
PHYSICAL REVIEW B 86, 155118 (2012)

Onsager relations in coupled electric, thermoelectric, and spin transport: The tenfold way
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Hamiltonian systems can be classified into ten classes, in terms of the presence or absence of time-reversal,
particle-hole, and sublattice/chiral symmetries. We construct a quantum coherent scattering theory of linear
transport for coupled electric, heat, and spin transport; including the effect of Andreev reflection from
superconductors. We derive a complete list of the Onsager reciprocity relations between transport coefficients for
coupled electric, spin, thermoelectric and spin caloritronic effects. We apply these to all ten symmetry classes,
paying special attention to specific additional relations that follow from the combination of symmetries, beyond
microreversibility. We discuss these relations in several illustrative situations. We show the reciprocity between
spin-Hall and inverse spin-Hall effects, and the reciprocity between spin-injection and magnetoelectric spin
currents. We discuss the symmetry and reciprocity relations of Seebeck, Peltier, spin Seebeck, and spin Peltier
effects in systems with and without coupling to superconductors.
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I. INTRODUCTION

Onsager’s reciprocity relations are cornerstones of nonequi-
librium statistical mechanics.1,2 They relate linear response
coefficients between flux densities and thermodynamic forces
to one another. They are based on the fundamental principle
of microreversibility, which for systems with time-reversal
symmetry (TRS), says that “if the velocities of all the
particles present are reversed simultaneously the particles
will retrace their former paths, reversing the entire succession
of configurations.”1 When TRS is broken, microreversibility
further requires to invert all TRS breaking fields, which, to fix
ideas, one may take as magnetic fields, fluxes, or exchange
fields. Combining all of them into a single multicomponent
field H, the Onsager reciprocity relations read1,2

Lij (H) = Lji(−H) , (1)

where the linear coefficient Lij determines the response of
the flux density Ji , for instance, the electric or heat current,
to a weak thermodynamic force Xj , for instance, an electric
field or a temperature gradient. Thus the precise form of the
Onsager reciprocity relations depends on the symmetries of
the system. Seminal works have classified noninteracting
quantum mechanical systems into ten general symmetry
classes,3–5 and it is the purpose of the present manuscript
to derive Onsager’s relations for all these symmetry classes.
Four of them, in particular, combine two different types of
quasiparticles,5 with microscopic representations including,
e.g., hybrid systems where quantum coherent normal metallic
conductors are connected to superconductors. Since at
subgap energies an interface between a normal metal and
a superconductor blocks heat currents but not electric
currents,6 it is natural to ask whether the Onsager reciprocity
relation between, say, the Seebeck and Peltier thermoelectric
coefficients survives in such systems. Onsager relations in
the presence of superconductivity have been discussed rather
incompletely until now,7–11 despite much experimental12–14

and theoretical7–11,15,16 interest in thermoelectric transport
properties of hybrid normal-metallic/superconducting
systems.

Further motivation is provided by fundamental aspects of
spintronics17 and spin caloritronics (spin Seebeck and spin
Peltier effects),18,19 where Onsager relations are of signifi-
cant interest.20–25 As a matter of fact, reciprocity relations
decisively helped in experimentally uncovering elusive spin
effects, by suggesting to measure electric effects that are
reciprocal to them. As but one example, we mention the inverse
spin Hall effect,26–30 where a transverse electric current or
voltage is generated by an injected spin current.31 Onsager
relations also put constraints on the measurement of spin
currents32,33 that can be circumvented in the nonlinear regime
only.34,35 Accordingly, we will incorporate spin currents and
accumulations into our formalism. Several of the Onsager
relations for spin transport we derive below appeared in
one way or another in earlier publications, see in particular
Refs. 21–26 and 32. Here, we summarize them in a unified
way and extend them to all ten symmetry classes. We are
unaware of earlier discussions of Onsager relations for spin
transport in the presence of superconductivity.

The classification into ten different symmetry classes has
recently received renewed attention, because the existence
of topologically nontrivial phases36 depends on the system’s
symmetries and its dimensionality.37 The Onsager relations we
derive below depend only on fundamental symmetries and are
equally valid in topologically trivial and nontrivial states.38

In several instances, however, specific additional relations
exist, that arise because of the conservation of each quasi-
particle species (relevant to systems without superconductor
so that there are no Andreev processes converting electrons
into holes and vice versa), the presence of particle-hole
symmetry or sublattice/chiral symmetry. This is the case,
for instance, for two-terminal thermoelectric transport in the
Wigner-Dyson symmetry classes,3 where the relation between
Seebeck B and Peltier � coefficients reads equivalently
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B(H)T0 = �(H) or B(H)T0 = �(−H), with the base
temperature T0, because of the additional reciprocity relation
�(H) = �(−H).44 Below, we pay special attention to these
nongeneric relations.

The manuscript is organized as follows. In Sec. II, we
discuss the ten symmetry classes, and the crossover between
Altland-Zirnbauer and the Wigner-Dyson classes as the tem-
perature is raised in hybrid systems. In Sec. III, we derive and
list the symmetries that the S matrix satisfies in all classes.
Onsager relations will follow from these symmetries, once they
are inserted into scattering theory expressions for the linear
transport coefficients. In Sec. IV, we formulate the problem
in terms of the scattering matrix of the system and connect
the Onsager coefficients to the system’s scattering matrix. In
Sec. V, we list the general reciprocity relations and mention
additional ones occurring in special circumstances. Finally, in
Secs. VI and VII, we discuss some cases of importance and the
associated Onsager relations in systems with coupled electric
and spin transport, superconductors, or chiral symmetries.
Conclusions are given in Sec. VIII.

II. THE TENFOLD WAY

Hamiltonian systems are classified according to the pres-
ence or absence of fundamental symmetries. The historical
classification scheme3,5 is based on TRS and spin-rotational
symmetry (SRS). Three Wigner-Dyson classes are defined
in this way. Using the Cartan nomenclature for symmetric
spaces, the class A has both symmetries broken, the class AI
has both symmetries present, and the class AII has broken
SRS but unbroken TRS. When TRS is broken, the presence
or absence of SRS only affects the size of the Hamiltonian
matrix—and not its symmetry—and there is thus no fourth
class.

Chiral classes were next introduced,4 which capture the
structure of the QCD Dirac operator. Beside relativistic
fermions, they are also appropriate to describe bipartite lattice

Hamiltonians with unbroken sublattice symmetry (SLS).
Examples include two-dimensional square and hexagonal
lattices, as well as three-dimensional cubic lattices with-
out mass/on-site term, the latter generically breaking SLS.
Here also, there are three classes, with (apart from their
chiral symmetry) the same symmetries as the Wigner-Dyson
classes.

Finally, four more classes of Bogoliubov–de Gennes (BdG)
Hamiltonians appear—the Altland-Zirnbauer classes5—when
normal metals are brought into contact with superconductors:
with SRS (C and CI) and without SRS (D and DIII), with
TRS (CI and DIII) and without TRS (C and D). When dealing
with such systems, we use a convention where the BdG
Hamiltonian reads

H =
(

h − μsc �

�∗ μsc − σ (y)h∗σ (y)

)
, (2)

with the Pauli matrix σ (y) acting on the spin degree of freedom
and the chemical potential μsc on the superconductor. With
this convention, used for example in Refs. 39 and 40, the
second-quantized Bogoliubov–de Gennes Hamiltonian is
1
2 c†H c, where

c† = (c†e↑,c
†
e↓,c

†
h↓, − c

†
h↑) (3)

with c
†
e↑ being the vector of creation operators for all k states

of spin-↑ electrons, etc. This has the hole sector rotated by
iσ (y) with respect to the Hamiltonian in Refs. 5 and 37. The
form of Eq. (2) has the advantage that upon assuming SRS (so
h∗ commutes with σ (y)), it immediately reduces to that used
in Refs. 7 and 41–43.

Reference 37 introduced a unifying tenfold classification
scheme for all the above Hamiltonians. They considered
TRS and particle-hole symmetry (PHS), which can both
be represented by antiunitary operators, and accordingly,
these two symmetries can be either broken, or unbroken.
In the former case, we represent this by a 0, while in the

TABLE I. The tenfold symmetry classification of Hamiltonians. The second column from the left refers to Cartan’s nomenclature for
symmetric spaces,5 the three middle columns indicate whether the classes have broken (0) or unbroken (±1) time-reversal (TRS), particle-hole
(PHS), and sublattice (SLS) symmetries, while the rightmost column mentions microscopic realizations in each class, with SC indicating the
presence of superconductivity. Aside from the indicated bipartite lattice models, with preserved sublattice symmetry, the chiral classes are also
realized in low-energy models for quantum chromodynamics.4 Spin rotational symmetry (SRS) is present in classes AI, BDI, C, and CI, absent
in classes AII, CII, D, and DIII, and irrelevant in classes A and AIII.

Symmetry class TRS PHS SLS Physical example

Wigner-Dyson A (unitary) 0 0 0 mag. flux (no SC)

AI (orthog.) +1 0 0 no mag. flux and no spin orbit (no SC)

AII (sympl.) −1 0 0 spin-orbit and no mag. flux (no SC)

Chiral AIII (unitary) 0 0 1 mag. flux and bipartite lattice (no SC)

BDI (orthog.) +1 +1 1 no mag. flux and no spin-orbit and bipartite lattice (no SC)

CII (sympl.) −1 −1 1 spin-orbit and no mag. flux and bipartite lattice (no SC)

Altland-Zirnbauer D 0 +1 0 SC, mag. flux, and spin orbit
C 0 −1 0 SC, mag. flux, and no spin orbit
DIII −1 +1 1 SC, no mag. flux, and spin orbit
CI +1 −1 1 SC, no mag. flux, and no spin orbit
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latter case, the antiunitary operator squares to either +1
or −1. A squared TRS of +1 corresponds to spinless or
integer-spin particles, while a squared TRS of −1 corre-
sponds to half-integer-spin particles. A squared PHS of +1
corresponds to triplet pairing, while a squared PHS of −1
corresponds to singlet pairing in a Bogoliubov–de Gennes
Hamiltonian.45 Naively one would think that this leads to
3 × 3 = 9 classes, however, there are two distinct possibilities
when both TRS and PHS are broken. In this case, the
symmetry represented by the product of the two antiunitary
operators gives either 0 (when the corresponding symmetry
is broken) or +1. This finally gives 3 × 3 − 1 + 2 = 10
symmetry classes again. Using the just defined three indices,
we summarize the ten symmetry classes in Table I, where we
additionally mention relevant physical realizations for each of
them.

In this classification, the possible symmetries that the
Hamiltonian H satisfies are (i) TRS : H = T HT −1, with T =
−iK , with the complex conjugation operator K in the spinless
case, and T = −iσ (y)K for spin-1/2 fermions, with the Pauli
matrix σ (y) acting in spin space; (ii) PHS : H = −PHP −1,
with P = −iσ (y)τ (y)K , with the Pauli matrix τ (y) acting in
Nambu space;46 (iii) SLS : H = −η(z)Hη(z), with the Pauli
matrix η(z) acting on sublattice space (bipartite lattices are
assumed here).

TRS, SRS, and SLS can be broken by an orbital mag-
netic field, spin-orbit interaction, and mass/on-site terms,
respectively. The Altland-Zirnbauer classes assume PHS,
which strictly speaking forces thermoelectric effects to vanish
identically. PHS can be broken, for instance, by moving
away in energy from the special ε = 0 symmetry point—
the superconductor’s chemical potential. This occurs upon
increasing the temperature, when the latter exceeds a Thou-
less energy scale, ET � τ−1

Andr, where the time scale τAndr

is related to the time it takes to impinge on or return
to the normal-metal/superconductor interface. This energy
is implicitly assumed to be much smaller than the super-
conductor’s critical temperature. Table II summarizes the
crossovers from the Altland-Zirnbauer to the Wigner-Dyson
classes as the temperature is raised such that the coherence
between electron and Andreev-reflected hole quasiparticle gets
lost. We will get back to this point in Sec. VII C below.
The existence of SLS also requires that the spectrum is
symmetric about zero energy, thus, at half-filling, SLS also
leads to the vanishing of thermoelectric effects, which one
recovers as the electrochemical potential is tuned away from
half-filling.

III. SYMMETRIES AND RECIPROCITIES
OF THE S-MATRIX

Our investigations are based on the scattering theory of
quantum transport,47,48 which, for noninteracting systems,
allows to straightforwardly derive Onsager reciprocity rela-
tions solely from the symmetries of the system’s scattering
matrix S.

Reciprocity relations for S follow directly from
microreversibility.47 They read49

S(H) = σ (y) ST(−H) σ (y) , (4)

where σ (y) is a Pauli matrix acting in spin space, and “T”
indicates the matrix transpose of spin, transport channel
and (with superconductivity) quasiparticle indices. Included
in Eq. (4) is the relation S(H) = ST(−H) valid when the
antiunitary TRS operator squares to 1 and SRS is not
broken. Equation (4) can be derived by constructing S first
with scattering states φnσ (H), then with their time-reversed
−iσ (y)Kφnσ (−H), with the complex conjugation operator K ,
and equating the two results.49 Equation (4) is intimately
related to Kramers degeneracy, which in the presence of TRS
(H = 0) follows from the symmetry property H = σ (y)H ∗σ (y)

of the Hamiltonian H . Specifying to half-integer-spin parti-
cles, it can equivalently be rewritten in a form that renders its
connection to microreversibility more evident:

Sμν

iσ,jσ ′ (H) = σσ ′Sνμ

jσ̄ ′,iσ̄ (−H) , (5)

where i,j are transport channel indices, μ,ν = e,h are quasi-
particle indices and σ̄ = −σ are spin indices.

Further relations can be constructed by combining Eqs. (4)
and (5) with additional symmetries of the S matrix. The latter
are obtained by translating PHS and SLS of the Hamiltonian
into symmetries of the S matrix. For this purpose, we use the
relation50

S(ε) = 1 + 2πiW †(H − ε − iπWW †)−1W , (6)

betweenS and H , with a rectangular matrix W that couples the
scatterer to external leads. We consider first PHS. The presence
of superconductivity requires to introduce electron and hole
quasiparticles, and when PHS is present, the energy spectrum
is symmetric about zero energy (taken as the chemical potential
of the superconductor). With the convention of Eq. (2),
PHS reads H = −σ (y)τ (y)H ∗σ (y)τ (y),51 with the minus sign
indicating how the symmetry of the energy spectrum differs
from Kramers degeneracy. From this we obtain52

S(H) = σ (y)τ (y) S∗(H) σ (y)τ (y) . (7)

TABLE II. Crossovers from the Altland-Zirnbauer to the Wigner-Dyson classes. Increasing the temperature breaks PHS so that the
quasiparticle excitation energy ε cannot be treated as small. One way to break PHS is to make (kBT0)τAndr not negligible, where τAndr is a
timescale associated with impinging on or returning to the superconducting contacts.

Symmetry class TRS PHS SLS Physical example

Crossovers D → A 0 +1 → 0 0 as D but (τAndrkBT0) is not small
for Andreev C → A 0 −1 → 0 0 as C but(τAndrkBT0) is not small
interfero. DIII → AII −1 +1 → 0 1 → 0 as DIII but (τAndrkBT0) is not small

CI → AI +1 −1 → 0 1→ 0 as CI but (τAndrkBT0) is not small
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S(−H)

FIG. 1. (Color online) Microreversibility operating on a two-
terminal S matrix in the absence (top) and in the presence of
superconductivity (bottom). The scattering amplitudes a and b

depend on spin indices, σ =↑ (+1), ↓ (−1), quasiparticle indices,
μ = e(+1), h(−1), and terminal indices 1 and 2. Time reversal
implies inverting the particle’s momentum, spin, and quasiparticle
isospin as well as magnetic fields and fluxes.

Combining Eqs. (4) and (7) and paying attention to the ordering
of spin-indices given in Eq. (3), one obtains

Sμν

iσ,jσ ′ (H) = [
S μ̄ν̄

iσ,jσ ′ (H)
]∗ = σσ ′Sνμ

jσ̄ ′,iσ̄ (−H)

= σσ ′[S ν̄μ̄

j σ̄ ′,iσ̄ (−H)
]∗

, (8)

where quasiparticle indices μ,ν = +1(e),−1(h) when they
appear as prefactors.

The reciprocity relations (4) and (7) for the S matrix are
illustrated in Fig. 1. We defined the S matrix via the relation
S a = b between vectors a and b of components for incoming
and outgoing quasiparticle flux amplitudes, respectively. Each
component of these vectors corresponds to a given terminal, a
transverse transport channel in that terminal, a spin orientation
and, in the presence of superconductivity, a quasiparticle index.
Complex conjugation in Fig. 1 and Eq. (4) occurs because TRS
and PHS are represented by antiunitary operators, i.e., products
of a unitary operator with complex conjugation.

We finally comment on SLS. The chiral Hamiltonian
symmetry reads H = −η(z) H η(z), with the Pauli matrix η(z)

acting in sublattice space. For the scattering matrix, this
translates into

S(H,ε) = η(z) S†(H,−ε) η(z) , (9)

where in contrast to earlier symmetry relations, we explicitly
had to write the energy-dependence of the S matrix. Combin-
ing Eqs. (4) and (9), one obtains

Smn
iσ,jσ ′ (H,ε) = mn

[
Snm

jσ ′,iσ (H,−ε)
]∗

= σσ ′Snm
jσ̄ ′,iσ̄ (−H,ε)

= mnσσ ′[Smn
iσ̄ ,j σ̄ ′(−H,−ε)

]∗
, (10)

where we introduced sublattice indices m,n = A(+1),B(−1).

IV. SCATTERING APPROACH TO TRANSPORT AND
FORMULATION OF THE PROBLEM

We consider a multiterminal device connected to i,j =
1,2, . . . ,N electrodes. The linear response relation is

⎛
⎜⎜⎜⎜⎜⎜⎝

Ji

I
(0)
i

I
(x)
i

I
(y)
i

I
(z)
i

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∑

j

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
(00)
ij �

(00)
ij �

(0x)
ij �

(0y)
ij �

(0z)
ij

B
(00)
ij G

(00)
ij G

(0x)
ij G

(0y)
ij G

(0z)
ij

B
(x0)
ij G

(x0)
ij G

(xx)
ij G

(xy)
ij G

(xz)
ij

B
(y0)
ij G

(y0)
ij G

(yx)
ij G

(yy)
ij G

(yz)
ij

B
(z0)
ij G

(z0)
ij G

(zx)
ij G

(zy)
ij G

(zz)
ij

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

Tj − T0

Vj − V0

μ
(x)
j /e

μ
(y)
j /e

μ
(z)
j /e

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11)

between heat Ji , electric I
(0)
i and spin I

(α)
i currents, on

the one hand, and temperatures Tj , voltages Vj , and spin
accumulations μ

(α)
j , on the other.

The coefficients with superindices (00) are the usual
thermoelectric coefficients, while the coefficients G(αβ) are
conductances and spin-dependent conductances, relating
electric and spin currents to electric voltages and spin
accumulations.53,54 Finally, one has spin Peltier matrix ele-
ments �(0β) connecting heat currents to spin accumulations and
spin Seebeck matrix elements B(α0) connecting spin currents
to temperature differences.55 The resulting spin caloritronic
(spin Seebeck and spin Peltier) effects have been investigated
theoretically56–59 and experimentally.60–62 As usual, we as-
sume that there is no spin relaxation in the terminals where
spin currents are measured, so that the latter are well defined.
Our goal is to determine reciprocity relations between the
elements of the Onsager matrix defined on the right-hand
side of Eq. (11) in the ten symmetry classes discussed in
Sec. II.3–5

We will express the matrix elements of the Onsager matrix
in Eq. (11) in terms of the S matrix. We discuss separately
purely metallic systems and hybrid systems consisting of
normal metallic components connected to superconductors.

A. Purely metallic systems

Purely metallic systems fall in either one of the Wigner-
Dyson or in one of the chiral classes. We start from the
expression for electric current in Ref. 47, extending it to
account for heat and spin currents, e.g., along the lines of
Refs. 44 and 53. This gives us the following linear relations
between electric, heat and spin currents, on one hand, and
voltages, temperatures and spin accumulations, on the other
hand;

Ji = 1

h

∫ ∞

−∞
dε

(
−∂f

∂ε

)
ε

∑
j,β

[
2Niδ0βδij − T (0β)

ij (ε)
]

× [
μ

(β)
j + δ0β ε(Tj − T0)/T0

]
, (12a)
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I
(α)
i = e

h

∫ ∞

−∞
dε

(
−∂f

∂ε

) ∑
j,β

[
2Niδαβδij − T (αβ)

ij (ε)
]

× [
μ

(β)
j + δ0β ε(Tj − T0)/T0

]
, (12b)

where the sums run over all terminal indices i and j and
all charge-spin indices α,β = 0,x,y,z. The electrochemical
potential in terminal j is μ

(0)
j = μF + eVj with the applied

voltage Vj and T0 is the base temperature about which
the Fermi function f = [exp(ε/T ) + 1]−1 is expanded. The
spin accumulations μ

(β)
j , β 	= 0, are one half times the β

components of the spin accumulation vector μj , giving
the difference in chemical potential between the two spin
species along the β axis, e.g., μ

(z)
j = [μ(↑)

j − μ
(↓)
j ]/2. They

are nonequilibrium spin accumulations whose origin is of little
importance here.

In Eq. (12), we introduced the spin-dependent transmission
and reflection coefficients

T (αβ)
ij = Tr

[
(Sij )†σ (α)

i Sij σ
(β)
j

]
, (13)

where σ (α), α = 0,x,y,z are Pauli matrices [σ (0) is the identity
matrix] and the trace is taken over both spin and transmission
channel indices. Note the position of the Pauli matrices, where
σ

(α)
i measures the spin in direction α as the electron exits the

systems, while σ
(β)
j measures it along β as the electron enters

the system.53,54 These coefficients depend on the energy ε of
the injected electrons, which we explicitly wrote in Eq. (12).
Reciprocity relations for the Onsager matrix elements in purely
metallic systems directly follow from combining Eq. (12) with
the transformation rules for the T (αβ)

ij under microreversibility.

Pauli matrices satisfy σ
(α)
ηη′ = (−1)nαηη′[σ (α)

η̄η̄′ ]∗ with nx,y,z = 1
and n0 = 0. Using this and Eq. (5), we obtain

T (αβ)
ij (H,ε) = (−1)nα+nβ T (βα)

ji (−H,ε) . (14)

Thus the reciprocity relation between spin-dependent trans-
mission coefficients in Eq. (14) picks up a minus sign if the
spin is resolved upon entering the system, and another if it is
resolved upon leaving the system.

B. Metallic systems with chiral symmetry

The chiral classes correspond to systems with a bipartite
lattice, however, currently no experiments are capable of
measuring sublattice-resolved currents. Thus the charge and
spin-transport is given by Eqs. (12) and (13), with the trace
over channels supplemented by a trace over the sublattice
indices (A and B sites). If one could measure sublattice
isospin current, then one would have to add further Pauli
matrices acting in sublattice space into Eq. (13), leading to
extra factors (−1)nα′ +nβ′ due to isospin in Eq. (14). We do not
consider this possibility further, due to its lack of physical
implementation.

A relevant consequence of SLS is however that from
Eq. (10), we get T (αβ)

ij (ε) = T (βα)
ji (−ε). Combining this

with Eq. (14), we obtain

T (αβ)
ij (H,ε) = T (βα)

ji (H, −ε) = (−1)nα+nβT (βα)
ji (−H,ε)

= (−1)nα+nβT (αβ)
ij (−H, −ε) . (15)

These relations are strictly valid only insofar as leads are
preserving SLS, meaning that they connect equally to both
sublattice sites of each unit cell.

C. Hybrid superconducting-normal metallic systems

Hybrid normal-metallic/superconducting systems have An-
dreev electron-hole scattering. This scattering may induce
PHS, in which case the system falls in one of the four
Altland-Zirnbauer symmetry classes in Table I.5

To include Andreev scattering, one has to consider two
kinds of quasiparticles (electrons and holes), which carry
excitation energy ±ε counted from the chemical potential of
the superconductor μsc. These quasiparticles are converted into
one another when they hit the superconductor. Reference 7
constructed a scattering theory of thermoelectric transport
which includes these effects. We need to include spin currents
and accumulations.

To do this, we go back to the derivation of the scattering
theory in terms of creation and annihilation operators acting on
scattering states in the lead (see, e.g., Ref. 41). We write hole
creation operators at energy ε, in terms of electron annihilation
operators at energy −ε as c(h)in/out†

i;n (ε) = c(e)in/out
i;n (−ε) with

c(h)in/out†
i;n =

⎛
⎝c

(h)in/out†
i;n↑

c
(h)in/out†
i;n↓

⎞
⎠, c(e)in/out

i;n =
(

c
(e)in/out
i;n↑

c
(e)in/out
i;n↓

)
.

Here, i gives the index of a transverse mode in the nth lead,
while “in” and “out” indicate whether the wave in that mode
is ingoing or outgoing. As these operators obey fermionic
commutation relations, one has

ce;in†
i;n (−ε) σ (α) ce;in

i;n (−ε) = σ 0δα0 − ch;in†
i;n (ε) σ (α)T ch;in

i;n (ε) ,

(16)

with a similar relation for outgoing waves. The transpose
in the second term is due to the fact that we commuted
the hole operators to ensure normal ordering. We then use
the scattering matrix to write outgoing operators in terms of
incoming ones. Contributions coming from the first term in
Eq. (16) cancel each other. We find that the operator which
gives the spin-current along axis α in the electron sector is σα

[as in Eq. (13)], while it is −σ T
α in the hole sector. Recalling

that we use the convention in Eqs. (2) and (3), we must also
rotate the spin-current operator in the hole sector. It becomes
−σ (y)σ (α)Tσ (y) = (−1)nα+1σ (α). Thus in this convention, we
can write this spin-current operator compactly as μnα+1σ (y)

which works for both electrons (μ = 1) and holes (μ = −1).
From here on, quasiparticle indices μ,ν = +1(e),−1(h) when
they appear as prefactors.

This calculation in terms of creation and annihilation
operators for electrons and holes gives us the scattering matrix
formula that we desire. Assuming that the number of transport
channels Ni is the same for each quasiparticle species, Eq. (12)
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JACQUOD, WHITNEY, MEAIR, AND BÜTTIKER PHYSICAL REVIEW B 86, 155118 (2012)

is replaced by

Ji = 1

h

∫ ∞

0
dε

(
−∂f

∂ε

)
ε

∑
j,β

{[
4Niδij −

∑
μ,ν

T (μν;00)
ij (ε)

]
δ0β ε(Tj − T0)/T0 −

∑
μ,ν

ν T (μν;0β)
ij (ε)μ(β)

j

}
, (17a)

I
(α)
i = e

h

∫ ∞

0
dε

(
−∂f

∂ε

)∑
j,β

{[
4Niδαβδij −

∑
μ,ν

μν T (μν;αβ)
ij (ε)

]
μ

(β)
j −

∑
μ,ν

μ T (μν;α0)
ij (ε) δ0β ε(Tj − T0)/T0

}
, (17b)

where the integrals now go over a range of positive excitation
energies7 and we defined μ

(0)
j = e(Vj − Vsc), i.e., voltages

are measured from the superconducting voltage Vsc = μsc/e.
We also introduced the spin-dependent, quasiparticle-resolved
transmission coefficients

T (μν;αβ)
ij = μnα νnβ Tr

[(
Sμν

ij

)†
σ

(α)
i Sμν

ij σ
(β)
j

]
, (18)

where Sμν

ij is the block of the S matrix corresponding to the
transmission of a quasiparticle of type ν = e,h in lead j to a
μ quasiparticle in lead i.

The main novelty brought about by superconductivity is that
the elements of the Onsager matrix now depend on Andreev
processes via hybrid transmission coefficients T (eh;αβ)

ij and

T (he;αβ)
ij , which contribute differently to heat versus electric

and spin currents—see in particular the last terms in Eqs. (17a)
and (17b). From Eq. (5), one obtains

T (μν;αβ)
ij (H,ε) = (−1)nα+nβT (νμ;βα)

ji (−H,ε) , (19)

which extends Eq. (14) to include superconductivity.
Equation (19) applies to any hybrid system, regardless of

whether PHS is present or not. If additionally, the system
has unbroken PHS, then the scattering matrix obeys Eq. (7),
i.e.,Sμν(H) = μν σ (y)[S μ̄ν̄(H)]∗σ (y), where, as before, μ,ν =
+1(e),−1(h). (Reference 7 has this formula for SRS, where
S∗ commutes with σ (y).) We substitute this into Eq. (19) and
then substitute σ (y)σ (α)σ (y) = (−1)nασ (α)T. Observing that the
trace is invariant under the transpose of its argument, we find

that PHS gives

T (μν;αβ)
ij (H,ε) = T (μ̄ν̄;αβ)

ij (H,ε)

= (−1)nα+nβ T (νμ;βα)
ji (−H,ε)

= (−1)nα+nβ T (ν̄μ̄;βα)
ji (−H,ε) . (20)

V. ONSAGER RELATIONS

Equations (12), (14), (17), (19), and (20) are all we need
to derive reciprocity relations between the coefficients of the
Onsager matrix in Eq. (11). Tables III–V provide a complete
list of all Onsager reciprocity relations for coupled electric,
thermoelectric and spin transport in single-particle Hamilto-
nian systems. The Onsager relations which can be derived from
microreversibility are divided into two sets. Firstly, Table III
gives the Peltier/Seebeck relations, between coefficients �(0β)

and B(β0). Secondly, Table IV gives the reciprocity relations
for conductances G

(αβ)
ij , �

(αβ)
ij . As an example, we note that

for both the Wigner-Dyson and chiral orthogonal classes, the
presence of SRS imposes T (αβ)

ij = T (00)
ij δαβ , while TRS gives

T (αβ)
ij = T (βα)

ji . Therefore when both symmetries are present

in those classes, X
(αβ)
ij = X

(αβ)
ji for X = �, �, B, and G. In

addition, there are those Onsager relations that can be derived
from either the conservation of quasiparticle species (absence
of Andreev processes turning e into h, and vice versa), or from
the presence of PHS or SLS. They are listed in Table V.

TABLE III. The Onsager reciprocity relations arising from microreversibility and which involve the Peltier and spin Peltier matrix elements
�(0β) and the Seebeck and spin Seebeck matrix elements B (β0). These relations, combined with those due to PHS or SLS in Table V, give the
complete set of Onsager relations for each symmetry class.

Seebeck-Peltier Onsager relations
Symmetry class from microreversibility

Wigner-Dyson A (unitary) B
(β0)
ij (H)T0 = (−1)nβ �

(0β)
ji (−H)

AI (orthog.) B
(β0)
ij T0 = �

(0β)
ji ∝ δ0β

AII (sympl.) B
(β0)
ij T0 = (−1)nβ �

(0β)
ji

Chiral AIII (unitary) B
(β0)
ij (H)T0 = (−1)nβ �

(0β)
ji (−H)

BDI (orthog.) B
(β0)
ij T0 = �

(0β)
ji ∝ δ0β

CII (sympl.) B
(β0)
ij T0 = (−1)nβ �

(0β)
ji

Altland-Zirnbauer D B
(β0)
ij (H)T0 = (−1)nβ �

(0β)
ji (−H)

C B
(β0)
ij (H)T0 = �

(0β)
ji (−H)

DIII B
(β0)
ij T0 = (−1)nβ �

(0β)
ji

CI B
(β0)
ij T0 = �

(0β)
ji ∝ δ0β
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TABLE IV. The Onsager reciprocity relations arising from microreversibility and which involve the electrical and spin-dependent
conductances G(αβ) and the heat conductance �(00). These relations, combined with those due to PHS or SLS in Table V, give the complete set
of Onsager relations for each symmetry class.

Onsager relations between conductances, X = G,�

Symmetry class from microreversibility

Wigner-Dyson A (unitary) X
(αβ)
ij (H) = (−1)nα+nβ X

(βα)
ji (−H)

AI (orthog.) X
(αβ)
ij = X

(βα)
ji ∝ δαβ

AII (sympl.) X
(αβ)
ij = (−1)nα+nβ X

(βα)
ji

Chiral AIII (unitary) X
(αβ)
ij (H) = (−1)nα+nβ X

(βα)
ji (−H)

BDI (orthog.) X
(αβ)
ij = X

(βα)
ji ∝ δαβ

CII (sympl.) X
(αβ)
ij = (−1)nα+nβ X

(βα)
ji

Altland-Zirnbauer D X
(αβ)
ij (H) = (−1)nα+nβ X

(βα)
ji (−H)

C X
(αβ)
ij (H) = X

(βα)
ji (−H)

DIII X
(αβ)
ij = (−1)nα+nβ X

(βα)
ji

CI X
(αβ)
ij = X

(βα)
ji ∝ δαβ

Some important features are that (i) in multiterminal devices
one needs to consider conductance, Seebeck and Peltier matri-
ces, and the reciprocity relations require to take their transpose,
the latter operation being tantamount to momentum inversion
as required by microreversibility, (ii) spin transport introduces
additional minus signs every time a spin is measured, (iii) exact
PHS leads to the disappearance of thermoelectric and spin
caloritronic effects, and (iv) at half-filling, exact SLS leads to
the disappearance of thermoelectric but not spin caloritronic
effects.

That thermoelectric and spin caloritronic effects vanish in
the presence of PHS directly follows from Eq. (18) that trans-
mission coefficients satisfy T (μν;αβ)

ij = T (μ̄ν̄;αβ)
ij when PHS is

strictly enforced. This gives, in particular,
∑

ν νT (μν;αβ)
ij =∑

μ μT (μν;αβ)
ij = 0 which, together with Eq. (17), directly

gives B
(0α)
ij (H) = �

(α0)
ij (H) = 0.

The vanishing of thermoelectric effects with PHS is remi-
niscent of Mott’s relation, giving that the Seebeck coefficient
is proportional to the derivative of the conductance at the
Fermi energy; the latter vanishes in PHS systems. Still, hybrid
normal metallic/superconducting systems often exhibit larger
thermoelectric effects than their purely metallic counterpart,
which typically happens in the crossover regime between
Altland-Zirnbauer and Wigner-Dyson symmetry classes. For
the crossover systems described in Table II, thermoelectric
effects can be quite large.12–14

We close this section with two comments on SLS at
half-filling, when the chemical potential is at zero energy.
Systems in the chiral symmetry classes have transmission
coefficients with extra symmetries given in Eq. (15). The latter
have important consequences for the symmetry of transport,
if the trace over the sublattice index in Eq. (13) involves only
pairs of sublattice sites, i.e., when SLS is not broken by the
terminals. When this is the case, the first and second equalities

TABLE V. Additional reciprocity relations induced by the conservation of each quasiparticle species (absence of Andreev reflection from
e to h), or by the presence of PHS or SLS, to be added to the Onsager relations in Tables III and IV. The additional relation between B and its
transpose (and an identical one, not listed here, between � and its transpose) in the Wigner-Dyson classes was first noticed in Ref. 44, which
allows one to express the Seebeck/Peltier relation of Table III in two different but equivalent ways. Thermoelectric and spin caloritronic effects
disappear identically in the presence of PHS. The relations in the chiral classes correspond to transport at half-filling, E = 0. Outside of this
regime, chiral systems have the same relations as in the (corresponding) Wigner-Dyson classes.

Symmetry class Special additional relations

Wigner-Dyson A (unitary) B
(00)
ij (H) = B

(00)
ji (−H)

AI (orthog.) B
(00)
ij = B

(00)
ji

AII (sympl.) B
(00)
ij = B

(00)
ji

Chiral AIII (unitary) X
(αβ)
ij (H) = X

(αβ)
ij (−H) for X = {G,�}, B

(β0)
ij (H) = B

(β0)
ij (−H), B

(00)
ij (H) = 0

(half-filling only) BDI (orthog.) B
(β0)
ij = �

(0β)
ij = 0

CII (sympl.) B
(β0)
ij = �

(0β)
ij = 0

Altland-Zirnbauer D B
(β0)
ij (H) = �

(0β)
ij (H) = 0

C B
(β0)
ij (H) = �

(0β)
ij (H) = 0

DIII B
(β0)
ij = �

(0β)
ij = 0

CI B
(β0)
ij = �

(0β)
ij = 0
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in Eq. (15), together with Eq. (12), give G
(αβ)
ij (H) = G

(βα)
ji (H)

and G
αβ

ij (H) = (−1)nα+nβ G
βα

ji (−H), respectively, where we
recall that n0 = 0 and nx,y,z = 1. We obtain identical results
for �

(00)
ij and thus conclude that

G
(αβ)
ij (H) = (−1)nα+nβ G

(αβ)
ij (−H),

(21)
�

(00)
ij (H) = �

(00)
ij (−H) .

We see that charge conductance, spin conductances, and
thermal conductance are even in external fields,H, irrespective
of how many terminals the device has. This is in contrast
to normal-metallic systems without SLS, where only two-
terminal devices have conductances even in H. In contrast,
spin-to-charge and charge-to-spin conversions are strictly odd
in H, irrespective of how many terminals the device has.

Turning to thermoelectric and spin caloritronic effects, the
first equality in Eq. (15) gives B

(β0)
ij (H) T0 = −�

(0β)
ji (H), while

the second equality in Eq. (15) gives us the usual relation
B

(β0)
ij (H) T0 = (−1)nβ �

(0β)
ji (−H). Thus we can conclude that

B
(β0)
ij (H) = B

(β0)
ij (−H) for β ∈ {x,y,z}, (22a)

B
(00)
ij (H) = 0, (22b)

with identical relations for �
(0β)
ij . Additionally, any system

with PHS has no thermoelectric nor spin caloritronic response.
Looking at Table I, we see that only the AIII symmetry class
has SLS without PHS. Thus in this symmetry class, the spin
Seebeck and spin Peltier coefficients are even functions of
the external field, H, while the usual Seebeck and Peltier
coefficients vanish identically.

We stress, however, that the analysis leading to Eqs. (21)
and (22) holds only at half-filling, when the Fermi function in
Eq. (12) is symmetric around ε = 0, and, perhaps physically
more important, when the terminals do not break SLS. This
requires leads to be connected with equal strength to both
sublattice sites in each unit cell.

VI. EXAMPLES OF RECIPROCITY RELATIONS IN
SPINTRONICS AND SPIN CALORITRONICS

A. Spin Hall and inverse spin Hall effects

As a first example of the reciprocities we derived, we dis-
cuss the spin Hall20,54,64–66 and the inverse spin Hall20,26–30,53

effects. The two effects are sketched in Fig. 2. In the spin
Hall effect, Fig. 2(a), one passes an electric current between
terminals 1 and 2 and measures the spin current between
terminals 3 and 4. The voltages at terminals 3 and 4 are set
such that no current flows through them on time average. In
the limit of large and identical number of channels in each
terminal, N � 1, the voltages V3 and V4 lie almost exactly
in the middle between V1 and V2, V3,4 � (V1 + V2)/2 for
ballistic systems.54 We assume that this is the case here, and
set V1 = V/2, V2 = −V/2, and V3,4 = 0.

The presence of spin-orbit coupling inside the system gen-
erates a spin current flowing through the transverse terminals.
When all terminals are at zero temperature, these currents are

3

(b)(a)

1 2

3

4 4

1 2
I I1 I2

Is

Is
3

Is
4

V/2 −V/2

μs/2e

−μs/2e

FIG. 2. (Color online) Sketch of a four-terminal spin-Hall
(a) and inverse spin Hall (b) experiment. (a) In the spin Hall effect,
an electric current (blue arrow) generates transverse spin currents
(red) via the action of spin-orbit coupling. (b) In the inverse spin Hall
effect, spin accumulations inject a spin current (blue arrow) which,
in the presence of spin-orbit coupling, generates a transverse electric
current (red).

given by

I
(α)
3 = −e2V

2h

[
T (α0)

31 − T (α0)
32

]
, (23a)

I
(α)
4 = −e2V

2h

[
T (α0)

41 − T (α0)
42

]
. (23b)

In the inverse spin Hall effect, Fig. 2(b), there is no
voltage bias, but instead terminals 3 and 4 have opposite spin
accumulations. In an idealized situation, they will be ±μ(α)/2.
Spin-orbit coupling converts this spin accumulation into a
transverse electric current. The currents in terminals 1 and
2 read

I
(0)
1 = −eμ(α)

2h

[
T (0α)

13 − T (0α)
14

]
, (24a)

I
(0)
2 = −eμ(α)

2h

[
T (0α)

23 − T (0α)
24

]
. (24b)

In both cases, the Hall part of the currents, flowing between
3 and 4 in the case of the spin Hall effect and between 1
and 2 in the case of the inverse spin Hall effect, is given by
the difference in the two currents. We define spin Hall and
inverse spin Hall conductances as I

(α)
sHe = I

(α)
3 − I

(α)
4 = GsHeV

and I
(0)
isHe = I

(0)
2 − I

(0)
1 = GisHe μ(α)/e. One obtains

GsHe = − e2

2h

[
T (α0)

31 − T (α0)
32 − T (α0)

41 + T (α0)
42

]
, (25a)

GisHe = − e2

2h

[
T (0α)

23 − T (0α)
24 − T (0α)

13 + T (0α)
14

]
. (25b)

Together with Eqs. (14) and (25a) gives GsHe = GisHe. The
reciprocity between direct and inverse spin Hall conductances
is exact and does not require sample averaging, as sometimes
claimed.20

B. Reciprocity between spin injection and
magnetoelectric spin currents

For a spin index β = 0, Eqs. (14) and (19) establish the
reciprocity between magnetoeletric effects generating spin
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currents from electric voltage biases and spin injection from
spin accumulations in the terminals, a special case of which is
the above-discussed spin Hall effect/inverse spin Hall effect
reciprocity. In the presence of TRS, it has already been
observed that one consequence of Eq. (5) is that no spin current
can be magnetoelectrically generated in a two-terminal device
if the exit lead carries a single (spin-degenerate) transport
channel. The reciprocity relations of Eqs. (14) and (19) further
impose that a spin injection from such a terminal is incapable of
generating an electric current, unless one goes to the nonlinear
regime.35 This seems not to have been noted so far.

C. Spin Seebeck and spin Peltier coefficients in
two-terminal geometries

In two-terminal geometries, the electric conductance is
symmetric in TRS breaking fields, which follows from current
conservation or gauge invariance, together with the symmetry
of electric reflection coefficients, G

(00)
ii (H) = G

(00)
ii (−H) (see

e.g. Ref. 47). Including spin-transport, the unitarity of the
scattering matrix further results in spin-current conservation
and generalized gauge invariance,∑

i

[
2Niδ0αδij − T (0α)

ij

] = 0,

(26)∑
j

[
2Niδ0αδij − T (α0)

ij

] = 0,

under the assumption that the number of transport channels
coupling the system to external reservoirs is spin independent.
In two-terminal geometries, this gives

B
(β0)
11 + B

(β0)
12 = B

(β0)
21 + B

(β0)
22 = 0 ,

(27)
�

(0β)
11 + �

(0β)
21 = �

(0β)
12 + �

(0β)
22 = 0 .

However, unlike for the charge conductance, the thermoelec-
tric reflection coefficients can have both a symmetric and
an antisymmetric component. This is directly seen from the
expression

B
(β0)
ii (H) = −e

h

∫
dε

(
−∂f

∂ε

)
ε

T0
T (β0)

ii (H,ε) (28)

for the spin Seebeck reflection coefficient. For example, for
β = z, the spin-dependent transmission coefficient in the
integrand reads

T (z0)
ii = T (z0)

s − T (z0)
a , (29a)

T (z0)
s ≡ Ti↑,i↓ − Ti↓,i↑, (29b)

T (z0)
a ≡ Ti↑,i↑ − Ti↓,i↓ , (29c)

which, from Eq. (5), has both symmetric T (z0)
s (H) =

T (z0)
s (−H) and antisymmetric T (z0)

a (H) = T (z0)
a (−H)

components.
An interesting example is provided by a two-terminal

system with a well-defined spin quantization axis. This is the
case, for example, for a system without spin-orbit coupling
in a uniform Zeeman field, for two-dimensional systems with
both Rashba and Dresselhaus spin-orbit interactions of equal
strengths,67 or for a system with pure �l · �s spin-orbit coupling.
Without loss of generality we define the spin quantization

axis as the z axis. Then S commutes with σ (z), i.e., it is
diagonal in spin space. From Eq. (13), we find that T (z0)

ij (H) =
T (0z)

ij (H) and T (α0)
ij (H) = 0 when α = x,y. Combining this

with Eqs. (26), we have T (z0)
12 (H) = T (0z)

12 (H) = T (z0)
21 (H) =

T (0z)
21 (H). Thus

B
(z0)
12 (H)T0 = �

(0z)
12 (H), (30)

with �
(0α)
12 (H) = 0 when α = x,y. Next we recall that the

Seebeck-Peltier Onsager relations contain an extra minus sign
for spin caloritronic effects compared to usual thermoelectric
effects (see Table III). This extra minus sign means that B

(z0)
12

and �
(0z)
12 are odd in H, while B

(00)
12 and �

(00)
12 are even in H.

Thus any two-terminal system with a spin-quantization axis
will have spin Seebeck and spin Peltier effects that are odd
functions of TRS breaking fields, while the normal Seebeck
and Peltier effects are even function of those fields.

VII. EXAMPLES OF RECIPROCITY RELATIONS IN
THERMOELECTRICITY WITH HYBRID SYSTEMS

Thermoelectric effects in the presence of superconductivity,
in particular, the thermopower S = −B(00)/G(00) and thermal
conductance �(00), have attracted quite some experimental12–14

and theoretical interest.7–11,15,16 However, the exact form that
the Seebeck-Peltier Onsager reciprocity relation takes has
never been clarified, despite the fact that two-terminal devices
with superconductors usually exhibit odd Seebeck coefficients
S(H) = −S(−H), in stark contrast with Mott’s relation.68

Mott’s relation between the thermopower of metallic systems
at low temperature and the energy derivative of the conduc-
tance at the Fermi energy, reads

S = −π2k2
BT

3e
∂E lnG(EF) , (31)

and thereby indicates that S should be even in H. This
evenness of S is confirmed by the scattering theory for metallic
systems.44 In this section, we provide examples clarifying this
issue using scattering theory to show that S can have any
symmetry underH → −H when superconductors are present.

A. Seebeck-Peltier reciprocity relation

Andreev scattering strongly influences the Seebeck-Peltier
reciprocity relation between � and B coefficients. Comparison
of the last terms in Eqs. (17a) and (17b) shows that the ee and
hh terms in � and B have the same sign, while the eh and
he terms acquire a relative minus sign. This breaks one of the
Onsager relations between Peltier and Seebeck coefficients.
For metallic systems, one has both B

(00)
ij (H)T0 = �

(00)
ji (−H)

and B
(00)
ij (H)T0 = �

(00)
ij (H),44 however, with superconductiv-

ity, only B
(00)
ij (H)T0 = �

(00)
ji (−H) holds.

When PHS strictly holds, however,
∑

ν νT (μν;αβ)
ij =∑

μ μT (μν;αβ)
ij = 0 and both � and B coefficients vanish

identically, regardless of the temperature. However, interesting
thermoelectric effects appear in hybrid systems when PHS is
broken. Focusing on a two-terminal geometry, as depicted in

155118-9
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FIG. 3. (Color online) An Andreev interferometer: two-terminal
hybrid system with two normal metallic/superconducting contacts
with tunable superconducting phase difference φSC. The latter,
together with a systematic delay (indicated by the extra length �)
towards one of the superconducting contacts can break PHS and
generate finite thermoelectric effects.10 The particular symmetry class
in which the system falls is given by how much magnetic field H and
how much spin-orbit coupling there is in the dot, see Table I.

Fig. 3, Eq. (17) can be rewritten in the form(
J

I

)
=

(
� �

B G

)(
�T

�V

)
, (32)

which depends only on the voltage and temperature differ-
ences between the two normal reservoirs. The two-terminal
thermoelectric coefficients are given by

G = G
(00)
11 −

[
G

(00)
11 + G

(00)
12

][
G

(00)
11 + G

(00)
21

]
G

(00)
11 + G

(00)
22 + G

(00)
12 + G

(00)
21

, (33a)

� = �
(00)
11 −

[
�

(00)
11 + �

(00)
12

][
B

(00)
11 + B

(00)
21

]
G

(00)
11 + G

(00)
22 + G

(00)
12 + G

(00)
21

, (33b)

B = B
(00)
11 −

[
G

(00)
11 + G

(00)
12

][
B

(00)
11 + B

(00)
21

]
G

(00)
11 + G

(00)
22 + G

(00)
12 + G

(00)
21

, (33c)

� = �
(00)
11 −

[
�

(00)
11 + �

(00)
12

][
G

(00)
11 + G

(00)
21

]
G

(00)
11 + G

(00)
22 + G

(00)
12 + G

(00)
21

. (33d)

in terms of the coefficients X
(00)
ij (X = G,B,�,�) defined by

Eqs. (11) and (17).
It is then straightforward to see that the reciprocity relations

read specifically
G(H) = G(−H) , (34a)

�(H) = �(−H) , (34b)

B(H) T0 = �(−H) . (34c)

In particular, the presence of superconductivity forces one
to invert the sign of the TRS breaking field in the relation of
Eq. (34c) between Seebeck and Peltier coefficients.

B. Symmetry of the thermopower

The symmetry of the two-terminal thermopower,
S = −B(00)/G(00) is not specified in the presence of
superconductivity.10 The Seebeck coefficients read

B
(00)
ij (H) = 2e

hT0

∫ ∞

0
dε (−∂εf ) ε

× [
T (ee;00)

ij (ε,H) + T (eh;00)
ij (ε,H)

− T (he;00)
ij (ε,H) − T (hh;00)

ij (ε,H)
]
. (35)

From this expression, we see that thermoelectric effects
vanish, B

(00)
ij = 0, if PHS is enforced; we thus consider this

equation in the absence of PHS. From Eq. (5), we know
that T (μμ;00)

ii (ε,H) = T (μμ;00)
ii (ε,−H), while T (eh;00)

ii (ε,H) =
T (he;00)

ii (ε,−H). Together with unitarity,
∑

j,ν T
μν

ij (ε,H) =
N

μ

i and assuming that the number N
μ

j of transport channels
depends neither on the quasiparticle type nor on the magnetic
field, we readily obtain that B

(00)
ij (H) = B(00)

even(H) + B
(00)
odd (H)

is the sum of an even and an odd component,

B(00)
even(H) = 2e

hT0

∫ ∞

0
dε (−∂εf ) ε

× [
T (ee;00)

ij (ε,H) − T (hh;00)
ij (ε,H)

]
, (36a)

B
(00)
odd (H) = 2e

hT0

∫ ∞

0
dε (−∂εf ) ε

× [
T (eh;00)

ij (ε,H) − T (he;00)
ij (ε,H)

]
, (36b)

where B(00)
even(−H) = B(00)

even(H) and B
(00)
odd (−H) = −B

(00)
odd (H).

In the absence of Andreev scattering, B(00)(H) = B(00)
even(H)

is strictly even in two-terminal geometries, however, Andreev
scattering gives rise to an odd component. The asymmetric
Andreev interferometers considered in Ref. 10 were devised
to render B

(00)
odd (H) finite on mesoscopic average, which

led to an antisymmetric thermopower in such systems.
There are currently no known hybrid systems which have
a finite-average B(00)

even(H). Recent theoretical works pointed
out asymmetries in the thermopower of metallic systems
in the presence of inelastic scattering, which is of interest
because asymmetric thermopower may lead to more effi-
cient thermal engines.71,72 Hybrid systems are examples of
systems with purely elastic scattering and antisymmetric
thermopower.

C. Onset of thermoelectric effects upon breaking of PHS

Thermoelectric effects vanish identically in all Altland-
Zirnbauer symmetry classes because of PHS. However, in
physical systems, PHS is often at least partially broken,
leading to finite thermoelectric effects. Here, we show that the
symmetry of such thermoelectric effects is subtly dependent
on how PHS symmetry is broken.

To that end, we consider the Andreev interferometer shown
in Fig. 3. A two-terminal chaotic ballistic or disordered
diffusive quantum dot is connected to a superconducting loop
via two contacts. The superconducting phase difference at
the two contacts can be tuned by a magnetic flux piercing
the loop. There are two important time scales in the system,
(i) the typical time τAndr between two consecutive Andreev
reflections at the superconducting contact, and (ii) the escape
time τesc to one of the normal leads. We additionally choose
a special geometry where the average time to reach one of
the two superconducting contacts from one of the normal
leads is longer—this is achieved by an extra ballistic “neck”
of length � between the cavity and the superconducting
contact (see Fig. 3). Because of the neck, quasiparticles
need an additional time delay δτ = �/vF to reach the left
superconducting contact from a normal lead. Together with
this time delay, a magnetic flux piercing the superconducting
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(αβ)
ij (H) = (−1)nα+nβ G
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ji (−H)

B
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FIG. 4. (Color online) Venn diagram summarizing the Onsager relations we derived. Here, α,β ∈ {0,x,y,z}, n0 = 0, and nx = ny = nz = 1.
Any system obeys the relations given in all boxes it is within. For instance, the Onsager relations for a generic system with time-reversal
symmetry (TRS) read G

(αβ)
ij = (−1)nα+nβ G

(βα)
ji and B

(β0)
ij T0 = (−1)nβ �

(0β)
ji , since TRS requires that any external magnetic field H = 0. If

that system also had SRS, then the only nonzero coefficients are those with repeated upper indices (α = β for G and β = 0 for B) for
which G

(ββ)
ij = G

(ββ)
ji and B

(00)
ij T0 = �

(00)
ji . If the system contains no Andreev reflection (i.e., no superconductors), one additionally has44

B
(00)
ij (H) = B

(00)
ji (−H). In the case of PHS and SLS, the extra symmetry relations derived in the text are summarized in Table V.

loop and making the superconducting phase difference φsc

finite also breaks PHS, thereby turning thermoelectric effects
on.10,11

Formally, PHS requires that τAndr → 0, which practically
means that τAndr has to be smaller than any other time scale
and any other inverse energy scale. When this is not the case,
transport processes without any Andreev reflection exist, giv-
ing contributions to the conductance that fluctuate randomly
in energy around the Fermi energy. This breaks PHS and leads
for instance to finite, albeit relatively weak, thermopower.69,70

More generally, breaking PHS can be achieved in three
different ways: (i) rendering escape into the normal leads
faster (for instance by widening the normal leads), until τesc ∼
τAndr, (ii) raising the temperature until (k‘BT )−1 ∼ τAndr, or
(iii) changing the flux through the superconducting loop so
that φSC 	= 0,π , when the neck length � is finite. In case
(i), a significant proportion of quasiparticles go from one
normal lead to another without Andreev reflection. Then
contributions to T (μμ;αβ)

ij (H) that arise from processes without
Andreev reflections will start to dominate thermoelectric
transport, meaning B(00)

even � B
(00)
odd [as defined in Eq. (36)].

Thus thermoelectric effects acquire the same symmetry as
systems without SC contacts, i.e., they become predominantly
even.

The situation is more complicated in case (ii), where both
T (μμ;αβ)

ij (H) and T (μμ;αβ)
ij (H) have similar magnitude. In the

absence of a neck, � = 0, thermoelectric effects vanish on
average and are dominated by mesoscopic fluctuations.10,11 An
analysis of these mesoscopic fluctuations analogous to that in
Ref. 10 shows that there is no correlation between B

(00)
ij (H) and

B
(00)
ji (−H), so that the thermoelectric effects have no particular

symmetry beyond the generic Onsager reciprocities given in
Table III. In particular, for a two-terminal device, B(00)

even and
B

(00)
odd are independent random variables with the same variance.

Thus for a given Andreev interferometer (given disorder or
cavity shape) either quantity could be positive or negative, and
either could have a larger magnitude than the other.

Finally in case (iii), the physics changes completely. Due to
the presence of a finite-sized neck, � 	= 0, and superconducting

phase difference φsc 	= 0,π , the system develops a large
average thermopower, which is an odd function of the flux
φsc

8–11 with a much smaller even component coming from
mesoscopic fluctuations.10

In summary, depending on how particle-hole symmetry is
broken, one gets a thermopower that is predominantly even in
H [case (i)], predominantly odd in H [case (iii)], or that has
no particular symmetry [case (ii)].

VIII. CONCLUSIONS

We have derived a complete list of reciprocity relations
for coupled electric, spin, thermoelectric and spin caloritronic
transport effects in all ten symmetry classes for single-particle
Hamiltonian systems. Several of these relations appeared in
one way or another in earlier works, and the main novelties we
found are (i) reciprocities in spintronics and spin caloritronics
pick a number of additional minus signs reflecting spin current
injection and measurement, (ii) a number of special relations
have been listed in Table V, which exist only in specific
symmetry classes, (iii) we clarified the exact form of Onsager
relations in the presence of superconductivity, and (iv) we
derived all Onsager relations for transport in spintronics
and spin caloritronics in the presence of superconductivity.
We present a pictorial summary of the Onsager reciprocity
relations we derived in Fig. 4.

Generally speaking, our investigations of the specific
reciprocities shown in Table V allowed us to clarify the
form that the Seebeck-Peltier relations take in the presence
of superconductivity. While the two relations, B

(00)
ij (H)T0 =

�
(00)
ij (H) and B

(00)
ij (H)T0 = �

(00)
ji (−H) exist in purely metallic

systems, only one of these two Onsager relations survives in
the presence of superconductivity, that being B

(00)
ij (H)T0 =

�
(00)
ji (−H).

Note added in proof. We have recently become aware
of experiments in the group of H. Linke to directly study
the Onsager relations for thermoelectric transport in a four-
terminal nanostructure.73
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