −q2

y/2, Eq̃ = q4
y/2 − qy , and E−q̃ = q4

y/2 + qy . Therefore, Re(Im)�tot
R are given

by

Re�tot
R (q,ω) = λ2

4π

[√
3q2

y − 2ω θ
(
3q2

y − 2ω
) +

√
3q2

y + 2ω θ
(
3q2

y + 2ω
) +

√
−2ω − q2

y θ
(−2ω − q2

y

)
+

√
2ω − q2

y θ
(
2ω − q2

y

) +
√

q4
y − 2qy − 2ω θ

(
q4

y − 2qy − 2ω
) +

√
q4

y − 2qy + 2ω θ
(
q4

y − 2qy + 2ω
)

+
√

q4
y + 2qy − 2ωθ

(
q4

y + 2qy − 2ω
) +

√
q4

y + 2qy + 2ωθ
(
q4

y + 2qy + 2ω
)]

,

(75)

Im�tot
R (q,ω) = − λ2

4π

[√
2ω − 3q2

y θ
(
2ω − 3q2

y

) +
√

2ω + q2
y θ

(
2ω + q2

y

) −
√

−3q2
y − 2ωθ

(−3q2
y − 2ω

)
−

√
q2

y − 2ωθ
(
q2

y − 2ω
) +

√
2ω + 2qy − q4

y θ
(
2ω + 2qy − q4

y

) +
√

2ω − 2qy − q4
y θ

(
2ω − 2qy − q4

y

)
−

√
2qy − q4

y − 2ω θ
(
2qy − q4

y − 2ω
) −

√
−2qy − q4

y − 2ω θ
( − 2qy − q4

y − 2ω
)]

.
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As a starting point, we can drop the q4
y terms in the limit of small ω and retain only the qy terms in the q̃ contributions that we

take into account. This is a consistent way of handling these terms since if typical qy ∼ ω, then q4
y is smaller than qy , so that it is

justified to drop these terms. Since the integrand is an even function of qy , we integrate only over qy > 0. Then, the expression
for self-energy reduces to

= 3λ2ω

4π2N

∫ ∞

−∞
dqy

−Im�tot
R (q,ω)[

q2
y + Re�tot

R (q,ω)
]2 + [

Im�tot
R (q,ω)

]2

≈ 3ω

8π3N

[ ∫ ω

0
dqyA(qy,ω) +

∫ √
2ω/3

ω

dqyB(qy,ω) +
∫ √

2ω

√
2ω/3

dqyC(qy,ω) +
∫ ∞

√
2ω

dqyD(qy,ω)

]
,

A =
√

2ω + 2qy + √
2ω − 2qy +

√
2ω − 3q2

y +
√

2ω + q2
y[

1
λ2 q2

y +
√

2qy+2ω+
√

2ω−2qy+
√

3q2
y +2ω+

√
2ω−q2

y

4π

]2 + [
√

2ω+2qy+
√

2ω−2qy+
√

2ω−3q2
y +

√
2ω+q2

y ]2

16π2

,

(76)

B =
√

2ω + 2qy − √
2qy − 2ω +

√
2ω − 3q2

y +
√

2ω + q2
y[

1
λ2 q2

y +
√

2qy+2ω+
√

2qy−2ω+
√

3q2
y +2ω+

√
2ω−q2

y

4π

]2 + [
√

2ω+2qy−
√

2qy−2ω+
√

2ω−3q2
y +

√
2ω+q2

y ]2

16π2

,

C =
√

2ω + 2qy − √
2qy − 2ω +

√
2ω + q2

y[
1
λ2 q2

y +
√

2qy+2ω+
√

2qy−2ω+
√

3q2
y +2ω+

√
3q2

y −2ω+
√

2ω−q2
y

4π

]2 + [
√

2ω+2qy−
√

2qy−2ω+
√

2ω+q2
y ]2

16π2

,

D =
√

2qy + 2ω − √
2qy − 2ω −

√
q2

y − 2ω +
√

q2
y + 2ω

[
1
λ2 q2

y +
√

2qy+2ω+
√

2qy−2ω+
√

3q2
y +2ω+

√
3q2

y −2ω

4π

]2 + [
√

2qy+2ω−
√

2qy−2ω−
√

q2
y−2ω+

√
q2

y+2ω]2

16π2

.

At small frequencies, the dominant contribution to the imag-
inary part of the self-energy comes from the second integral
between ω and

√
2ω/3, which scales as ∼−ω3/2 ln ω. The

contributions from the other regions scale as ∼ ω3/2 and thus
are negligible at low frequencies (see Fig. 11). The correct
prefactor can be obtained by expanding the numerator and
the denominator of integrand B for small frequencies ω and
retaining only the largest terms, which gives

B(qy,ω) = 4π2
√

2ω

qy

. (77)

One then integrates over qy to obtain

Im
R
+(0,ω) ≈ − 3

2
√

2πN
ω3/2 ln(ω). (78)

We note here that the self-energy is less singular com-
pared to earlier works where umklapp scattering was not
taken into account, in which case the self-energy scales as
∼−ω ln ω.22,37

So far, we have not addressed an important issue: What
happens if we include the renormalization of the boson-
fermion vertex? In the two-patch theory originally considered
by Altschuler et al.,37 the one-loop correction to this vertex
was found to be logarithmically singular. However, in the
Appendix, we show that the full four-patch theory does not
have this singularity.

Based on our discussion so far, we see that the additional
umklapp terms considered in our work play a very crucial role
at the critical point. In the absence of these contributions, the
self-energy was more singular than what we have found here.

1e-15 1e-12 1e-09 1e-06 0.001
ω

1e-25

1e-20

1e-15

1e-10

1e-05

1e-15 1e-12 1e-09 1e-06 0.001
ω

1e-25

1e-20

1e-15

1e-10

1e-05

Im
 Σ

+(0
,ω

)

FIG. 11. (Color online) Left: Im
R(0,ω), calculated numerically from the second line of Eq. (73), shown as a red solid line. The black
dashed line is the asymptotic result Eq. (78). For comparison, the blue dashed-dotted line indicates ω3/2. Right: different contributions to
Im
R(0,ω). The red line shows the dominant contribution, denoted by B in the main text. Black dashed line: asymptotic result Eq. (78). The
other three curves show the subleading contributions A, C, and D, which scale as ∼ω3/2.

155123-13



BERGERON, CHOWDHURY, PUNK, SACHDEV, AND TREMBLAY PHYSICAL REVIEW B 86, 155123 (2012)

Moreover, the vertex correction was also found to be singular.
However, here we have shown that the singular behavior
is washed out when we include the additional scattering
contributions.

D. Effect of the self-consistency

In the TPSC approach, we imposed two-particle self-
consistency in the form of a sum rule that is similar to the
spherical model. In the present field-theory approach, this
amounts to imposing 〈 �φ2〉 = 1 where the expectation value is
taken with respect to the fermions and bosons. We have argued
that the z = 1 scaling does not come from the self-consistency
condition. To confirm this result, in this section we obtain the
scaling of the quartic term in the boson Lagrangian.

Integrating out the fermions, the polarization operator
�0(qτ ,q) appears in the quadratic term of the boson La-
grangian. Emphasizing the scaling only, this term is symboli-
cally written as ∫ 

(d2q dω) �φ2
√

(ω,q). (79)

This is the most relevant quadratic term. Integrating out the
large wave-number modes for q > /s and rescaling q and
ω such that q ′ = qs, ω′ = ωs with s > 1 returns the new
cutoff /s to its original value . Invariance of the quadratic
term written in terms of the prime variables then imposes that
φ = φ′sϕ = φ′s7/4. The effect of this tree-level scaling on the
quartic term is that

u

∫ 

(d2q dω)3 �φ4 → us−9s4ϕ

∫ 

(d2q ′dω′)3 �φ′4. (80)

This in turn means that u′ = us−9s4ϕ = us−2 scales to zero
and is thus irrelevant.

V. SUMMARY

We have argued that for bare interaction strengths U in the
intermediate-coupling range, commensurate SDW fluctuations
at (π,π ) and band parameters similar to those of electron-
doped cuprates, the antiferromagnetic quantum-critical point
naturally occurs close to the filling where the Fermi surface
points joined by (π,π ) are nearly tangent to each other. As long
as the temperature or frequency are not too low, the limiting
case of tangent Fermi surfaces describes the physics. In this
pseudonesting situation, the Fermi liquid behavior breaks
down. Quasiparticles still exist but the self-energy and spin
susceptibility, for example, are different from those predicted
by Fermi liquid theory.

We considered this problem at zero temperature, or for
frequencies larger than temperature, using a field-theoretical
model of gapless collective bosonic modes (SDW fluctua-
tions) interacting with fermions. The imaginary part of the
retarded fermionic self-energy close to the hot spots scales
as −ω3/2 ln ω. This is less singular than earlier predictions of
the form −ω ln ω. The difference arises from the effects of
umklapp terms that were not included in previous studies.

At finite temperature, we have used TPSC to study this
problem and have obtained numerical results for the one-band
Hubbard model with band parameters and interaction strength

appropriate for electron-doped cuprates. Neglecting logarith-
mic corrections, we found analytically and numerically that
the correlation length ξ scales like 1/T , namely, z = 1 instead
of the naive z = 2. The static spin susceptibility χ scales
like 1/

√
T , and the correction T −1

1 ∼ T 3/2 to the Korringa
NMR relaxation rate is subdominant. NMR experiments are
difficult in electron-doped cuprates. We also found that the
imaginary part of the self-energy at the hot spot scales like
T 3/2. The latter result and the −ω3/2 ln ω frequency depen-
dence of the self-energy should be experimentally verifiable
with angle-resolved photoemission spectroscopy (ARPES)
in electron-doped cuprates. Recent transport measurements
in these compounds18 have found a T 3/2 behavior of the
resistivity above the quantum-critical point at the end of the
overdoped side of the superconducting dome. While there
may be a relation with the above result if antiferromagnetic
fluctuations disappear at the same time, one must also be
careful not to equate scattering rate with resistivity because
in a simple picture it is the inverse of the scattering rates that
are averaged over the Fermi surface. This suggests that in the
resistivity, Fermi liquid behavior of the cold spots should short
circuit the non-Fermi liquid behavior of the hot spots.59
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APPENDIX: VERTEX CORRECTION

In this Appendix, we compute the one-loop cor-
rection to the boson-fermion vertex, which is defined

+

−q

p + q

p

l

p + l

p+q+ l

−

+

FIG. 12. The one-loop contribution to the boson-fermion vertex.
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as

−〈ψ−σ (q)ψ†
+σ ′(p)φa(q)〉 = τ a

σσ ′�φψ−ψ
†
+
(p,q)(2π )3δ3(q − p − q), (A1)

where we are working again with imaginary frequencies. The expression for the diagram in Fig. 12 can be written as

δ�a
σσ ′(p,q) = (τ bτ aτ b)σσ ′λ3

∫
dlτ d

2l
(2π )3

G0
+(l + p + q)G0

−(l + p)D(l). (A2)

We now use the identity τ bτ a = δba + iεbacτ c twice to simplify the above expression. Then, on defining δ�a
σσ ′(p,q) =

τ a
σσ ′δ�(p,q), we have

δ�(p,q) = −λ3

N

∫
dlτ d

2l
(2π )3

[
1

−i(lτ + pτ + qτ ) + (lx + px + qx) + (ly + py + qy)2

]

×
[

1

−i(lτ + pτ ) − (lx + px) + (ly + py)2

][
1

l2 + r + [�0(l) + �0(−l) + �0(l̃) + �0(−l̃)]

]
. (A3)

Let us now evaluate this for zero external momenta q = p = 0 at the critical point and check for singularities. The expression
reduces to

δ� = −λ3

N

∫
dlτ d

2l
(2π )3

[
1

−ilτ + lx + l2
y

][
1

−ilτ − lx + l2
y

][
1

l2 + �0(l,lτ ) + �0(−l,lτ ) + �0(l̃,lτ ) + �0(−l̃,lτ )

]
. (A4)

The above integrand has a very complex structure. Let us therefore analyze the (non)singular nature of this diagram by power
counting. One needs to be careful as the φ propagator has many combinations of powers of the internal momenta. We begin by
rescaling the variables as

ly = l, lx = l2l′x, lτ = l2l′τ . (A5)

Equation (A4) then takes the form

δ� = −λ3

N

∫
dl′τ dl′xdl

(2π )3

[
1

−il′τ + l′x + 1

][
1

−il′τ − l′x + 1

]
1

l2 + [lf (l′x,l′τ ) + lf (−l′x,l′τ ) + √
lg+(l,l′x,l′τ ) + √

lg−(l,l′x,l′τ )]/2π
,

(A6)

f (l′x,l
′
τ ) =

√
(1/2 − l′x) +

√
(1/2 − l′x)2 + l′2τ , (A7)

g±(l,l′x,l
′
τ ) =

√(
l3l′2x /2 ± 1

) +
√(

l3l′2x /2 ± 1
)2 + l2l′2τ . (A8)

All we need to do now is to check whether this expression (which is so far exact) is singular in the IR and UV. In the IR, we can
ignore the momentum dependence of the fermionic Green’s functions compared to 1 in the denominator. Moreover, f (l′x,l

′
τ ) ≈ 1

and g+(l,l′x,l
′
τ ) ≈ 1,g−(l,l′x,l

′
τ ) ≈ 0 in this small momentum limit. Therefore, the above expression reduces to

δ� = −λ3

N

∫ ε

0

dl′τ dl′xdl

(2π )3

1

l2 + (2l + √
l)/2π

, (A9)

where ε is a small cutoff. But, the above expression is convergent, so that there are no IR singularities.
Let us now check for UV singularities. We proceed by introducing a characteristic lower cutoff  which is large, but finite,

such that the integration runs from  to ∞. Then, in the limit of these large momenta, we have

δ� = −λ3

N

∫ ∞



dl′τ dl′xdl

(2π )3

[
1

−il′τ + l′x

][
1

−il′τ − l′x

]
1

l2 + [
l

√√
l′2x + l′2τ + l′x + 2l2l′x

]
/2π

, (A10)

where we have ignored the contribution from f (−l′x,l
′
τ ) compared to f (l′x,l

′
τ ) and l2l′2τ compared to l6l′4x . We first want to do the

integral over l′x and l′τ . It is more convenient to change to polar coordinates (l′x,l
′
τ ) → (r,θ ). However, we estimate l′x ≈ r and

eliminate the θ dependence, which does not give rise to any singularities. Then,

δ� = λ3

N

∫ ∞



r dr dl

(2π )3

1

r2

1

l2 + [l
√

2r + 2l2r]/2π
. (A11)
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We also notice that l2,l2r > l
√

r in the UV. Therefore, ignoring the l
√

r term, we obtain

δ� = λ3

N

∫ ∞



dr dl

(2π )3

1

r

1

l2 + l2r/π
. (A12)

Both the r and l integrals can be performed easily to verify that δ� is convergent in the UV. Therefore, the one-loop vertex
correction is nonsingular both in the UV and in the IR.
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45A. F. Veilleux, A.-M. Daré, L. Chen, Y. M. Vilk, and A.-M. S.

Tremblay, Phys. Rev. B 52, 16255 (1995).
46S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y. M. Vilk,

and A.-M. S. Tremblay, Phys. Rev. B 61, 7887 (2000).
47B. Kyung, J. S. Landry, D. Poulin, and A.-M. S. Tremblay, Phys.

Rev. Lett. 90, 099702 (2003).
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