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Phonon band structures of three-dimensional pentamode metamaterials
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Three-dimensional pentamode metamaterials are artificial solids that approximately behave like liquids, which
have vanishing shear modulus. Pentamodes have recently become experimental reality. Here, we calculate
their phonon band structures for various parameters. Consistent with static continuum mechanics, we find
that compression and shear waves exhibit phase velocities that can realistically be different by more than one
order of magnitude. Interestingly, we also find frequency intervals with more than two octaves bandwidth in
which pure single-mode behavior is obtained. Herein, exclusively compression waves exist due to a complete
three-dimensional band gap for shear waves and, hence, no coupling to shear modes is possible. Such single-mode
behavior might, e.g., be interesting for transformation-elastodynamics architectures.
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Artificial materials called metamaterials have recently
started to emerge in acoustics and elastodynamics; for ex-
ample, see Refs. 1–9. This field is driven by the quest
for more control on elastic/acoustic waves, inspired by
corresponding progress on three-dimensional metamaterials in
electrodynamics/optics (for recent reviews, see Refs. 10 and
11). Three-dimensional (3D) pentamode metamaterials can be
seen as the elastodynamic counterpart of 3D magnetodielectric
metamaterials in optics in the following sense: in 3D trans-
formation optics,12,13 magnetodielectrics enable anisotropies
without birefringence and, hence, an optical wave impinging
onto some structure with a certain polarization also emerges
with that polarization and does not generate partial waves
with other polarizations. In mechanics or, more precisely,
in elastodynamics, normal spatially inhomogeneous elastic
solids would couple compression and shear waves.4,14–18 Thus
an incident compression wave would lead to emerging shear
waves as well, making the realization of transformation-
elastodynamic structures in three dimensions impossible.
Pentamodes are a mathematical ideal14,19 for which the shear
modulus is strictly zero, thus no shear modes exist at finite
frequencies. Recently, we have fabricated 3D microstructures7

that approach the pentamode ideal in that the effective bulk
modulus computed within static continuum mechanics is more
than three orders of magnitude larger than the effective shear
modulus.

However, it is not obvious how these static results can
be translated to the dynamic case, i.e., to phonon waves.
For example, one would like to know the phase velocities
of the different modes. The moduli are known from static
continuum mechanics. For obtaining knowledge on phase
velocities, one additionally needs the effective mass densities.
It is known that the dynamic effective mass density can be
distinct from the static mass density as one would determine
by using a mass balance (see, e.g., Refs. 20–22). Furthermore,
it has not been clear up to which maximum operation
frequency pentamodes would keep their desired effective
material properties. Band structures have been published
for honeycomb-lattice structures23 that may be seen as the
two-dimensional counterpart of pentamodes (i.e., as bimodes),

but not for three-dimensional pentamodes so far. Thus, in
this paper, we compute and discuss pentamode phonon band
structures systematically as a function of the underlying
structure parameters. To connect to our previous static work7

and to allow for a direct comparison, we choose parameters
for the constituent material corresponding to our recent work.

Figure 1(a) recalls the structure approximating the penta-
mode ideal suggested by Milton and Cherkaev.19 Both the
extended face-centered-cubic (fcc) cell with lattice constant a

and the primitive cell (black) are depicted. Cones touch each
other at their thin ends with diameter d. These connection
points form a diamond lattice. Pairs of cones are connected
at their thick ends with diameter D. The length of the
double cones is then given by h = √

3 a/4. Panel (b) of
Fig. 1 illustrates the corresponding body-centered-cubic (bcc)
Brillouin zone (i.e., that of diamond). The usual characteristic
points are indicated, aiming at easing the interpretation of the
corresponding band structures shown in Figs. 2 and 5.

For the numerical calculation of the pentamode band
structure, we choose a polymer as constituent material with
Young’s modulus 3 GPa, Poisson’s ratio 0.4, and mass density
ρ = 1190 kg/m3 (as previously7). We solve the elastodynamic
equations14 in vacuum. The results should also be applicable
to pentamodes in air as long as the air speed of sound does not
match that of the pentamode branches, in which case strong
coupling could occur. The coupled elastodynamics-acoustics
problem has only been addressed in very rare cases.24 The
scalability of the elastodynamic equations allows us to easily
translate our results to other choices of the Young’s modulus,
provided the Poisson’s ratio as well as the structure parameters
are fixed. For example, if one increases the Young’s modulus
by factor 100, the frequency increases by the square root,
i.e., by factor 10. We use a commercial software package
(COMSOL Multiphysics, MUMPS solver) with Bloch boundary
conditions imposed for the primitive real-space cell shown in
Fig. 1(a). We have carefully checked that all results depicted
are converged. Typically, convergence is achieved by using
around 4 × 104 tetrahedra in one primitive real-space cell.
Also, we choose a = 37.3 μm throughout as previously.7 The
right-hand side vertical frequency scale in Fig. 2 is in S.I. units.
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FIG. 1. (Color online) (a) Illustration of the structure approximat-
ing the pentamode metamaterial ideal considered in this paper. Both
the extended face-centered-cubic (fcc) unit cell (red) and the primitive
cell (black) are shown. (b) Corresponding body-centered-cubic (bcc)
Brillouin zone. The characteristic points are indicated, aiming at
easing the interpretation of the band structures in Figs. 2 and 4.

On the left-hand side vertical scale, we also show the a/λ ratio
as a normalized and more universal frequency scale. Here, λ

is the wavelength of sound in air, for which we have taken a
standard sound velocity of 343 m/s. For example, a ratio of
a/λ = 0.1 means that the air wavelength is ten times larger
than the lattice constant a (whatever the value of a might be).
The usual tour through the Brillouin zone on the horizontal
axis is parameter-independent anyway.

In Fig. 2, we fix D = 3 μm and vary d from (a) 3 μm
to (b) 0.55 μm to (c) 0.2 μm (compare insets in Fig. 4).
Note the different vertical scales. The branches emerging
from the � point [i.e., wave vector = (0,0,0); see Fig. 1(b)]
are the dispersions of the “acoustic” shear and compression
waves, respectively. Their slopes are the corresponding phase
velocities (see red straight lines). Obviously, the ratio of
the slopes increases with decreasing diameter d. This trend
was to be expected from the static continuum-mechanics
calculations in Ref. 7. A large ratio of the slopes is desirable
for transformation elastodynamics, because it suppresses
undesired coupling between shear and compression waves in
spatially inhomogeneous architectures. We will come back
to the dependence of this ratio below. Furthermore, the gray
regions in Fig. 2 highlight frequency intervals in which only
a single phonon mode exists in the pentamode structure.
The relative width of the lower frequency interval increases

(a)

(b)

(c)

FIG. 2. (Color online) Calculated band structures for the penta-
modes shown in Fig. 1. The fixed parameters are a = 37.3 μm (hence
h = 16.15 μm) and D = 3 μm. The diameter of the connection
region d (see Fig. 1) is varied from (a) 3 μm to (b) 0.55 μm to
(c) 0.2 μm. The red straight lines are fits to the dispersion branches of
interest in this paper. They correspond to phase velocities of (a) cG =
198 m/s and cB = 596 m/s, (b) cG = 25 m/s and cB = 363 m/s,
and (c) cG = 6 m/s and cB = 240 m/s. In the regions highlighted
in gray, only a single phonon mode occurs due to a complete
three-dimensional band gap for shear waves. By the scalability of
the problem one can, for example, simultaneously replace μm by
mm and MHz by kHz.

with decreasing diameter d from (a)–(c) in Fig. 2. Our
previous experiments7 have realized about d = 0.55 μm. In
the corresponding Fig. 2(b), the upper frequency bound of this
interval is more than two octaves larger than its lower bound. In
these single-mode regimes, only compression waves exist and
shear waves are suppressed by a complete three-dimensional
band gap. We will speculate about possible applications of this
finding at the end of this paper. At yet higher frequencies, we
find the usual “spaghetti” region.

Examples of mode shapes are depicted in Fig. 3. Here we
choose parameters as in Fig. 2(b) and propagation along the
� K direction, which corresponds to the space diagonal of the
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(a)

(b)

(c)

FIG. 3. (Color online) Illustration of selected modes for parame-
ters corresponding to Fig. 2(b). The wave vector �k is along the � K ‖
(1,1,1) direction (see arrow). Its modulus is small compared to π/a. In
yellow we show the undisplaced structure [compare Fig. 1(a)] and in
red a snapshot of the displaced structure (largely exaggerated). (a)–(c)
correspond to the first, second, and third band. The displacement
vectors, normalized to unity length, are (a) �u = 1/2 (−1,

√
3,0),

(b) �u = 1/2 (0,
√

3,−1), and (c) �u = 1/
√

3 (1,1,1).

extended fcc cell shown in Fig. 1. The results shown refer to
the limit of a small wave number. For larger wave numbers,
visualization of the modes requires depicting several or many
unit cells. Panels (a)–(c) in Fig. 3 refer to the first, second,
and third band. Clearly, panel (c) exhibits a compression wave
with a displacement of the double cones along the wave vector
(see arrow), whereas (a) and (b) show shear waves, for which
the displacements contain components orthogonal to the wave
vector.

To get an intuitive understanding for the band structures,
let us consider the expectation for the pentamode ideal. Here,
the shear modes have strictly zero frequency and, in addition
to the compression-mode dispersion with finite slope, one gets
different strictly localized vibrations of the isolated double

FIG. 4. (Color online) Ratio cB/cG (red) of the phase velocities
of compression (black) and shear waves (compare red straight lines in
Fig. 2) for different parameter combinations of d and D (see Fig. 1)
as derived from band structure calculations like shown in Fig. 2 for
the � X direction [i.e., propagation of the waves along any of the six
face diagonals of the cube in Fig. 1(a)]. The volume filling fractions
f are given in green.

cones (which only touch each other at singular points in
the pentamode ideal; see Fig. 1). These localized vibrations
in real space correspond to flat bands in momentum space.
The behavior shown in Fig. 2(c) obviously approaches that
ideal. Here, the finite frequency extent of the fairly flat bands
results from the finite (i.e., not quite pointlike) connections
with diameter d between the double cones. This reasoning
also qualitatively explains the occurrence of the single-mode
regions in between the spatially fairly localized modes.

The dependence on the large diameter D is much less
pronounced. To give an overview, the matrix structure in
Fig. 4 shows the ratio of the phase velocities of compression
and shear waves for various combinations of D and d. In
each box of this matrix, the structure is illustrated too. The
phase-velocity ratio is nearly independent on D and scales
roughly inversely with d. This qualitative scaling is consistent
with our previous static continuum-mechanics calculations.7

There, we found that the ratio of the bulk modulus B and the
shear modulus G scales approximately like

B

G
≈ 0.63

(
h

d

)2
√

h

D
.

For isotropic media in continuum mechanics, the phase
velocity of the compression wave, cB , is given by

cB =
√

B + 4 G/3

ρB

≈
√

B

ρB

,

with the effective (dynamic) mass density ρB . In the last step,
we have assumed B/G � 1. For the shear waves, one has

cG =
√

G

ρG

.
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Naively, one would assume that both mass densities ρB =
ρG = ρ0 can be taken as the static mass density ρ0, which is
what one would measure with a mass balance in the laboratory.
Mathematically, ρ0 = fρ is simply given by the volume filling
fraction f times the mass density ρ of the constituent material.
The more sophisticated Berryman formula20 is often a more
accurate approach but is also known to fail quantitatively and
qualitatively in some cases.21 In any case, when taking the
ratio cB/cG, any common mass density would drop out and
one gets a scaling according to cB/cG ∝ 1/(dD1/4) ∝ 1/d.
Indeed, we obtain a good least-squares fit to the numerically
computed values in Fig. 4 with the formula

cB

cG

≈ 0.5
h

d
.

For example, for d = 0.55 μm, D = 3 μm, and a = 37.3 μm,
hence h = 16.15 μm, we have cB/cG ≈ 16 in Fig. 4. For the
same parameters, the above heuristic continuum-mechanics
formula yields B/G ≈ 1260,7 which, assuming identical mass
densities ρB = ρG, leads to cB/cG ≈ √

1260 ≈ 35. Consider-
ing the simplicity of this reasoning, the result is not too far
off. One should also be aware that there is no unique phase
velocity of the shear waves as can be seen from the splitting
of the corresponding dispersion branches in the � K direction
in Fig. 2. We will come back to the aspect of isotropy below.

In static continuum mechanics,7 we found very little
dependence of the results on the Poisson’s ratio of the con-
stituent material (the polymer). We have also investigated this
aspect for the band structures. For example, when drastically
changing the Poisson’s ratio from 0.4 (as above) to 0.1 and
keeping all other parameters fixed, the relevant frequencies
in the band structure shift by less than 3% (not depicted).
However, changing the Young’s modulus of the constituent
material will, of course, stretch/compress the frequency scale
by a common factor as discussed above but it will not change
the qualitative behavior of the band structure at all. Likewise,
a change in lattice constant a leads to a trivial inverse scaling
of the frequency axis.

Let us come back to the above-mentioned single-mode
regime. In Fig. 2(a) for d = 0.55 μm, its upper limit lies at
a normalized frequency of about a/λ = 0.4 (the lower limit
lies below a/λ = 0.1). This means that the corresponding
wavelength in air is 2.5 times larger than the pentamode
fcc lattice constant a at the upper limit. Below this upper
frequency, the dispersion can still be approximated reasonably
well by a straight line. One might expect that the effective
medium approximation is still reasonably well fulfilled here
too. Also, we would still expect a more or less isotropic behav-
ior of the compression waves—as for an ideal pentamode.19

To investigate this aspect, we depict in Fig. 5 the numeri-
cally calculated dispersion relations for various directions in
momentum space for d = 0.55 μm [i.e., all parameters as in
Fig. 2(b)]. Obviously, the steeper compression-wave branches
in Fig. 5 exhibit only very little dependence on direction,
i.e., the behavior is very nearly isotropic in 3D. In contrast,
differences in the slopes as large as a factor of 2 occur for the
flatter shear-wave branches. Indeed, it was already apparent
from the lifting of degeneracy (two branches instead of one)
in the dispersions in the � K and the WL directions in Fig. 2
that the pentamode shear-wave dispersion is not isotropic at all

FIG. 5. (Color online) Pentamode dispersion relations for four
selected characteristic directions in the first Brillouin zone [compare
Fig. 1(b)]. The parameters and the gray single-mode region are as in
Fig. 2(b). As in Fig. 2(b), we obtain four compression-wave branches
and, due to the lifting of degeneracy in the � K and � W directions,
six shear-wave branches.

(also see Fig. 3). This is consistent with our previous treatment
using static continuum mechanics, where the shear modulus
also depends on direction. In Ref. 7 we have only shown the
shear modulus for shear along an edge of the extended fcc unit
cell.

Finally, we speculate that the single-mode region (Fig. 2)
with nearly isotropic behavior for the compression waves
and with a complete three-dimensional band gap for shear
waves might be interesting for future three-dimensional
transformation-elastodynamic architectures. After all, one
motivation for constructing pentamode metamaterials lies in
suppressing the shear waves in 3D. One should be aware
though that the different local single-mode regions of a
generally complex, spatially inhomogeneous, and possibly
also anisotropic pentamode-based elastodynamic architecture
will likely not fully overlap. However, one could choose the
operation frequency to be within the single-mode region in
the outer parts of the overall structure. In this case, at least no
shear waves could emerge, e.g., from a cloak.

In conclusion, we have calculated phonon band structures
for 3D metamaterials approximating the pentamode ideal.
Our findings agree qualitatively with our previous static
continuum-mechanics calculations in that we find ratios of the
phase velocities of compression and shear waves as large as 16
for experimentally accessible structure parameters. Moreover,
we also find an interesting single-mode frequency interval
with a width larger than two octaves. For reasonable material
parameters, its upper frequency bound corresponds to an air
wavelength that is only 2.5 times larger than the pentamode fcc
lattice constant. This means, for example, that order a = 1 cm
pentamode lattice constants would suffice for up to 10 kHz
operation frequencies. Within this single-mode regime, the
compression-wave dispersion is still nearly isotropic in three
dimensions.
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