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Examining phase stabilities and phase equilibria in strongly correlated materials asks for a next level in the
many-body extensions to the local-density approximation (LDA) beyond mainly spectroscopic assessments. Here,
we put the charge-self-consistent LDA + dynamical mean-field theory (DMFT) methodology based on projected
local orbitals for the LDA + DMFT interface and a tailored pseudopotential framework into action in order to
address such thermodynamics of realistic strongly correlated systems. Namely, a case study for the electronic
phase diagram of the well-known prototype Mott-phenomena system V2O3 at higher temperatures is presented.
We are able to describe the first-order metal-to-insulator transitions with negative pressure and temperature from
the self-consistent computation of the correlated total energy in line with experimental findings.
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I. INTRODUCTION

The first-principles computation of phase diagrams at finite
temperature T for multicomponent materials systems is a
quite formidable challenge. Although there are very successful
(semi)empirical methodologies to compute the thermody-
namics of binary (or higher) realistic systems, most notably
the CALPHAD approach,1 the capability of predicting phase
diagrams by starting from an ab initio quantum mechanical
level has a rather strong appeal to many theorists. Dating back
to the pioneering work in this research area by Hume-Rothery
in the 1930s through empirical rules based on atomic sizes
and electronegativities,2,3 the field has reached quite a level
of sophistication. After the extension of Hume-Rothery’s
original ideas by Miedema and co-workers4 via additionally
introducing the electronic charge density in the determination
of the formation energy, approaches built on density functional
theory (DFT) in the Kohn-Sham representation5 eventually
have taken over and have been dominating the research on
atomistic phase-diagram calculations6–9 since the mid 1980s
(see, e.g., Ref. 10 for a review).

However, materials systems with less-screened Coulomb
interactions among the electrons of the order of, or larger than,
the bandwidth W have remained so far out of reach. Con-
ventional representations of DFT, via, e.g., the local-density
approximation (LDA),5 are not capable of accounting for the
effects of strong electronic correlations. Phase transformations
at finite T either of pure electronic kind or driven by electronic
correlations are usually not describable solely within Bloch
band theory. On the other hand, many novel materials, which
are technologically promising because of, e.g., enhanced
response behavior, display signatures of strong correlations.
Furthermore, even well-known allotropes of transition metals
or prominent transition-metal alloys with or close to magnetic
order (such as, e.g., the iron-aluminum system)11 are rather
difficult to model within standard LDA(-like) approaches due
to the lack of explicit many-body correlation effects.

The combination of LDA with the dynamical mean-field
theory (DMFT), the so-called LDA + DMFT approach, nowa-
days prosperously allows us to include the effects of strong
Coulomb interactions in realistic solids (see, e.g., Ref. 12 for a

review). Note that one may easily use the generalized-gradient
approximation (GGA) for the DFT part, but as far as it
concerns explicit strong correlation effects, the difference to
the LDA approach is usually negligible. Yet, there are only few
implementations that handle the LDA + DMFT formalism in
a charge self-consistent framework, i.e., accounting for the
feedback of the local electronic self-energy onto the charge
density that determines the Kohn-Sham effective potential,
until self-consistency of the complete interacting charge
density is achieved.12–18 Additionally, in order to account for
competing strongly correlated phases at elevated temperatures,
there are high demands on the accuracy and generality of the
underlying band-structure methodology as well as the utilized
DMFT impurity solver.

As to explicit realistic phase-competition studies, there
is prominent work within that scope mainly in the area of
f -electron compounds.12,21 In a recent LDA + DMFT study,
Leonov et al. provided a quite successful modeling of the high-
temperature bcc-to-fcc transition in iron22 using the powerful
quantum Monte Carlo method for the impurity solution. How-
ever, there the charge self-consistency was neglected and total
energies have been calculated in a post-processing scheme.

In this work, we want to review the current state of
the art formalism for handling the charge-self-consistent
LDA + DMFT method with the direct calculation of the
correlated total energy. The full approach is applied to the
key features of the electronic phase diagram of the famous
sesquioxide V2O3 (see Fig. 1) above room temperature. When
revealing the phase boundaries between metallic and insulating
phases with T and pressure p, we neglect the effect of chemical
disorder as well as explicit electronic entropy contributions.
The former is not expected to play a vital role in this study
since we are interested in the stoichiometric system well
below possible disordering/melting temperatures. Extending
the strongly correlated formalism to composition-dependent
phase diagrams is in principle possible, e.g., via the so-called
stat-DMFT method.23 As it will be shown, the present results
in the more restricted scheme are already encouraging, and it
should be mainly a matter of time when such new and further
elaborate techniques will become a generic tool in the context
of first-principles phase-diagram evaluations.
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FIG. 1. Experimental phase diagram of V2O3 from Refs. 19 and 20.

II. THEORETICAL FRAMEWORK

The charge-self-consistent scheme of the LDA + DMFT
framework is technically and computationally rather demand-
ing and only few implementations thereof exist up to now.14–18

For the DFT(LDA) part of the calculations, we here employ a
mixed-basis pseudopotential24 (MBPP) as well as a projector-
augmented wave25 (PAW) implementation.

The explicit many-body effects are treated within a
multiorbital Hubbard model including also all non-density-
density local interaction terms. We choose to parametrize
the resulting complete Coulomb matrix with two inter-
action integrals, namely, the Hubbard U and the Hund’s
exchange J . Thus, we neglect differentiations in these matrix
elements originating from the nonspherical symmetry due to
the crystal environment. The interacting problem is solved
within DMFT using a continuous-time quantum Monte Carlo
(CT-QMC) impurity solver in the hybridization-expansion
formulation26 as implemented in the TRIQS package.27

In short, the charge-self-consistency condition can on equal
footing be understood as a way of improving the density
functional of DFT to include more explicit correlation effects
as well as finding a realistic and consistent effective single-
particle part of DMFT via combining both formalisms to a new,
complete cycle, which is summarized in the following sections.

Before that, however, it is vital to note that on general
grounds, this LDA + DMFT formalism is manifestly tem-
perature dependent and therefore in principle ideally suited
for thermodynamic problems. This is in stark contrast to
the standard extension of the Kohn-Sham formalism towards
finite T via the Mermin theory of including the proper Fermi
function for the electronic states.28 Here, the full impact
of temperature on the many-body level, including, e.g., the
effective disappearance of Bloch-type quasiparticle states and

thus the localization due to the loss of coherency at large T , is
properly taken care of.

A. Projected local orbitals

The DFT(LDA) method utilizes an orbital-independent
representation of the effective-single-particle Hamiltonian for
the electronic structure resulting in Bloch Kohn-Sham (KS)
wave functions for the solid-state electronic structure. On
the other hand, the DMFT equations make use of a local
correlated subspace in order to include the effects of strong
Coulomb correlations in condensed matter. Thus, the first step
that has to be performed when interfacing the DFT(LDA) and
the DMFT technique is the extraction of a suitable correlated
subspace C starting from the complete Hilbert space of Bloch
KS band states. This is done in the projected-local-orbitals
(PLO) scheme.29–32 For completeness, we here briefly review
the methodology in the context of charge self-consistency and
the total-energy calculation. More details may be found in
Ref. 31.

Normalized orthogonal projections onto chosen local or-
bitals with character m and centered at site R may be defined
via

P̄ R
mν(k) ≡

∑
R′m′

{[O(k)]−
1
2 }RR′

mm′ 〈χRm′ |�kν〉, (1)

where the |�kν〉 for wave vector k and band ν are chosen to be
a subset W of the Bloch states of the original LDA treatment
and O describes the overlap matrix written as

O
RR′
mm′ (k) ≡

∑
ν∈W

〈χRm|�kν〉〈�kν |χR′m′ 〉. (2)

The set of states {|χRm〉} together with the energy window W
define the correlated subspace C, chosen such that the problem
of strong local Coulomb interactions is adequately represented.
Conveniently, C is adapted to an available localized basis used
in a given band-structure code, i.e., linear combinations of the
mixed basis within the MBPP framework or the partial waves
of PAW.

Using the projections (1), one can construct the one-particle
Green’s function within the truncated Bloch space W via the
double-counting corrected local DMFT self-energy [written
in Matsubara frequencies ωn = (2n + 1)πkBT ], which is
assumed block diagonal in the correlated sites, written as

��RR′
(iωn) ≡ (�imp,R(iωn) − �dc,R)δRR′ . (3)

This Bloch Green’s function is thereby connected to the
correlated subspace through an upfolding procedure, i.e.,

Gbl(iωn,k) =
⎡
⎣(iωn + μ)1 − εKS

k

−
∑
RR′

P̄
R†(k) · ��RR′

(iωn) · P̄
R′

(k)

⎤
⎦

−1

.

(4)

In this equation, εKS
k

denotes the diagonal matrix of Kohn-

Sham eigenvalues for the Bloch states and μ marks the chem-
ical potential (see Sec. II D for details). This Green’s function
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can then be downfolded to the correlated subspace, enforcing
the DMFT self-consistency condition (proper normalization
of the k sum here and in the following is understood)

Gimp,R(iωn) ≡
∑

k

P̄
R(k) · Gbl(iωn,k) · P̄

R†(k). (5)

This impurity Green’s function can then be used to supply a
new DMFT bath Green’s function

(G0
R)−1(iωn) = (Gimp,R)−1(iωn) + �imp,R(iωn) (6)

that enters the impurity solver yielding eventually an up-
dated impurity self-energy until convergence is achieved.
The outlined iterative scheme marks the usual DMFT cycle
without charge self-consistency since it then works as post-
processing scheme to a once computed set of Kohn-Sham
objects {εKS

kν ,�kν}.

B. Expressing charge densities

The fundamental step in the self-consistent combination of
DFT(LDA) and DMFT is provided by the expression of the
basic quantities of each method in terms of the basic quantities
of the other method. Namely, charge density for DFT and
one-particle Green’s function for DMFT. For this purpose, we
define a Kohn-Sham Green’s function through

GKS(iωn,k) = [
(iωn + μKS)1 − εKS

k

]−1
. (7)

Note that this function is in general different from the DMFT
“Weiss-Field” G0. The choice of μKS is described in detail in
Sec. II D. In the following, the band indices νν ′ live in the
truncated Bloch Hilbert space W and we drop for convenience
the site index R. Generalization of the formulas including
the latter is straightforward and since the charge density is
additive, contributions from (supposedly weakly correlated)
bands outside W are most easily taken care of. The trace of
GKS(iωn,k) expressed in the Bloch basis is nothing else than
the charge density of a stand-alone KS-LDA calculation which
reads as

ρKS(r) = 1

β

∑
knνν ′

〈r|�kν〉GKS
νν ′ (iωn,k) 〈�kν ′ |r〉, (8)

with β = 1/kBT as the inverse temperature. A very similar
form can be found for the charge density from a post-
processing DMFT calculation, i.e.,

ρ(r) = 1

β

∑
knνν ′

〈r|�kν〉Gbl
νν ′ (iωn,k) 〈�kν ′ |r〉. (9)

Thus, the difference ρ ′(r) = ρ(r) − ρKS(r) is given by

ρ ′(r) = 1

β

∑
knνν ′

〈r|�kν〉{GKS(iωn,k) · ((GKS)−1(iωn,k)

− (Gbl)−1(iωn,k)) · Gbl(iωn,k)}νν ′ 〈�kν ′ |r〉
≡

∑
kνν ′

〈r|�kν〉�Nνν ′ (k) 〈�kν ′ |r〉. (10)

As described in Ref. 33, the object �N (k) can be rewritten as

�N (k) = 1

β

∑
n

{GKS(iωn,k) · (P̄ †(k) · ��(iωn) · P̄ (k)

− (μ − μKS)1) · Gbl(iωn,k)}. (11)

Therewith a simple representation of the total charge density
including self-energy effects beyond LDA is provided, reading
as

ρ(r) =
∑
kνν ′

〈r|�kν〉(f (ε̃kν)δνν ′ + �Nνν ′ (k))〈�kν ′ |r〉 (12)

and to be used and manipulated in a given DFT-based
band-structure code. Here, f (ε) denotes the Fermi-distribution
function and ε̃kν = εkν − μKS. Hence, the inclusion of the
DMFT self-energy renders it necessary to not only incorporate
modifying terms diagonal in the Bloch states, but also off-
diagonal contributions. The problem of truncating the whole
Bloch space to a subspace W therefore reduces to taking into
account the correct set of bands in each summand. Details on
the implementation thereof in the different KS basis sets are
given in the Appendix.

C. Self-consistency condition

The aim of charge self-consistency is to include DMFT
self-energy effects in the charge density, so that ρKS(r) and
ρ(r) can obviously not be the same quantity. Instead, it is most
instructive to use the (spectral density-) functional approach
by Savrasov and Kotliar,34 incorporating both one-particle
Green’s functions and charge density. Extremization thereof
with respect to the charge density ρ(r) basically yields the
Kohn-Sham equations in which the correlated charge density
ρ(r) is used as an input for the effective potential V̂eff[ρ(r)],
i.e.,

[T̂ + V̂eff[ρ(r)] − εkν]|�kν〉 = 0. (13)

Similarly, extremization with respect to the Green’s function
yields the usual expression for the DMFT self-energy. Thus,
the complete cycle can be constructed as follows: From an
initial DFT(LDA) calculation, perform conventional DMFT
steps and compute a correlated charge density ρ(r) as given
by Eq. (12). That charge density is reinserted into the band-
structure code [for this step, knowing the elements of �N (k)
is sufficient] and new effective-single-particle wave functions
|�kν〉 are computed using Eq. (13). These finally enter Eq. (1)
to build a new correlated subspace for DMFT (keeping the
set {|χRm〉} unaltered). This enlarged cycle is iterated until
full charge self-consistency is reached, i.e., charge density and
self-energies (and thus the matrix �N (k)) remain constant with
iterations. From our experience, the cycle is usually rapidly
converging when using already a rather simple linear-mixing
scheme.

D. Chemical potential

As usual, the chemical potential μ is adjusted such that
the resulting total charge density ρtot(r) holds the correct total
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number of electrons Ntot and is enforced via∫
dr ρtot(r) = Nν /∈W + 1

β

∑
knν

Gbl
νν(iωn,k) = Ntot. (14)

In Ref. 33, it is argued that this charge neutrality condition is
imposed on ρtot(r) only [not on ρKS(r)]. Thus, the parameter
μKS, which is defined to be the energy up to which the Kohn-
Sham states of the DFT(LDA) part are filled (with the proper
Fermi-distribution function), can be chosen to be equal to the
chemical potential μ, which would mean that the integrated
charge density changes due to correlations in Eq. (12) vanishes.

However, in order to clarify relations between some of the
quantities that occur in the formalism, it can be useful to choose
μKS such that the DFT(LDA) part of the calculation is already
charge neutral. It can easily be shown that with the correction
term of Eq. (11), this choice does not affect ρ(r). Anyway, it is
important to note that μKS itself has no physical interpretation
in the enlarged LDA + DMFT framework.

E. Total energy

In order to obtain total energies within the charge-self-
consistent formalism, the spectral density-functional approach
is applied again. Based thereon, the total energy may be
computed from14

ELDA+DMFT = ELDA +
∑
kν

εKS
kν �N (k)

νν + 〈ĤU 〉 − Edc. (15)

Note that this expression relies on the fact that the adapted
diagonal basis for the Kohn-Sham single-particle Hamiltonian
is utilized, which yields eigenvalues εKS

kν . Several approaches
are possible to obtain the expectation value of the two-particle
Hamiltonian 〈ĤU 〉. Here, we choose to apply the Galitskii-
Migdal formula.35 As shown by Boehnke et al.,36 the quality
of the numerical data can be improved by choosing a suitable
basis set, i.e., Legendre polynomials, for the representation
of the one-particle Green’s function. Note that although this
LDA + DMFT total energy is temperature dependent, we here
keep the “energy” notion since for a well-defined “free energy,”
a clear definition of an entropic part would be in order.

III. V2O3 SYSTEM

The vanadium sesquioxide V2O3 belongs to the most
prominent strongly correlated compounds and has already
been subject to many theoretical efforts.37–44 At elevated
temperatures, it orders in the corundum structure in which
there are V-V pairs along the crystallographic c axis and a
honeycomb lattice appears in the xy plane (see Fig. 2). The V
ions reside within an octahedron of oxygen ions, respectively,
building up a trigonal crystal field for the transition-metal
ion. Thus, the low-energy t2g orbitals of the V(3d) shell are
split into an a1g and two degenerate e′

g orbitals. Formally, the
vanadium ion has the 3d2 valence configuration, i.e., is in
the V3+ oxidation state. The t2g orbital degrees of freedom
appear to play a central role for the intriguing physics of this
transition-metal oxide, and Castellani et al.37 were the first to
provide a detailed account of the complex correlated electronic
structure in these local terms.

FIG. 2. (Color online) Corundum structure of V2O3 viewed along
the z axis (left) and along the y axis (right), with depicted V ions (large
gray) and O ions (small red/dark).

The finite-temperature phase diagram, taken from the origi-
nal work of McWhan and co-workers,19,20 is shown in Fig. 1. In
this work, V substitution by Ti (Cr) implies positive (negative)
pressure. It displays three major phases, namely, paramagnetic
metallic (PMM), paramagnetic insulating (PMI), as well as an
antiferromagnetic insulating (AFI) regime. The transition to
the latter AFI phase at lower temperatures is also associated
with a structural transition to a monoclinic low-symmetry
structure.39 Furthermore, additional phase-diagram studies in
the vanadium-deficient V2−yO3 regime revealed the existence
of a metallic spin-density-wave (SDW) phase.45 Interestingly,
that phase appears not to be a form of precursor to the much
more extended AFM ordering of the insulator. On the contrary,
it seems that the magnetic short-range order within PMM and
PMI is closer to the SDW ordering. Therefore, the magnetic
ordering in the AFI phase may be closely related to the
structural change, even involving additional orbital ordering.46

Due to this additional complexity in connection with the
AFI phase, we concentrate in this work only on the phase
equilibrium between PMM and PMI. A complete description
of the V2O3 phase diagram including the magnetically ordered
phases will be postponed to future studies.

A. LDA characterization and local projections

A thorough first-principles DFT(LDA) description of
metallic V2O3 at normal pressure and without doping has
initially been given by Mattheiss.38 Here, we only summarize
the most relevant features as they evolve from our MBPP
investigation. Figure 3 shows the LDA band structure along
high-symmetry lines within the first Brillouin zone. It is
evident that the bands group in a way canonical for many
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FIG. 3. LDA band structure of V2O3.
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FIG. 4. (Color online) Total LDA density of states of V2O3 and
local DOS within the symmetry-adapted V(3d) basis with range rc =
2.0 a.u.

transition-metal oxides. The larger block below the Fermi level
εF in the range [−8, −4] eV is dominated by oxygen 2p orbital
weight, while the unoccupied block within [2,4] eV stems pri-
marily from vanadium eg orbitals. This encoding is visualized
in the density-of-states (DOS) plot of Fig. 4 from local pro-
jections onto the symmetry-adapted cubic-harmonic angular-
momentum channel of the V(3d) basis. The band manifold of
width W∼ 2.6 eV around εF is mostly composed of a1g and e′

g

orbitals with only minor inter-mixing of V(eg) and O(2p). Note
that especially the a1g character shows a prominent bonding-
antibonding signature in the DOS of this low-energy region.

From the LDA result, the set of local orbitals {|χRm〉} to
be utilized in the local projections defined in Eq. (1) are here
chosen to be given by the linear combinations of pseudized
atomic V (3d) functions that diagonalize the orbital density
matrix on each of the four symmetry-equivalent vanadium ions
within the unit cell. This is often referred to as the crystal-field
basis, whereby here the a1g level is higher in energy than the
e′
g one. Figure 5 exhibits the local DOS obtained from the

projections using for W the low-energy t2g manifold. In the
following, we will only concentrate on these minimal projected
local orbitals and will not elaborate on the possible cases of
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FIG. 5. (Color online) a1g and e′
g LDA-DOS on the basis of the

orthonormalized projected local orbitals, whereby the range of the
{|χRm〉} was also rc = 2.0 a.u.

larger energy windows W , i.e., such ones that also cover the
high-energy occupied/unoccupied band manifolds. Note that
the local orbital DOS in Figs. 4 and 5 differ on principle
grounds (see also Sec. III). In the latter case, it is computed in
the basis of orthonormalized orbitals, whereas in the former
case it is calculated from projections onto angular-momentum
channels without proper final normalization (i.e., no radial
orbital function involved). From the orthonormalized projected
local orbitals, one retrieves the occupations nLDA(a1g) =
0.57 and nLDA(e′

g) = 1.43 (summed over both e′
g orbitals),

respectively. These values differ by about 0.05 electrons
towards stronger orbital polarization compared to the numbers
presented in Ref. 44 from a Wannier construction within the
N th-order muffin-tin-orbital method.47

The stronger ionic character of the transition-metal oxide
compared to ordinary metals or intermetallic compounds
becomes clear from the plot of the bonding charge densities in
Fig. 6. The latter function is defined as the difference between
the crystal valence charge density and the superposed atomic
valence charge densities. The charge transfer from vanadium to
oxygen is obvious, but also the expected charge accumulation
in the interstitial region is visible.

B. LDA + DMFT: Finite-temperature phase equilibria

The LDA-only description does not account for a metal-
insulator transition (MIT) in V2O3. We model the interacting
problem on the many-body level within a three-orbital (a1g ,
2e′

g) multisite (four V ions in the corundum unit cell)
generalized Hubbard model employing the complete rotational
invariant Coulomb interactions on the local level. For the
parametrization of the Coulomb integrals, we choose the
values U = 5 eV and J = 0.93 eV, as already utilized in
earlier simplified LDA + DMFT studies for V2O3.42 The
following results are obtained from our MBPP-code interface
of LDA + DMFT. A second implementation within the PAW
approach is also briefly discussed in the Appendix.

1. Lattice expansion and temperature variation for fixed c/a ratio

The MIT between the PMM and the PMI phase with
negative pressure is depicted in Fig. 7 for selected T . While
the p < 0 scenario is realized experimentally via Cr doping,
it is here provided in a simple way by increasing the lattice
constant a starting from its experimental48 equilibrium value
a0 = 4.95 Å. Notably, we also first keep the c/a ratio fixed to
its value c/a = 2.83 at ambient pressure and temperature. The
effect of relaxing that ratio will be discussed in Sec. III B3.
For the moment, this approximate theoretical approach proves
to be sufficient to describe the key features of the V2O3 phase
diagram above room temperature.

One could connect this approach to the physical pressure p

in a simple way by defining p = −∂E/∂V . It is seen that the
theoretical formalism reveals the pressure-induced first-order
MIT with the correct positive sign of the slope ∂TMIT/∂p

from experiment (compare Fig. 1). However, the changes that
occur in the lattice constant with T along the phase boundary
are nonsurprisingly larger (roughly by a factor 5–10) than in
experiment.49 The neglect of electronic and phononic entropy
contributions (and presumably also nonlocal correlations) may
be blamed. Nevertheless, the change of curvature of the
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FIG. 6. (Color online) LDA bond charge densities ρcrystal(r) − ρatomic(r) for V2O3 within the xz plane (left) and the xy plane (right). Note
that in the latter case, the two central V ions are not at the same height and therefore appear different.

respective total energies elucidates the expected softening
of the lattice with increasing temperature from the decrease
of the bulk modulus B ∼ ∂2E

∂V 2 . Figure 8 displays the tie-line
construction for the first-order transition between the metallic
and insulating phases. The volume jump at the transition
becomes obvious, albeit again the retrieved pressure from the
slope of the common tangent is about an order of magnitude too
high compared to experiment. However, note that the increased
stability range of the PMI phase with volume at larger T is a
direct result of the calculations. For Tcrit ∼ 400 K, the line of
first-order transitions at negative pressure exhibits a solid-solid
critical end point and a continuous path from the metallic to the
insulating regime opens. One may already recognize that the
shifted quasiparticle peak at the lower gap edge in the spectral
function of the insulator has vanished for T = 387 K, which
may signal the immediate strongly incoherent regime close to
the critical end point.

The pressure-dependent investigation describes moreover
the increase of correlation strength when approaching the
critical p deep from the metallic regime. This is documented in
Fig. 9 where we plot the local spectral function with increasing
lattice constant. Strong transfer of spectral weight from the
low-energy region to the high-energy Hubbard bands is
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FIG. 7. (Color online) MIT with negative pressure, i.e., increase
of the lattice constant for various temperatures within LDA + DMFT.
Left: total energy ELDA+DMFT normalized to the value at the equilib-
rium lattice constant. Right: energies with respect to the LDA energy
ELDA for each given lattice constant.

observable and marks the evolution towards the MIT with neg-
ative pressure at constant interaction strength. Furthermore, a
shifting of the dominant quasiparticle peak towards the Fermi
level with increasing the lattice constant may be recognized. Of
course, the growing lattice distances also weaken the metallic
screening and therefore should lead on simple grounds to an
effective increase of the mutual Coulomb interaction between
the electrons. Such an effect is here at least in simplest
terms describable by the charge-self-consistent reaction to the
applied lattice expansion. Note, however, in this context that
recent photoemission studies point to a rather constant U value
on the different sides of the phase boundaries.50
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the features around the Fermi level.

In order to trace the MIT with temperature in some detail,
we plot in Fig. 10 the intrinsically T -dependent LDA + DMFT
energy now at fixed elongated lattice constant. Starting from
the low-temperature metallic regime, ELDA+DMFT(T ) deviates
from a simple functional behavior at T ∼ 270 K, displaying
an overall double-parabolic structure. The MIT takes place
around TMIT ∼ 310 K in good accordance with the expected
experimental region of the temperature-induced PMM–PMI
transition. Surprisingly, the energy ELDA+DMFT(T ) of the
PMI phase appears rather flat in the temperature regime
[350,450] K, which is just in the neighborhood of the
experimental critical end point.

2. Charge densities and orbital resolution for fixed c/a ratio

So far, we concentrated on the integral impact of the
electronic correlation on the finite-temperature properties of
the V2O3 system. However, for a deeper understanding of the
underlying driving forces, it is also important to shed light
on the possibly distinct behavior of individual microscopic
degrees of freedom and most notably on those of orbital kind.
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FIG. 10. (Color online) MIT with temperature for the fixed lattice
constant a = 1.08a0, i.e., at finite negative pressure.

Concerning the distinct orbital occupations with temperature
and negative pressure, no dramatic effects occur in the corre-
lated electronic structure. In line with previous post-processing
studies,43,44 within charge-self-consistent LDA + DMFT the
a1g orbital filling is generally reduced compared to the LDA
value (and correspondingly the e′

g filling is increased). For
the equilibrium volume and T = 232 K, the numbers write
as nDMFT(a1g) = 0.48 and nDMFT(e′

g) = 1.52. A real-space
discrimination of these orbital filling differences between
LDA + DMFT and LDA on the basis of the respective charge
densities is displayed in Fig. 11 for T close to the critical end
point. In general, a localization effect takes place, whereby
charge from the interstitial region is transferred closer to the
atomic sites. Thereby, the a1g orbital (pointing roughly along
the z axis) loses charge in the correlated electronic structure,
whereas the e′

g orbitals gain.43,44 In the insulating regime, less
charge is transferred from the interstitial part, but note that
here the lattice constant is also larger.

Within the correlated scheme, increasing the negative p,
i.e., enhancing the lattice constant, yields a slight filling
increase of the a1g orbital. When raising T for a = 1.08a0, so
that the system shows a temperature-induced MIT, the same
trend occurs. The same effect with temperature was already
theoretically observed in Ref. 44. Thus, the calculation reveals
an increase (decrease) in the occupation (of the order of a few
percent) for the a1g (e′

g) orbital in the insulator compared to the
metal. It is again instructive to visualize directly the changes in
the self-consistent correlated charge density. Figure 12 depicts
the differences in the LDA + DMFT charge density ρDMFT(r)
at the different temperatures associated with the metallic and
the insulating phases. It is seen that here the charge transfers
are marginal, mainly showing the a1g orbitals gaining some
charge against the e′

g with T . As an effect of the temperature
raise, the interstitial in-between the V ions appears to lose some
small weight, in the spirit of effective localization at high T .

Finally, we turn to a brief look on the magnetic response.
The orbital-resolved local spin susceptibility χ , plotted in
Fig. 13, shows for both orbital contributions the expected
Curie-Weiss–type tail at higher temperatures, but for fixed
lattice constant, a nonmonotonic behavior below T ∼ 270 K
emerges, i.e., in the same range where the nontrivial character-
istic in ELDA+DMFT(T ) was observed. The quenching of χa1g

in
that regime needs further study and might be interesting in the
context of orbital ordering in the low-temperature AFI phase.
As expected, for constant T the increase of the lattice constant
leads also to nearly constant χ in the PMI phase.

3. Effect of relaxing the c/a ratio

From experiment it is known that the c/a ratio is lowered
when passing from the metal to the insulator with negative
pressure.49,51,52 In order to account for that effect, we re-
laxed c/a for each volume V within charge-self-consistent
LDA + DMFT at T = 387 K by computing the total energy
for selected c/a values and finding the minimum E(V,c/a)
via a polynomial fit to the data points. Note that c/a also
varies substantially with temperature,53 however, as a proof of
principles we here only followed its evolution with expanding
unit-cell volume. The results are shown in Fig. 14. No dramatic
effect results in the global energetics, however the respective
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energy gain, especially in the PMI phase, is clearly visible.
While in experiment the c/a value varies within the interval
[2.78,2.88],52 the given range [2.70,2.80] is somewhat larger
from the calculations but still within the right ballpark. In
accordance with the experimental data, the PMM phase has a
larger c/a than the PMI phase. Interestingly, the minimum
ratio is just reached in the transition region with respect
to the volume, i.e., c/a(V ) becomes most soft close to the
negative-pressure-driven MIT. Of course, at the latter first-
order transition, a jump in c/a will take place in line with the
volume jump corresponding to the tie-line construction.

A relaxation of c/a also affects the trigonal crystal-field
splitting �t between a1g and e′

g orbitals. Because of the
lowering of c/a with negative p and hence a weakening of the
distortion of the VO6 octahedra, a reduction of �t is expected.
Indeed, the calculations reveal a shrinking of �t from the PMM
to the PMI phase. Note that thereby �t is determined from the
sole Hamiltonian part of the interacting problem stemming
from the local-orbital projections acting on the LDA + DMFT
converged Bloch states. A second contribution to the resulting
effective crystal-field splitting �eff is given by the real part
of the self-energy difference between a1g and e′

g at zero fre-
quency, i.e., �eff = �t + Re�a1g

(0) − Re�e′
g
(0).44 However,

the latter difference differs only little between PMM and PMI
and thus no dramatic changes in the occupations occur.

Contrary to that, former post-processing LDA + DMFT
studies with an interaction-driven picturing of the difference
between PMM and PMI phase resulted in rather strong
orbital-polarized solutions for the insulating case. That went
along with an enhanced value for �eff due to large self-energy
effects. Note that in the charge-self-consistent LDA + DMFT
framework, a clear-cut separation into one- and many-body
contributions to �eff is not that simple anymore. The reason is
that during the self-consistency cycle the hoppings also change
because of the self-energy effects, contrary to post-processing
LDA + DMFT. In our work, we did not change the interaction
parameters within the different phases, in line with recent
experimental work.50 We, however, tried to change our global
(U,J ) parameters in a certain range to look for the possibility
of orbital-polarized solutions. Because of the complexity
of the problem depending on the interplay of hopping
and many-body effects within an evoluting crystal-structure
evolution temperature and pressure, we may not exclude a
certain setup that allows for orbitally polarized solutions. Yet,
within our studies we did not find clear evidence for this
behavior.

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-0.01 -0.01

FIG. 12. (Color online) Difference ρmet
DMFT(r) − ρ ins

DMFT(r) between the LDA + DMFT charge densities in the metallic (T = 232 K) and in
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IV. SUMMARY AND DISCUSSION

In this work, the advancement of the LDA + DMFT
methodology, namely, the implementation of a complete
charge-self-consistent scheme with total-energy calculation,
built on a pseudopotential band-structure code using plane
waves and localized functions, was documented and the
principal formalism of interfacing LDA and DMFT utilizing
projected local orbitals was reviewed. In the calculations we
observed that the charge-self-consistent framework, at least
when using a minimal energy window for the projected local
orbitals, leads for fixed values of the Hubbard U to somewhat
smaller electronic correlations than the elder post-processing
scheme. Also, orbital polarizations are generally slightly
weaker in the new complete methodology. This outcome might
be not that surprising since the now possible reaction of the
charge density to the self-energy effects may lead to additional
screening effects. Further, more detailed investigations of the
charge-self-consistent technique are needed in this respect and
shall be hereby stimulated.

As a proof of principles, this approach renders it possible to
describe the first-order character of the MIT in the challenging
V2O3 system induced by negative pressure and tempera-
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FIG. 14. (Color online) Left panel: Total energy vs volume for
fixed c/a (solid line) and relaxed c/a (dashed line). Right panel:
Relaxed c/a values vs volume (dotted). Black lines mark the metallic
solution, red (gray) lines the insulating one. All data for T = 387 K.

ture in accordance with the experimental phase diagram.
The methodology is in the position to describe the PMM/PMI
phase boundary in a qualitative correct manner. Yet, the quanti-
tative agreement concerning structural data and pressure in the
transition region is still not perfect. The neglect of electronic
and vibrational entropy terms may be a probable cause, also
since the absolute value of the critical negative pressure |p| <

1 GPa is rather small compared to other pressure-driven
MITs.54 With increasing lattice constant and elevated temper-
ature, the localization of the electrons is usually energetically
favorable because of bond stretching and reduced coherency.
But it is known that, e.g., the significant spin-entropy contri-
bution to the true free energy in the PMI phase due to existing
localized moments is usually a strong stabilization criterion
for the Mott insulator (if that entropy is not quenched by
magnetic-ordering tendencies). Including electronic entropy
in DMFT is possible, for example, via specific-heat integration
or Wang-Landau reweighting techniques.55 The inclusion of
vibrational entropy is more demanding since it asks for a
determination of the phonon spectrum, possibly varying with
changing static lattice degrees of freedom, and eventually the
electronic feedback through electron-phonon coupling.

At first sight, a qualitative difference concerns the respective
orbital (a1g , e′

g) fillings in the PMM and PMI phases.
Whereas polarized x-ray absorption measurements together
with multiplet calculations point to an increased orbital
polarization towards less filled a1g in the insulating regime,56

our calculations result in a tendency towards slight orbital
balancing in the PMI phase. The named stronger orbital
polarization in the insulating regime is indeed verified in post-
processing LDA + DMFT for fixed lattice structure, larger U ,
and constant T .43,44 It results there from the increased effective
crystal-field splitting due to the strong electronic correlations.
However, it is important to note that in the experimental part
of the work by Park et al.,56 the negative-pressure regime
was realized by nonisovalent Cr substitution for V. Albeit
in the latter work no net change in the V valency was
detected, since each Cr introduces an additional electron to
the system, modifications in the orbital charge distributions
may still occur. Rodolakis et al.51,52 compared recently that Cr
doping-driven (and thus implicitly negative-pressure driven)
MIT with a true pressure-driven MIT. The latter scenario was
realized by increasing pressure on insulating (V0.92Cr0.28)2O3.
It was observed that with true applied pressure, the orbital
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occupations hardly vary at the MIT, in good accordance
with our results. Hence, rather strong orbital polarization in
the PMI phase appears to be bound to the doping-driven
realization of the insulator. Recent ARPES microscopy by
Lupi et al.57 of the doped compound suggests that the
insulating phase indeed originates from nucleation centers,
possibly Cr ions or other defects, as expected for the first-order
scenario. Hence, there is a clear need for further theoretical
studies that explicitly treat the chemical doping or intrinsic
defects. Supercell approaches may be a way to address these
issues. The former post-processing LDA + DMFT treatments
followed the route of mainly an interaction-driven MIT, while
from recent hard x-ray photoemission spectroscopy it was
concluded that the Hubbard U does not change through the
MIT.50

Of course, when it comes to the question of orbital
polarization, the competition between crystal-field effects and
Coulomb correlations depends on the choice of the interaction
parameters (U,J ) (Ref. 58) and on the energy window used
for the projection onto the correlated subspace. Especially
concerning the latter, e.g., inclusion of the O(2p)-dominated
bands (and/or extending the many-body part to a five-orbital
sector) will change the notion of the 3d orbitals and their
overall occupations significantly. More detailed studies along
those lines, also by utilizing ab initio computed Coulomb
integrals, are surely necessary.

Despite this need, this work renders it clear that there is
advancement in the LDA + DMFT framework that sharpens
the tool for strongly correlated materials investigations of
finite-temperature phase competitions on an equal footing with
analyses of the involvement of local degrees of freedom.
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A. I. Lichtenstein, L. Pourovskii, S. Schuwalow, and
C. Walther for fruitful discussions. Financial support by the
DFG-FOR 1346 is gratefully acknowledged. Computations
have been performed at the Regionales Rechenzentrum (RRZ)
of the Universität Hamburg as well as the Juropa Cluster of the
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APPENDIX: REPRESENTATION OF CHARGE DENSITIES
IN THE KOHN-SHAM BASIS SETS

In this appendix, we summarize how to compute the given
charge density from the matrix �N (k) [as in Eq. (12)] in two
possible Kohn-Sham basis sets.

1. Mixed-basis pseudopotential (MBPP)

The mixed-basis pseudopotential (MBPP) approach24,59

uses norm-conserving pseuodpotentials60 and a combined
basis of plane waves and modified localized atomic functions
φ

k

αlm(r) for the representation of the crystal wave functions,
written as

�kν(r) = 1√
�C

∑
G

�
kν

G ei(k+G)r +
∑
αlm

β
kν

αlmφ
k

αlm(r), (A1)

where �G and βαlm are the respective expansion coefficients
for atom α in the unit cell and angular-momentum numbers lm.
The correlated charge density therefore consists of three parts
ρ(r) = ρ(1)(r) + ρ(2)(r) + ρ(3)(r), corresponding to a plane-
wave term, a mixed term, and a localized-function term. With
the abbreviation

N
(k)
νν ′ := f (ε̃kν)δνν ′ + �N

(k)
νν ′ , (A2)

they can be written as follows:

ρ(1)(r) = 1

�C

∑
kνν ′

N
(k)
νν ′

∑
GG′

(
�

kν ′
G

)∗
�

kν

G′ ei(G′−G)r , (A3)

ρ(2)(r) = 2√
�C

∑
kνν ′

Re

⎡
⎣N

(k)
νν ′

∑
G

�
kν

G ei(k+G)r

×
∑
αlm

(
β

kν ′
αlm

)∗(
φ

k

αlm(r)
)∗

]
, (A4)

ρ(3)(r) =
∑
kνν ′

N
(k)
νν ′

∑
αlm

(
β

kν ′
αlm

)∗(
φ

k

αlm(r)
)∗

×
∑
α′l′m′

β
kν

α′l′m′φ
k

α′l′m′(r) . (A5)

The first term can be evaluated directly by Fourier transfor-
mation of both wave functions to real space. The second and
third terms, which are zero in the interstitial region (where
the localized functions have decayed), are calculated in a
straightforward way in an atom-centered basis.

2. Projector-augmented wave (PAW)

The implementation within the PAW formalism is in line
with Ref. 17. As shown in Ref. 61, charge densities here break
down also into three parts, namely, a plane-wave part ρ̃(r) and
a one-center term from partial waves ρ1

R(r) and from pseudo-
partial waves ρ̃1

R(r) per atom at site R (omitting core densities,
which are not affected by our LDA + DMFT approach):

ρ(r) = ρ̃(r) +
∑
R

(
ρ1

R(r) − ρ̃1
R(r)

)
. (A6)

The plane-wave part ρ̃(r) can be calculated directly as in
Eq. (12) from the PAW pseudo-wave functions |�̃kν〉. For the
one-center terms, the following one-center density matrix may
be defined via

Dij =
∑
kνν ′

〈p̃i |�̃kν〉
(
f (ε̃kν)δνν ′ + �N

(k)
νν ′

)〈�̃kν ′ |p̃j 〉. (A7)

Here, |p̃i〉 are the projector functions from the PAW formalism.
With this definition, ρ1

R(r) and ρ̃1
R(r) can be calculated as usual

from the partial waves φi(r) and from the pseudo-partial waves
φ̃i(r), i.e.,

ρ1
R(r) =

∑
i,j∈R

Dij φ
∗
j (r)φi(r), (A8)

ρ̃1
R(r) =

∑
i,j∈R

Dij φ̃
∗
j (r)φ̃i(r). (A9)
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3. Comparison of the present charge-self-consistent scheme
to standard LDA + U implementations

In many implementations of the LDA + U scheme, orig-
inally designed for long-range-ordered strongly correlated
insulators, the local problem is constructed by projecting onto
a set of angular-momentum channels (i.e., spherical or cubic
harmonics) within a given range around the correlated site. For
instance, the LDA + U implementation in the MBPP code as
well as in the Vienna ab initio simulation package62,63 (VASP) is
performed in such a way. Here, we want to show that the overall
interfacing structure of the present charge-self-consistent
scheme of extending LDA gives similar results as the tra-
ditional LDA + U scheme, if a simple purely static mean-field
approximation to the local interacting problem is used.

As a simple test, one can compare the variation of the total
energy resulting from a conventional LDA + U calculation
with the results obtained from the present LDA + DMFT
charge-self-consistent calculation now using the Hartree-Fock
(HF) approximation for the DMFT impurity solver.

We have calculated the equation of state for V2O3 within
the two approaches and the comparison is shown in Fig. 15.
The LDA + DMFT(HF) (or, simply LDA + HF) calculation
is performed using the projected local orbitals as defined in
Eq. (1) implemented in the VASP code, while the results for
the LDA + U scheme are obtained using the standard VASP

implementation.63 The results are rather similar and most of
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FIG. 15. (Color online) The equation of state of V2O3 calculated
with the conventional LDA + U scheme as well as the charge-self-
consistent scheme using a Hartree-Fock solver for the DMFT impurity
problem.

the differences may be due to the alternative choices for the
local projections. Note, however, that especially in the general
LDA + DMFT context, the local projections as defined in
Eq. (1) are clearly superior (e.g., via the resulting well-defined
local Green’s function) to the simple angular-momentum-
channel projections.
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