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Symmetry analysis of holes localized on a skyrmion in a doped antiferromagnet
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We use the low-energy effective field theory for holes coupled to the staggered magnetization in order
to investigate the localization of holes on a skyrmion in a square lattice antiferromagnet. When two holes get
localized on the same skyrmion, they form a bound state. The quantum numbers of the bound state are determined
by the quantization of the collective modes of the skyrmion. Remarkably, for p-wave states, the quantum numbers
are the same as those of a hole pair bound by one-magnon exchange. Two holes localized on a skyrmion with
winding number n = 1 or 2 may have s- or d-wave symmetry as well. Possible relations with preformed Cooper
pairs of high-temperature superconductors are discussed.
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I. INTRODUCTION

In the cuprates, high-temperature superconductivity is
separated from antiferromagnetism by a pseudogap regime.
It has been conjectured that the relevant low-energy degrees
of freedom in the pseudogap regime are responsible for
superconductivity as well. Reliably identifying those degrees
of freedom by theoretical investigations is a highly nontrivial
task because unbiased first-principles analytic or numerical
calculations in microscopic systems such as the Hubbard
or t-J model are presently out of reach. In lightly doped
antiferromagnets, on the other hand, the situation is more
favorable. First of all, precise numerical simulations of
undoped antiferromagnets1–4(such as the Heisenberg model)
are possible with the loop-cluster algorithm,5 and individual
doped holes can also be simulated reliably.6,7 Second, the
low-energy dynamics of lightly doped antiferromagnets can be
described with a systematic effective field theory for magnons
and holes. The pure magnon effective field theory has been
developed in Refs. 8–11 and is completely analogous to chiral
perturbation theory for the Goldstone pions in QCD.12 In the
past few years, the systematic effective theory for magnons and
doped holes has been constructed13,14 in complete analogy to
baryon chiral perturbation theory: the effective theory for pions
and nucleons.15–18 In contrast to previous attempts to construct
effective theories for magnons and holes in a square lattice
antiferromagnet,19–23 the construction of Ref. 14 is based on
a systematic symmetry analysis and provides a complete set
of all terms contributing to the effective action at leading and
subleading order. As a result, the predictions of the effective
theory are exact, order by order, in a systematic derivative
expansion. In particular, the low-energy physics of any lightly
doped antiferromagnet is described quantitatively once some
low-energy parameters (such as the spin stiffness or the
spin-wave velocity of the underlying microscopic system) have
been fixed either by experiment or by numerical simulations.
The effective theory has been used in systematic studies
of magnon-mediated two-hole bound states24 and of spiral
phases.25 Earlier (but somewhat less systematic) studies had
been presented in Refs. 23, 26, and 27. Systematic effective

field theories have also been constructed for antiferromagnets
on a honeycomb lattice28,29 as well as for lightly electron-
doped antiferromagnets.30

Unfortunately, before one enters the high-temperature
superconductor or even just the pseudogap regime, both
antiferromagetism and the systematic effective theory that
describes it break down. While one might expect that one can
hence not learn anything about high-temperature supercon-
ductivity or the pseudogap regime from the effective theory,
the situation may not be entirely hopeless. In particular, the
effective theory still contains information about what objects
may form when the theory is about to break down. In this
way, we can identify new candidate low-energy degrees of
freedom for which another effective theory with an extended
validity range can be constructed. In this paper, we do not yet
attempt to construct an effective field theory for the pseudogap
regime. Instead, we concentrate on the identification of new
low-energy objects that may form when antiferromagnetism is
about to break down.

When antiferromagnetism is weakened, the spin stiffness
ρs is reduced. In particular, if antiferromagnetism is ultimately
destroyed in a second-order phase transition, ρs vanishes
at the transition. A small value of ρs favors topological
excitations in the staggered magnetization: the order parameter
for antiferromagnetism. In (2 + 1) dimensions, the topolog-
ical excitations of the staggered magnetization vector are
skyrmions which carry a topologically conserved winding
number n ∈ �2[S2] = Z in the second homotopy group of
the order parameter manifold S2. The coset space S2 =
SU(2)s/U(1)s arises because in an antiferromagnet the SU(2)s
spin symmetry is spontaneously broken down to the subgroup
U(1)s . The possible role of skyrmions as relevant excitations
in quantum antiferromagnets has been discussed in several
publications.31–45 Other topological objects, including vortices
and merons, have also been investigated in this context.46–49

Haldane was first to realize that skyrmions in an antiferromag-
net are associated with a geometric phase.31 When skyrmions
proliferate, antiferromagnetic order is destroyed. Read and
Sachdev showed that, on a square lattice, the skyrmion’s
geometric phase then implies a competing valence bond solid
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order with fourfold degeneracy.32 The interplay of geometric
phases and competing orders has been discussed in detail in
Ref. 43. The suppression of skyrmions has been related to
unconventional deconfined quantum critical points.38,39 It has
also been argued that a hole localized near a dopant stabilizes
a skyrmion texture in the staggered magnetization.33–37 The
analogies between pions in QCD and magnons in ferromagnets
and antiferromagnets have been investigated in detail in
Refs. 40 and 41. In particular, it was argued that skyrmions
endowed with fermion number 2 may act as preformed Cooper
pairs of high-temperature superconductivity. Experimental
evidence for skyrmions in the lightly doped insulating anti-
ferromagnet La2Cu1−xLixO4 in an external magnetic field has
been reported in Ref. 44. Furthermore, the possible role of
skyrmions for the superconductivity of Fe based pnictides
and chalcogenides has been discussed in Ref. 45. In this
paper, we investigate the localization of holes on a skyrmion
using the low-energy effective theory for lightly hole-doped
antiferromagnets on a square lattice. In particular, we carefully
quantize the skyrmion’s collective modes, which allows us
to unambiguously determine the quantum numbers of single
holes as well as hole pairs localized on a skyrmion.

At the classical level, the mass of a skyrmion is given by
4πρs . When ρs becomes small, these excitations hence become
energetically favorable. Skyrmions are beyond the reach of the
systematic derivative expansion of the low-energy effective
theory for magnons and holes. Indeed, when skyrmions be-
come relevant low-energy degrees of freedom, antiferromag-
netism as well as the effective theory that describes it are about
to break down. Still, the effective theory correctly describes
the way in which holes couple to a skyrmion excitation in
the staggered magnetization order parameter. In particular,
holes may get localized on a skyrmion. When two holes get
localized on the same skyrmion, they form a bound state which
may represent a relevant low-energy degree of freedom even
when antiferromagnetism gives way to the pseudogap phase.
In particular, such bound states are a potential candidate for
preformed pairs, the condensation of which may ultimately
lead to high-temperature superconductivity. In order to decide
whether this is a viable scenario, in this paper we investigate
the symmetry properties of skyrmion-hole bound states in
great detail. We find that the p-wave states of two holes
localized on a skyrmion with winding number n = 1 transform
exactly like the two-hole states weakly bound by one-magnon
exchange. Two holes localized on a skyrmion may also have
s- or d-wave symmetry. Which of these states is energetically
most favorable depends on the details of the dynamics, and
will remain a subject for future investigations.

The rest of the paper is organized as follows. In Sec. II,
the effective theory for the staggered magnetization order
parameter is introduced and skyrmions are discussed as
classical solutions. The Hopf term is introduced and the
collective modes of a rotating skyrmion are then quantized.
In Sec. III, doped holes are added to the effective theory. In
Sec. IV, states of single holes as well as a pair of holes (residing
in two different hole pockets) localized on a static or rotating
skyrmion are constructed and their symmetry properties are
investigated. Possible relations to the mechanism responsible
for high-temperature superconductivity are also discussed.
Section V contains our conclusions. Finally, the case of two

holes residing in the same hole pocket is investigated in the
Appendix. A reader who is only interested in the main results
of our study may skip Sec. II C as well as Sec. III.

II. SKYRMIONS IN THE EFFECTIVE THEORY FOR THE
STAGGERED MAGNETIZATION

In this section, we discuss the collective mode quantization
of skyrmions in the low-energy effective theory for antiferro-
magnetic magnons.

A. Effective action and its symmetries

Magnons are the Goldstone bosons of a spontaneously
broken spin symmetry SU(2)s with an unbroken subgroup
U(1)s . Consequently, magnons are described by a three-
component unit-vector field �e(x) ∈ S2 in the coset space
S2 = SU(2)s/U(1)s . Here x = (x1,x2,t) is a point in (2 + 1)-
dimensional Euclidean space-time and �e(x) represents the
direction of the local staggered magnetization vector: the
order parameter for the spontaneously broken spin symmetry.
To leading order in a systematic derivative expansion, the
Euclidean low-energy effective action for the magnons is given
by

S[�e] =
∫

d2x dt
ρs

2

(
∂i �e · ∂i �e + 1

c2
∂t �e · ∂t �e

)
. (2.1)

Here, ρs is the spin stiffness and c is the spin-wave velocity.
The vacuum configuration of the effective theory is described
by a constant staggered magnetization vector which can be
chosen to point in the three-direction, i.e., �e(x) = (0,0,1).
Magnons are small fluctuations around the vacuum configu-
ration. It should be noted that, in contrast to a ferromagnet,
antiferromagnetic magnons have a “relativistic” dispersion
relation.

The most important symmetry of the action is the sponta-
neously broken spin symmetry SU(2)s . In the following, global
transformations in the unbroken subgroup U(1)s will play an
important role. Introducing

�e(x) = (sinθ (x) cos ϕ(x), sin θ (x) sin ϕ(x), cos θ (x)), (2.2)

these transformations take the form
I (γ )�e(x) = (sinθ (x) cos[ϕ(x) + γ ],

sin θ (x) sin[ϕ(x) + γ ], cos θ (x)). (2.3)

It should be pointed out that the SU(2)s spin symmetry plays
the role of an internal symmetry (analogous to chiral sym-
metry in particle physics). Consequently, its unbroken U(1)s
subgroup (which is analogous to isospin in particle physics)
should also be viewed as an internal symmetry. Because of
the analogy with isospin, we denote transformations in the
unbroken subgroup U(1)s by I (γ ).

In addition to the SU(2)s spin symmetry, the effective
action has other symmetries as well. First of all, due to the
relativistic dispersion relation of antiferromagnetic magnons,
the leading terms in the effective action have an emergent
accidental Poincaré symmetry which is not present in the
underlying Hubbard or t-J model, and which will thus be
explicitly broken by higher-order terms in the effective action
containing a larger number of derivatives. The remaining
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symmetries are the discrete translations and rotations of the
underlying quadratic lattice. Similar to the spin symmetry, the
displacements Di by one lattice spacing in the i-direction are
also spontaneously broken in an antiferromagnet. They act on
the staggered magnetization field as

Di �e(x) = −�e(x). (2.4)

Since the shift symmetries Di are spontaneously broken in an
antiferromagnet, it is convenient to also introduce modified
shift symmetries D′

i which combine Di with an SU(2)s spin
rotation g = iσ2 such that

D′
i �e(x) = (e1(x), − e2(x),e3(x)). (2.5)

Spatial translations by an even number of lattice spacings, on
the other hand, remain unbroken. Such translations D(x0) by
a distance vector x0 = (x01,x02,0) act as

D(x0)�e(x) = �e(x − x0). (2.6)

Similarly, parametrizing x = (r cos χ,r sin χ,t), spatial rota-
tions by an angle β act as

O(β)�e(x) = �e(O(β)x),
(2.7)

O(β)x = (r cos(χ + β),r sin(χ + β),t),

and a spatial reflection at the x1 axis is represented by
R�e(x) = �e(Rx), Rx = (x1,−x2,t) = (r cos χ,−r sin χ,t).

(2.8)

Finally, time reversal, which changes the direction of a spin,
acts as

T �e(x) = −�e(T x),
(2.9)

T x = (x1,x2,−t) = (r cos χ,r sin χ,−t).

The effective action of Eq. (2.1) is invariant under all these
symmetries.

B. Classical skyrmion solutions

In particle physics, skyrmions arise as topological ex-
citations in the pion effective field theory for the strong
interactions,50 which takes the form of a (3 + 1)-dimensional
SU(2)L × SU(2)R = O(4) model. In order to distinguish them
from their particle physics analogs, the topological excitations
in the (2 + 1)-dimensional O(3) model are sometimes denoted
as baby-skyrmions. For simplicity, here we also refer to them
just as skyrmions. Skyrmions are topologically nontrivial
classical solutions of the magnon effective theory with integer
winding number

n[�e] = 1

8π

∫
d2x εij �e · [∂i �e × ∂j �e] ∈ �2[S2] = Z (2.10)

in the second homotopy group of the sphere S2. Correspond-
ingly, there is a topological current

jμ(x) = 1

8π
εμνρ �e(x) · [∂ν �e(x) × ∂ρ �e(x)], (2.11)

which is conserved, i.e., ∂μjμ(x) = 0, irrespective of the
classical equations of motion. The winding number n[�e] =∫

d2x jt (x) is just the integrated topological charge density.

Under the various symmetries, the topological charge density
transforms as

U(1)s : I (γ )jt (x) = jt (x),

Di : Di jt (x) = −jt (x),

D′
i : D′

i jt (x) = −jt (x),
(2.12)

O(β) : O(β)jt (x) = jt (O(β)x),

R : Rjt (x) = −jt (Rx),

T : T jt (x) = −jt (T x).

In particular, the winding number changes sign under the
displacements Di and D′

i as well as under the reflection R

and under the time reversal T .
Let us consider static classical solutions for which the

energy

E[�e] =
∫

d2x
ρs

2
∂i �e · ∂i �e (2.13)

is minimized. We can write

0 �
∫

d2x (∂i �e ± εij ∂j �e × �e)2

=
∫

d2x [2∂i �e · ∂i �e ± 2εij �e · (∂i �e × ∂j �e)]

= 4

ρs

E[�e] ± 16πn[�e], (2.14)

which implies the Schwarz inequality

E[�e] � 4πρs |n[�e]|. (2.15)

Skyrmions are minima of the energy in the topological sector
with n[�e] = 1, while antiskyrmions have n[�e] = −1. At the
classical level, both have a rest energy of Mc2 = 4πρs .
(Anti)skyrmions satisfy the previous inequality as an equality
which is possible only if they satisfy the (anti)self-duality
equation

∂i �e + σεij ∂j �e × �e = 0. (2.16)

Here, σ = ±1 distinguishes between skyrmions and anti-
skyrmions. It is worth mentioning that static (anti)skyrmions
are mathematically equivalent to (anti)instantons of the two-
dimensional O(3) model.51 Using polar coordinates (x1,x2) =
r(cos χ, sin χ ), a particular (anti)skyrmion configuration is
given by

�eσ,n,ρ(r,χ )

=
(

2rnρn

r2n + ρ2n
cos(nχ ),

2rnρnσ

r2n + ρ2n
sin(nχ ),

r2n − ρ2n

r2n + ρ2n

)
.

(2.17)

Depending on the sign of σ , this configuration describes a
skyrmion or antiskyrmion of winding number n[�e] = σn (with
n ∈ N>0) and size ρ centered at the origin. It should be noted
that there are many other multiskyrmion configurations with
different skyrmions located in different positions. Such con-
figurations would be important in investigations of a skyrmion
gas or liquid. Here, we concentrate on a skyrmion centered
at a single point, possibly with a larger winding number than
just n = 1. The winding is chosen to arise from the angular χ
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dependence which influences the rotational symmetry of the
skyrmion and not from the radial r dependence, which only
influences the finer details of the dynamics.

The skyrmion configurations of Eq. (2.17) have a number
of zero modes. In particular, their energy remains unchanged

when they are shifted to an arbitrary position x, when they
are spatially rotated by an arbitrary angle β, or when they
are U(1)s spin rotated by an arbitrary angle γ . Interestingly,
spatial rotations and U(1)s spin rotations act on a skyrmion in
a similar manner, i.e.,

O(β)�eσ,n,ρ(r,χ ) =
(

2rnρn

r2n + ρ2n
cos[n(χ + β)],

2rnρnσ

r2n + ρ2n
sin[n(χ + β)],

r2n − ρ2n

r2n + ρ2n

)
,

(2.18)
I (σγ )�eσ,n,ρ(r,χ ) =

(
2rnρn

r2n + ρ2n
cos(nχ + γ ),

2rnρnσ

r2n + ρ2n
sin(nχ + γ ),

r2n − ρ2n

r2n + ρ2n

)
,

such that
I (σγ )�eσ,n,ρ(r,χ ) = O(γ /n)�eσ,n,ρ(r,χ ). (2.19)

Another zero mode is related to dilations. Indeed, the energy of
a skyrmion also remains invariant under changes of the scale
parameter ρ. A family of skyrmion configurations is obtained
by spin rotating the original skyrmion of Eq. (2.17) by an angle
σγ and then shifting it by a distance vector x such that

�eσ,n,ρ,x,γ (r,χ ) = D(x)[I (σγ )�eσ,n,ρ(r,χ )]. (2.20)

Under the various unbroken symmetry transformations, the
configuration of Eq. (2.20) transforms as

U(1)s : I (σγ0)�eσ,n,ρ,x,γ (r,χ ) = �eσ,n,ρ,x,γ+γ0 (r,χ ),

D′
i : D′

i �eσ,n,ρ,x,γ (r,χ ) = �e−σ,n,ρ,x,γ (r,χ ),

D : D(x0)�eσ,n,ρ,x,γ (r,χ ) = �eσ,n,ρ,x+x0,γ (r,χ ), (2.21)

O(β) : O(β)�eσ,n,ρ,x,γ (r,χ ) = �eσ,n,ρ,O(β)x,γ+nβ (r,χ ),

R : R�eσ,n,ρ,x,γ (r,χ ) = �e−σ,n,ρ,Rx,−γ (r,χ ).

It should be noted that the continuous rotations, translations,
and dilations are accidental symmetries of the effective
theory in the continuum, while the exact symmetries of the
underlying microscopic system are restricted to 90◦ rotations,
lattice translations, and SU(2)s spin rotations. Hence, only the
symmetry I , but not the continuous translations and dilations,
give rise to exact zero modes. Interestingly, since O(γ /n) acts
on a skyrmion in the same way as I (σγ ) [see Eq. (2.19)], the
rotational zero mode remains exact even from a microscopic
point of view. It is only this mode that affects the symmetry
analysis of holes localized on a skyrmion that is presented in
Sec. IV.

In particle physics, skyrmions play an interesting role in
the effective theory for the strong interactions. In particular,
skyrmions arise as topological excitations in the pion field.50

While skyrmions are outside the validity range of the sys-
tematic low-energy expansion of chiral perturbation theory,
they have been used to model baryons phenomenologically.52

Remarkably, the �3[S3] topological winding number of the
skyrmions of the strong interactions has the same symmetry
properties as the baryon number, and is indeed identified
with it. The identification of skyrmions as baryons can
even be established within the framework of chiral pertur-
bation theory by investigating the electromagnetic interac-

tions of pions which are affected by a Goldstone-Wilczek
current.40,41,53,54 Since the underlying QCD theory has a con-
served baryon number current, the conservation of the topo-
logical Skyrme current is guaranteed beyond the semiclassical
regime.

It is natural to ask whether the winding number n[�e] ∈
�2[S2] of the skyrmions in an antiferromagnet can also
be identified with a conserved quantity of an underlying
microscopic system, such as the Hubbard model. In particular,
in analogy to particle physics, one might suspect that the
winding number can be identified with the fermion number of
doped holes. However, this is not the case because the winding
number and the fermion number have different symmetry
properties. In particular, the winding number changes sign
under a shift Di by one lattice spacing, while the fermion
number does not. Hence, unlike in particle physics, in an
antiferromagnet the conservation of the topological current
is not protected by the underlying microscopic dynamics
and may thus be limited to the semiclassical regime. In-
terestingly, when holes get localized on a skyrmion, they
endow the skyrmion with their conserved fermion number,
which may stabilize the skyrmion beyond the semiclassical
regime.

The conservation of the topological current also plays a
central role in the scenario of deconfined quantum criticality39

in which dynamically generated gauge fields and deconfined
spinons are conjectured to appear at a new type of quantum
phase transition outside the realm of the standard Ginsburg-
Landau-Wilson paradigm. In fact, the suppression of skyrmion
number violating (so-called monopole) events has been argued
to change the universality class of the phase transition in the
(2 + 1)-dimensional O(3) model.38 A better understanding of
the role of skyrmions would thus also be useful for addressing
the issue of deconfined quantum criticality.

C. Hopf term

A reader who is only interested in the main results of our
study may skip this section. The integer winding number n[�e] is
defined at any instant of time and is conserved for topological
reasons. Interestingly, there is another topological invariant,
the Hopf number H [�e], which characterizes the topology of
the order parameter field �e(x) as a function of both space and
time. The integer-valued Hopf number H [�e] ∈ �3[S2] = Z
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is an element of the third homotopy group of the sphere S2.
In order to construct the Hopf term, it is most convenient to
introduce the CP (1) representation

P (x) = 1
2 [1 + �e(x) · �σ ] (2.22)

of the staggered magnetization field. Here, �σ are the Pauli
matrices and, as a result, P (x) is a Hermitian 2 × 2 projector
matrix that obeys

P (x)† = P (x), P (x)2 = P (x), TrP (x) = 1. (2.23)

Under a spin rotation g ∈ SU(2)s the matrix P (x) transforms
as

P (x)′ = gP (x)g†. (2.24)

The matrix P (x) can be diagonalized by a unitary transforma-
tion u(x) ∈ SU(2), i.e.,

u(x)P (x)u(x)† = 1

2
(1 + σ3) =

(
1 0
0 0

)
, u11(x) � 0.

(2.25)

We demand that u11(x) is real and positive, which fixes a U(1)s
gauge ambiguity and uniquely determines u(x) as

u(x) = 1√
2[1 + e3(x)]

(
1 + e3(x) e1(x) − ie2(x)

−e1(x) − ie2(x) 1 + e3(x)

)

=
(

cos
[

1
2θ (x)

]
sin

[
1
2θ (x)

]
exp[−iϕ(x)]

− sin
[

1
2θ (x)

]
exp[iϕ(x)] cos

[
1
2θ (x)

] )

= cos

(
1

2
θ (x)

)
+ i sin

(
1

2
θ (x)

)
�eϕ(x) · �σ , (2.26)

where the unit vector �eϕ(x) is given by

�eϕ(x) = (−sinϕ(x), cos ϕ(x),0). (2.27)

Under a global SU(2)s transformation g, the diagonalizing
field u(x) transforms as

u(x)′ = h(x)u(x)g†, u11(x)′ � 0, (2.28)

which implicitly defines the nonlinear symmetry transforma-
tion

h(x) = exp[iα(x)σ3]

=
(

exp[iα(x)] 0
0 exp[−iα(x)]

)
∈ U(1)s . (2.29)

In this way, the global transformations g ∈ SU(2)s of the
spontaneously broken non-Abelian spin symmetry “disguise”
themselves as local transformations h(x) ∈ U(1)s of the
unbroken subgroup. The global subgroup transformations I (γ )
introduced in Eq. (2.3) simply lead to α(x) = −γ /2.

The diagonalizing matrix u(x) maps space-time onto the
group manifold S3 of SU(2)s . When the (2 + 1)-dimensional
space-time is also compactified to S3, one can relate the
Hopf number H [�e] ∈ �3[S2] = Z to the topological winding
number W [u] ∈ �3[SU(2)s] = �3[S3] = Z, i.e.,

H [�e] = W [u] = 1

24π2

∫
dt d2x εμνρ

× Tr[(u†∂μu)(u†∂νu)(u†∂ρu)]. (2.30)

It should be noted that the evaluation of Eq. (2.30) requires
some care. In particular, due to the U(1)s gauge fixing
u11(x) � 0, u(x) covers only an S2 subspace of the SU(2)s
group manifold S3. This may seem to imply that the winding
number W [u], which counts the number of times the map
u(x) covers S3, should vanish. However, this is not the case
because u(x) in Eq. (2.26) is singular at the skyrmion center
where e3(x) = −1 [i.e., θ (x) = π ]. The singularities which
lie on a vortex line encircled by �eϕ(x) contribute nontrivially
to Eq. (2.30). Alternatively, one may remove the singularities
in u(x) by undoing the U(1)s gauge fixing u11(x) � 0, which
implies that u(x) extends to all of S3. Then, Eq. (2.30) can
be evaluated in a straightforward manner. The Hopf term is
SU(2)s invariant because

W [u′] = W [hug†] = W [h] + W [u] − W [g] = W [u]. (2.31)

Here, we have used W [g] = 0, which follows because g is
constant, and W [h] = 0, which follows because the Abelian
gauge transformations h(x) ∈ U(1)s are topologically trivial
in three dimensions, i.e., �3[U (1)s] = �3[S1] = {0}.

Under the various relevant symmetries, the Hopf number
transforms as

U(1)s : H [I (γ )�e] = H [�e],

Di : H [Di �e] = H [�e],

D′
i : H [D

′
i �e] = H [�e],

(2.32)
O(β) : H [O(β)�e] = H [�e],

R : H [R�e] = −H [�e],

T : H [T �e] = −H [�e].

The Hopf term gives rise to an additional factor exp(i�H [�e])
in the Euclidean path integral with � being the anyon statistics
angle. In systems with reflection or time-reversal symmetry,
the value of � is hence limited to 0 or π . As we will see, in
these cases skyrmions are quantized as bosons or fermions,
respectively. In systems without reflection and time-reversal
symmetry, arbitrary values of � are allowed, and then the
skyrmions may have any (neither integer nor half-integer) spin.
By investigating field configurations in which two skyrmions
interchange their positions, one can also show that skyrmions
pick up a phase exp(i�) and thus obey anyon statistics.55 It
should be noted that the Hopf term is expected to be absent
in doped cuprates,31,32,56–58 while it is known to be present,
for example, in quantum Hall ferromagnets.40,61–63 In order to
keep the discussion as general as possible, we will include the
Hopf term, although in the cuprates one expects � = 0.

D. Collective mode quantization of the skyrmion

Let us now consider the collective mode quantization of
the skyrmion. The main goal is to understand the quantum
numbers of the quantized skyrmion, first of all in an undoped
system. It should be pointed out that skyrmions in an undoped
antiferromagnet are heavy objects, the pair creation of which is
suppressed at low temperatures. When antiferromagnetism is
weakened by hole doping, the skyrmion mass is reduced and,
in addition, the holes may lower their mass by getting localized
on a skyrmion. This favors skyrmion formation in doped
antiferromagnets. A central goal of this paper is to understand
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the quantum numbers of the skyrmion-hole bound states. In
this section, we consider the collective mode quantization of a
skyrmion in the undoped system.

In order to perform the collective mode quantization, we
consider the zero-mode parameters ρ(t), x(t), and γ (t) as
functions of time. We now evaluate the Euclidean action
(including the Hopf term) for a time-dependent skyrmion and
(after a somewhat lengthy but straightforward calculation), we
obtain

S[�eσ,n,ρ,x,γ ] + i�H [�eσ,n,ρ,x,γ ]

=
∫

dt

(
Mc2 + M

2
ẋ2 + D(ρ)

2
ρ̇2 + I(ρ)

2
γ̇ 2 + in

�

2π
γ̇

)
.

(2.33)

Here, the skyrmion’s rest energy is given by

Mc2 = ρs

∫
d2x

4n2ρ2nr2n−2

(r2n + ρ2n)2
= 4πρsn, (2.34)

which confirms that for self-dual solutions, the Schwarz
inequality of Eq. (2.15) is obeyed as an equality. For n > 1,
the skyrmion’s inertia against dilations takes the form

D(ρ) = ρs

c2

∫
d2x

4n2r2nρ2n−2

(r2n + ρ2n)2
= πM

n sin(π/n)
. (2.35)

For n = 1, the integral is logarithmically infrared divergent. In
a finite volume or in a system with a finite density of skyrmions,
the infrared divergence may be regularized because the volume
available to each skyrmion becomes effectively finite. Indeed,
such effects are known to arise in the instanton gas of the two-
dimensional O(3) model.59,60 In this paper, we do not attempt
to decide whether the same happens in the (2 + 1)-dimensional
O(3) model that is relevant here. We just regularize D(ρ) by
an infrared cutoff R which may or may not be infinite such
that for n = 1,

D(ρ) = 4πρs

c2

∫ R

0
dr

2r3

(r2 + ρ2)2

= M
(

ln
R2 + ρ2

ρ2
− R2

R2 + ρ2

)
. (2.36)

Finally, the moment of inertia of the skyrmion is given by

I(ρ) = ρs

c2

∫
d2x

4r2nρ2n

(r2n + ρ2n)2
= D(ρ)ρ2

n2
, (2.37)

which is affected by the same infrared divergence as D(ρ).
Hence, although the skyrmion has a finite mass (and can
thus undergo translational motion), in the limit of an infinite
infrared cutoff R it has an infinite moment of inertia I(ρ) and
can thus not rotate.

From the Euclidean action of Eq. (2.33), we read off the
real-time Lagrange function as

L = M
2

ẋ2 + D(ρ)

2

(
ρ̇2 + ρ2

n2
γ̇ 2

)
− n

�

2π
γ̇ − Mc2.

(2.38)

In the next step, we consider the canonically conjugate
momenta

pi = ∂L

∂ẋi

= Mẋi , pρ = ∂L

∂ρ̇
= D(ρ)ρ̇,

(2.39)

pγ = ∂L

∂γ̇
= D(ρ)ρ2γ̇

n2
− n

�

2π
.

It should be noted that, at the classical level, the � term is
suppressed because relative to pγ it is of order h̄ (which we
have put to 1). The canonically conjugate momenta lead to the
classical Hamilton function

H = piẋi + pρρ̇ + pγ γ̇ − L

= Mc2 + p2
i

2M + 1

2D(ρ)

[
p2

ρ + n2

ρ2

(
pγ + n

�

2π

)2 ]
.

(2.40)

The momentum pi , the spin pγ , and the energy

E = 1

2D(ρ)

[
p2

ρ + n2

ρ2

(
pγ + n

�

2π

)2 ]
= D(ρ)

2
ρ̇2 + n2

2D(ρ)ρ2

(
pγ + n

�

2π

)2

(2.41)

of the coupled rotational and dilational motion are conserved
quantities. The last equality determines the size ρ(t) of the
skyrmion as a function of time:

t =
∫ ρ(t)

ρ(0)
dρ

[
2E

D(ρ)
− n2

D(ρ)2ρ2

(
pγ + n

�

2π

)2 ]−1/2

.

(2.42)

When the skyrmion is rotating (i.e., when pγ + n �
2π

�= 0),
centrifugal forces lead to an unlimited increase of ρ(t).

Upon canonical quantization, the momentum pi and the
spin pγ turn into the operators

pi = −i∂xi
, pγ = −i∂γ , (2.43)

while the classical Hamilton functionH turns into the quantum
mechanical Hamiltonian

H = Mc2 − 1

2M∂2
xi

− 1√
2D(ρ)

(
∂2
ρ + 1

ρ
∂ρ

)
1√

2D(ρ)

− n2

2D(ρ)ρ2

(
∂γ + in

�

2π

)2

. (2.44)

The collective mode wave function of a skyrmion or anti-
skyrmion with winding number σn, momentum pi , and spin
pγ = σm ∈ Z takes the form

�p,σ,n,m(x,ρ,γ ) = exp(ipixi) exp(iσmγ )ψ(ρ). (2.45)

The dilational part of the wave function solves the Schrödinger
equation[

− 1√
2D(ρ)

(
∂2
ρ + 1

ρ
∂ρ

)
1√

2D(ρ)

+ n2

2D(ρ)ρ2

(
m + nσ

�

2π

)2 ]
ψ(ρ) = Eψ(ρ), (2.46)

which may again lead to an instability of a rotating skyrmion
against unlimited increase of its size ρ. As we will see later,
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localized holes prevent the increase of ρ and thus stabilize the
skyrmion.

In the presence of the Hopf term, the spin operator of the
skyrmion (which is analogous to isospin in particle physics) is
given by

I = σ

(
pγ + n

�

2π

)
= σ

(
−i∂γ + n

�

2π

)
. (2.47)

The state �p,σ,n,m(x,ρ,γ ) hence has the “isospin”

I�p,σ,n,m(x,ρ,γ ) =
(

m + σn
�

2π

)
�p,σ,n,m(x,ρ,γ ).

(2.48)

In particular, for � = 0 the “isospin” is an integer, while for
� = π it is a half-integer for odd n.

Let us also investigate the quantum numbers of the
skyrmion with respect to spatial rotations. As a consequence
of Eq. (2.19), the angular momentum J is given by

J = σnI = n

(
pγ + n

�

2π

)
= n

(
−i∂γ + n

�

2π

)
, (2.49)

such that

J�p,σ,n,m(x,ρ,γ ) = n

(
σm + n

�

2π

)
�p,σ,n,m(x,ρ,γ ).

(2.50)

Hence, for � = 0 the skyrmion has integer angular momentum
and thus is a boson, while for � = π the angular momentum
is a half-integer for odd n and the skyrmion is a fermion.
Interestingly, in (2 + 1) dimensions, it is possible to have
particles of any (neither integer nor half-integer) angular
momentum: the anyons which arise for � �= 0 or π .

By construction, the skyrmion state is also an eigenstate
of the momentum operator with eigenvalue pi . Under the
modified shift symmetries D′

i and under the reflection R, the
skyrmion state transforms as

UD′
i
�p,σ,n,m(x,ρ,γ ) = �p,−σ,n,m(x,ρ,γ ),

(2.51)
UR�p,σ,n,m(x,ρ,γ ) = �Rp,−σ,n,m(x,ρ,γ ),

where Rp = (p1,−p2) is the spatially reflected momentum.
Here, UD′

i
and UR are unitary transformations representing

the corresponding discrete symmetries in the Hilbert space of
the collective modes of the skyrmion. It should be noted that
shifted or reflected skyrmions (which have σ = 1) are actually
antiskyrmions (with σ = −1).

III. EFFECTIVE ACTION FOR DOPED HOLES

In order to make this paper self-contained, in this section
we review the main features of the effective field theory
constructed in Ref. 14 which couples doped holes to the
staggered magnetization order parameter. A reader who is only
interested in the main results of our study can skip Sec. III and
proceed directly to Sec. IV.

A. Nonlinear realization of the SU(2)s symmetry

In order to couple holes to the staggered magnetization
order parameter, a nonlinear realization of the spontaneously

broken SU(2)s symmetry has been constructed in Ref. 13.
The global SU(2)s symmetry then manifests itself as a
local U(1)s symmetry in the unbroken subgroup. This is
analogous to baryon chiral perturbation theory in which the
spontaneously broken SU(2)L × SU(2)R chiral symmetry of
QCD is implemented on the nucleon fields as a local SU(2)L=R

transformation in the unbroken isospin subgroup.
The definition of the nonlinear realization of the SU(2)s

symmetry is based on the diagonalizing matrix u(x) defined in
Eq. (2.26), which transforms as

D′
i u(x) = u(x)∗, (3.1)

under the modified displacement symmetry D′
i . Introducing

the traceless anti-Hermitian field

vμ(x) = u(x)∂μu(x)†, (3.2)

one obtains the following transformation rules:

SU(2)s : vμ(x)′ = h(x)[vμ(x) + ∂μ]h(x)†,

D′
i : D′

i vμ(x) = vμ(x)∗,

O : Ovi(x) = εij vj (Ox), Ovt (x) = vt (Ox), (3.3)

R : Rv1(x) = v1(Rx), Rv2(x) = −v2(Rx),
Rvt (x) = vt (Rx).

Writing

vμ(x) = iva
μ(x)σa, v±

μ (x) = v1
μ(x) ∓ iv2

μ(x), (3.4)

the field vμ(x) decomposes into an Abelian “gauge” field v3
μ(x)

and two “charged” vector fields v±
μ (x).

Using Eq. (2.20), for a skyrmion �eσ,n,ρ,0,γ (r,χ ) centered at
x = 0 one obtains

v3
1(r,χ ) = − σnρ2n

r(r2n + ρ2n)
sin χ,

v3
2(r,χ ) = σnρ2n

r(r2n + ρ2n)
cos χ,

v3
t (r,χ ) = σρ2n

r2n + ρ2n
γ̇ ,

(3.5)

v±
1 (r,χ ) = ∓i

nrn−1ρn

r2n + ρ2n
exp{∓iσ [(n + 1)χ + γ ]},

v±
2 (r,χ ) = σnrn−1ρn

r2n + ρ2n
exp{∓iσ [(n + 1)χ + γ ]},

v±
t (r,χ ) = σrnρn

r2n + ρ2n
exp[∓iσ (nχ + γ )]γ̇ .

In principle, when holes get localized on a skyrmion, they
affect the radial profile of the skyrmion. Here, we neglect this
effect and concentrate on symmetry considerations which are
independent of such details of the dynamics.

B. Hole fields and their transformation properties

As discussed in detail in Ref. 14, the holes are described by
Grassmann-valued fields ψ

f
±(x). Here, f ∈ {α,β} is a flavor

index which specifies the momentum space pocket in which the
hole resides, and the subscript ± denotes the spin of the hole
relative to the direction of the local staggered magnetization.
Under the various relevant symmetries of the underlying
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antiferromagnet on a square lattice, the hole fields transform as

SU(2)s : ψ
f
±(x)′ = exp[±iα(x)]ψf

±(x),

U(1)Q : Qψ
f
±(x) = exp(iω)ψf

±(x),

D′
i : D′

i ψ
f
±(x) = ± exp

(
ik

f

i a
)
ψ

f
∓(x), (3.6)

O : Oψα
±(x) = ∓ψ

β
±(Ox), Oψ

β
±(x) = ψα

±(Ox),

R : Rψα
±(x) = ψ

β
±(Rx), Rψ

β
±(x) = ψα

±(Rx).

The U(1)Q symmetry is just fermion number, while
kα = ( π

2a
, π

2a
) and kβ = ( π

2a
,− π

2a
) (with a being the lattice

spacing) point to the centers of the two hole pockets illustrated
in Fig. 1. It is interesting that in the effective theory,
momentum indices of the underlying microscopic dynamics
turn into internal flavor quantum numbers.

C. Effective action for holes coupled to the
staggered magnetization

Based on the above symmetry properties, the leading and
subleading terms of the effective action for an antiferromagnet
on a square lattice have been constructed systematically in
Ref. 14. Here, we restrict ourselves to the leading terms.
We also make the simplifying (but somewhat unrealistic)
assumption that the momentum-space hole pockets have a
circular shape, which enables us to perform large parts of the
following calculations analytically. It would be straightforward
to take into account the more realistic elliptic shape of the hole
pockets, but this would require some numerical work. Here,
we concentrate foremost on the symmetry properties of holes
localized on a skyrmion on which the simplifying assumption
of spherical hole pockets has no effect. The total action of the
coupled system including doped holes then takes the form

S[ψf †
± ,ψ

f
±,�e] =

∫
d2x dt

{
ρs

2

(
∂i �e · ∂i �e + 1

c2
∂t �e · ∂t �e

)

+
∑
f =α,β

s=+,−

[
Mψf †

s ψf
s + ψf †

s Dtψ
f
s + 1

2M ′ Diψ
f †
s Diψ

f
s + �

(
ψf †

s vs
1ψ

f
−s + σf ψf †

s vs
2ψ

f
−s

)]}
. (3.7)

Here, M and M ′ are the rest energy and the kinetic mass
of a hole, and � is the hole-one-magnon coupling constant.
The sign σf is + for f = α and − for f = β. The covariant
derivatives are given by

Dμψ
f
±(x) = [

∂μ ± iv3
μ(x)

]
ψ

f
±(x). (3.8)

Remarkably, the Shraiman-Siggia term in the action, which is
proportional to �, contains just a single (uncontracted) spatial
derivative. Due to the nontrivial rotation properties of flavor,

α

p1

β

π
a

π
a

α

β

p2

FIG. 1. Elliptically shaped hole pockets centered at (± π

2a
, ± π

2a
).

Two half-pockets combine to form the pockets for the flavors f =
α,β.

this term is still 90◦ rotation invariant. Due to the small number
of derivatives it contains, this term dominates the low-energy
dynamics. In particular, it alone is responsible for one-magnon
exchange between hole pairs14,24 as well as for potential spiral
phases in the staggered magnetization order parameter.25 It
is interesting to note that a similar term is absent in lightly
electron-doped antiferromagnets,30 such that spiral phases do
not arise in these systems.

IV. HOLE LOCALIZATION ON A SKYRMION

In this section, we apply the effective theory of the previous
section to the localization of holes on a skyrmion. First, we
consider the localization of a single hole first on a static and
then on a rotating skyrmion. Then, the localization of two
holes on the same skyrmion is considered, and the symmetry
properties of the resulting two-hole bound states are analyzed.

A. Single hole localized on a static skyrmion

As we have seen, the moment of inertia I(ρ) of a skyrmion
with n = 1 is logarithmically divergent in the infrared. Unless
the divergence is regularized due to a finite spatial volume
or the presence of other skyrmions, the skyrmion then can
not rotate. In the interest of analytic solubility, and because we
want to focus on symmetry aspects, we will no longer consider
the translational and dilational motion of the skyrmion.
Instead, we fix the skyrmion center at the origin x = 0 and
we fix the skyrmion size to a constant ρ. As we will see later,
in the presence of holes, the energy of the skyrmion-hole bound
states is minimized for a particular value of ρ.
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The wave function of a single hole localized on a skyrmion takes the form

�f
σ,n(r,χ ) =

(
�

f
σ,n,+(r,χ )

�
f
σ,n,−(r,χ )

)
. (4.1)

Omitting the constant rest energy M of the holes, which just amounts to a constant energy shift, the corresponding Hamiltonian
resulting from the action of Eq. (3.7) is given by

Hf =
(

H
f
++ H

f
+−

H
f
−+ H

f
−−

)
,

H
f
++ = − 1

2M ′
[
∂i + iv3

i (x)
]2 = − 1

2M ′

[
∂2
r + 1

r
∂r + 1

r2

(
∂χ + i

σnρ2n

r2n + ρ2n

)2 ]
,

H
f
+− = �[v+

1 (x) + σf v+
2 (x)] =

√
2�σσf

nrn−1ρn

r2n + ρ2n
exp

{
−iσ

[
(n + 1)χ + γ + σf

π

4

]}
, (4.2)

H
f
−+ = �[v−

1 (x) + σf v−
2 (x)] =

√
2�σσf

nrn−1ρn

r2n + ρ2n
exp

{
iσ

[
(n + 1)χ + γ + σf

π

4

]}
,

H
f
−− = − 1

2M ′
[
∂i − iv3

i (x)
]2 = − 1

2M ′

[
∂2
r + 1

r
∂r + 1

r2

(
∂χ − i

σnρ2n

r2n + ρ2n

)2 ]
.

Using the explicit form of v3
i (x) and v±

i (x) for the skyrmion of Eq. (3.5) and making the ansatz

�f
σ,m+,m− (r,χ ) =

(
ψm+,m−,+(r) exp

(
iσ

[
m+χ − γ

2 − σf
π
8

])
σσf ψm+,m−,−(r) exp

(
iσ

[
m−χ + γ

2 + σf
π
8

]))
, (4.3)

with m− − m+ = n + 1, after some algebra one obtains the radial Schrödinger equation

Hrψm+,m− (r) =
(

Hr++ Hr+−
Hr−+ Hr−−

)(
ψm+,m−,+(r)
ψm+,m−,−(r)

)
= Em+,m−ψm+,m− (r), (4.4)

with

Hr++ = − 1

2M ′

[
∂2
r + 1

r
∂r − 1

r2

(
m+ + nρ2n

r2n + ρ2n

)2 ]
,

Hr+− = Hr−+ =
√

2�
nrn−1ρn

r2n + ρ2n
, (4.5)

Hr−− = − 1

2M ′

[
∂2
r + 1

r
∂r − 1

r2

(
m− − nρ2n

r2n + ρ2n

)2 ]
.

It should be noted that the resulting radial Schrödinger equation is the same for skyrmions and antiskyrmions as well as for both
flavors f = α,β. Interestingly, for odd n and m− = −m+ = (n + 1)/2, the two equations decouple. The equation that leads to a
localized hole takes the form{

− 1

2M ′

[
∂2
r + 1

r
∂r − 1

r2

(
n + 1

2
− nρ2n

r2n + ρ2n

)2 ]
−

√
2�nrn−1ρn

r2n + ρ2n

}
ψ(r) = Eψ(r), (4.6)

where ψ(r) is the linear combination

ψ(r) = 1√
2

[ψm+,m−,+(r) − ψm+,m−,−(r)]. (4.7)

For even winding number n, on the other hand, the two
equations do not decouple. In the following, we will be
most interested in skyrmions (or antiskyrmions) with winding
number n = 1.

In this paper, we concentrate on the symmetry properties of
holes localized on a skyrmion, not paying much attention to

finer details of the dynamics. Hence, here we do not solve
the radial equation, which would be straightforward using
numerical methods. Still, we want to obtain at least a rough
estimate for the ground-state energy of a hole localized on a
skyrmion. For n = 1, the radial Schrödinger equation takes the
form

[
− 1

2M ′

(
∂2
r + 1

r
∂r

)
+ V (r)

]
ψ(r) = Eψ(r), (4.8)
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with the potential given by

V (r) = 1

2M ′
r2

(r2 + ρ2)2
−

√
2�

ρ

r2 + ρ2
. (4.9)

At short distances, the potential can be approximated by a
harmonic oscillator

Vapprox(r) = −
√

2�

ρ
+ M ′

2

(
1

M ′2ρ4
+ 2

√
2�

M ′ρ3

)
r2 + O(r4),

(4.10)
and hence, in a rather crude harmonic approximation, the
ground-state energy takes the form

E0 = −
√

2�

ρ
+

√
1

M ′2ρ4
+ 2

√
2�

M ′ρ3

= M ′�2x
(√

x2 + 2
√

2x −
√

2
)
, x = 1

M ′�ρ
.

(4.11)

Minimizing the energy as a function of x yields x3 + 3
√

2x2 +
4x = √

2, which is solved by

x =
√

2

3

[(
3
√

3

4
+

√
11

4

)1/3

+
(

3
√

3

4
+

√
11

4

)−1/3]
−

√
2 ≈ 0.271 ⇒

ρ ≈ 1

0.271M ′�
. (4.12)

This shows that the presence of the hole explicitly breaks the
scale invariance that led to the dilational instability of the pure
skyrmion. The resulting bound state with the strongest binding
energy has

E0 = M ′�2x(

√
x2 + 2

√
2x −

√
2) ≈ −0.135M ′�2. (4.13)

The potential V (r) is shown in Fig. 2 together with its harmonic
approximation and the corresponding ground-state energy E0.
The figure implies that the true ground-state energy is smaller
than the harmonic approximation suggests.

B. Single hole localized on a rotating skyrmion

In this section, we consider a single hole localized on a
rotating skyrmion. When the moment of inertia I(ρ) diverges
(as it is the case for n = 1 and R = ∞) the fixed orientation
γ of the skyrmion explicitly breaks the U(1)s symmetry
and the analysis of Sec. IV A applies. Here, we assume
that I(ρ) = D(ρ)ρ2/n2 is finite. When I(ρ) is finite, the
skyrmion can rotate and thus γ becomes a dynamical variable.

.

.

.

.
. . . . . . .

.

FIG. 2. (Color online) The potential V (r) (solid curve) together
with its harmonic approximation (dashed curve) and the correspond-
ing ground-state energy (dotted line).

The γ -dependent terms in the Lagrange function for the
rotational motion are given by

L = D(ρ)ρ2

2n2
γ̇ 2 − n

�

2π
γ̇ +

∫
d2x

∑
f =α,β

s=+,−

sψf †
s v3

t ψ
f
s .

(4.14)

Using Eq. (3.5), the momentum canonically conjugate to γ

thus takes the form

pγ = D(ρ)ρ2γ̇

n2
− n

�

2π

+
∫

d2x σ
ρ2n

r2n + ρ2n

∑
f =α,β

s=+,−

sψf †
s ψf

s , (4.15)

which leads to the corresponding Hamiltonian

Hγ = 1

2I(ρ)
(−i∂γ − Aγ )2, (4.16)

with the Berry gauge field

Aγ =
∫

d2x
∑
f =α,β

s=+,−

�f †
s

σρ2n

r2n + ρ2n
s�f

s − n
�

2π
. (4.17)

By combining the results, one sees that while the off-diagonal
elements of the Hamiltonian (4.2) remain the same, the
diagonal elements receive additional contributions such that
now

H
f
++ = − 1

2M ′
[
∂i + iv3

i (x)
]2 − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
− iσ

ρ2n

r2n + ρ2n

)2

= − 1

2M ′

[
∂2
r + 1

r
∂r + 1

r2

(
∂χ + iσ

nρ2n

r2n + ρ2n

)2 ]
− n2

2D(ρ)ρ2

(
∂γ + in

�

2π
− iσ

ρ2n

r2n + ρ2n

)2

,

H
f
+− = �[v+

1 (x) + σf v+
2 (x)] =

√
2�σσf

nrn−1ρn

r2n + ρ2n
exp

{
− iσ

[
(n + 1)χ + γ + σf

π

4

]}
,

155113-10



SYMMETRY ANALYSIS OF HOLES LOCALIZED ON A . . . PHYSICAL REVIEW B 86, 155113 (2012)

H
f
−+ = �[v−

1 (x) + σf v−
2 (x)] =

√
2�σσf

nrn−1ρn

r2n + ρ2n
exp

{
iσ

[
(n + 1)χ + γ + σf

π

4

]}
,

H
f
−− = − 1

2M ′
[
∂i − iv3

i (x)
]2 − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
+ iσ

ρ2n

r2n + ρ2n

)2

= − 1

2M ′

[
∂2
r + 1

r
∂r + 1

r2

(
∂χ − iσ

nρ2n

r2n + ρ2n

)2 ]
− n2

2D(ρ)ρ2

(
∂γ + in

�

2π
+ iσ

ρ2n

r2n + ρ2n

)2

. (4.18)

We now make the ansatz

�f
σ,m+,m−,m(r,χ,γ ) =

(
ψσ,m+,m−,m,+(r) exp

(
iσ

[
m+χ − σf

π
8

])
exp

[
iσ

(
m − 1

2

)
γ
]

σσf ψσ,m+,m−,m,−(r) exp
(
iσ

[
m−χ + σf

π
8

])
exp

[
iσ

(
m + 1

2

)
γ
])

(4.19)

with m− − m+ = n + 1. In order to ensure 2π periodicity of
the wave function in the variable γ , m must now be one-half of
some odd integer. This is in contrast to the rotating skyrmion
without a hole that was discussed in Sec. II D, for which m

was an integer. The radial Schrödinger equation is then given
by

Hrψσ,m+,m−,m(r) =
(

Hr++ Hr+−
Hr−+ Hr−−

) (
ψσ,m+,m−,m,+(r)

ψσ,m+,m−,m,−(r)

)
= Eσ,m+,m−,mψσ,m+,m−,m(r). (4.20)

In this case, the four matrix elements of the radial Hamiltonian
Hr take the form

Hr++ = − 1

2M ′

[
∂2
r + 1

r
∂r − 1

r2

(
m+ + nρ2n

r2n + ρ2n

)2 ]

+ n2

2D(ρ)ρ2

(
m + σn

�

2π
− 1

2
− ρ2n

r2n + ρ2n

)2

,

Hr+− = Hr−+ =
√

2�
nrn−1ρn

r2n + ρ2n
,

Hr−− = − 1

2M ′

[
∂2
r + 1

r
∂r − 1

r2

(
m− − nρ2n

r2n + ρ2n

)2 ]

+ n2

2D(ρ)ρ2

(
m + σn

�

2π
+ 1

2
+ ρ2n

r2n + ρ2n

)2

.

(4.21)

C. Symmetry properties of a single hole localized on a skyrmion

Let us again consider the spin operator (which generates an
internal symmetry and is thus analogous to isospin in particle
physics)

I =
(−iσ∂γ + σn �

2π
+ 1

2 0
0 −iσ∂γ + σn �

2π
− 1

2

)
, (4.22)

which commutes with the Hamiltonian, i.e., [Hf ,I ] = 0. The
wave function �

f
σ,m+,m−,m is indeed an eigenstate of I , i.e.,

I �f
σ,m+,m−,m(r,χ,γ ) =

(
m + σn

�

2π

)
�f

σ,m+,m−,m(r,χ,γ ).

(4.23)

Since m is half of an odd integer, the rotating skyrmion with
one hole localized on it has half-integer spin (or “isospin”), at
least for vanishing anyon statistics parameter � = 0.

The various symmetries such as the displacements D′
1 and

D′
2, the 90◦ rotation O, as well as the reflection R, act on the

wave function

�f
σ,n(r,χ,γ ) =

(
�

f
σ,n,+(r,χ,γ )

�
f
σ,n,−(r,χ,γ )

)
(4.24)

of a single hole localized on a rotating (anti)skyrmion with
winding number σn as follows:

D′
i �f

σ,n(r,χ,γ ) = exp
(
ik

f

i a
) (

�
f
σ,n,−(r,χ,γ )

−�
f
σ,n,+(r,χ,γ )

)
,

O�f
σ,n(r,χ,γ ) =

(
σf �

f
σ,n,+

(
r,χ + π

2 ,γ − nπ
2

)
�

f
σ,n,−

(
r,χ + π

2 ,γ − nπ
2

) )
,

R�f
σ,n(r,χ,γ ) =

(
�

f
σ,n,+(r, − χ, − γ )

�
f
σ,n,−(r, − χ, − γ )

)
. (4.25)

For energy eigenstates, this then implies

D′
i �f

σ,m+,m−,m(r,χ,γ )

= σσf exp
(
ik

f

i a
)
�

f
−σ,−m−,−m+,−m(r,χ,γ ),

O�α
σ,m+,m−,m(r,χ,γ )

= exp

(
iσ [m+ + m− − 2 − 2nm]

π

4

)
�β

σ,m+,m−,m(r,χ,γ ),

O�β
σ,m+,m−,m(r,χ,γ )

= − exp

(
iσ [m+ + m− − 2nm]

π

4

)
�α

σ,m+,m−,m(r,χ,γ ),

R�α
σ,m+,m−,m(r,χ,γ ) = �

β
−σ,m+,m−,m(r,χ,γ ),

R�β
σ,m+,m−,m(r,χ,γ ) = �α

−σ,m+,m−,m(r,χ,γ ). (4.26)

It should be noted that for � �= 0 or π , the reflection symmetry
R is explicitly broken by the Hopf term. Assuming appropriate
phase conventions for the radial wave functions, in the
considerations of the shift symmetries D′

i , we have used

ψ−m−,−m+,−m,+(r) = ψm+,m−,m,−(r),
(4.27)

ψ−m−,−m+,−m,−(r) = ψm+,m−,m,+(r),
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which follows from the behavior of Eq. (4.21) under the
replacement of m+ → m′

+ = −m−, m− → m′
− = −m+, and

m → m′ = −m. It is worth noting that after this replacement,
the constraint

m′
− − m′

+ = −m+ + m− = n + 1 (4.28)

remains satisfied.

D. Schrödinger equation for a pair of holes of different flavor
localized on a rotating skyrmion

Let us now consider bound states of two holes localized
on the same skyrmion. Both a hole of flavor α and an-

other hole of flavor β can occupy the same single-particle
ground state in a skyrmion. For holes of the same flavor,
this would be forbidden by the Pauli principle. Since we
are most interested in the lowest-energy states, we con-
sider two holes of different flavor. The case of two holes
with the same flavor is discussed in the Appendix. The
Hamiltonian for two holes of different flavor α and β is
given by

H = Hα + Hβ + Hγ , (4.29)

where Hα and Hβ are the Hamiltonians for a hole of flavor α

and β, respectively. Explicitly, one has

Hα =

⎛⎜⎝Hα
++ 0 Hα

+− 0
0 Hα

++ 0 Hα
+−

Hα
−+ 0 Hα

−− 0
0 Hα

−+ 0 Hα
−−

⎞⎟⎠ , Hβ =

⎛⎜⎜⎝
H

β
++ H

β
+− 0 0

H
β
−+ H

β
−− 0 0

0 0 H
β
++ H

β
+−

0 0 H
β
−+ H

β
−−

⎞⎟⎟⎠ ,

(4.30)

Hγ =

⎛⎜⎝
H

γ
++++ 0 0 0
0 H

γ
+−+− 0 0

0 0 H
γ
−+−+ 0

0 0 0 H
γ
−−−−

⎞⎟⎠ ,

with

Hα
++ = − 1

2M ′
[
∂i + iv3

i (x)
]2

, Hα
+− = �[v+

1 (x) + v+
2 (x)],

Hα
−− = − 1

2M ′
[
∂i − iv3

i (x)
]2

, Hα
−+ = �[v−

1 (x) + v−
2 (x)],

H
β
++ = − 1

2M ′
[
∂i + iv3

i (x)
]2

, H
β
+− = �[v+

1 (x) − v+
2 (x)],

H
β
−− = − 1

2M ′
[
∂i − iv3

i (x)
]2

, H
β
−+ = �[v−

1 (x) − v−
2 (x)],

(4.31)

H
γ
++++ = − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
− iσ

ρ2n

r2n
α + ρ2n

− iσ
ρ2n

r2n
β + ρ2n

)2

,

H
γ
+−+− = − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
− iσ

ρ2n

r2n
α + ρ2n

+ iσ
ρ2n

r2n
β + ρ2n

)2

,

H
γ
−+−+ = − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
+ iσ

ρ2n

r2n
α + ρ2n

− iσ
ρ2n

r2n
β + ρ2n

)2

,

H
γ
−−−− = − n2

2D(ρ)ρ2

(
∂γ + in

�

2π
+ iσ

ρ2n

r2n
α + ρ2n

+ iσ
ρ2n

r2n
β + ρ2n

)2

.

We now make the following ansatz for a two-hole energy eigenstate:

�
αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ )

=

⎛⎜⎜⎜⎜⎜⎝
ψ

σ,mα+,mα−,m
β
+,m

β
−,m,++(rα,rβ) exp(iσ [mα

+χα + m
β
+χβ]) exp[iσ (m − 1)γ ]

−σψ
σ,mα+,mα−,m

β
+,m

β
−,m,+−(rα,rβ) exp(iσ [mα

+χα + m
β
−χβ − π

4 ]) exp(iσmγ )

σψ
σ,mα+,mα−,m

β
+,m

β
−,m,−+(rα,rβ) exp(iσ [mα

−χα + m
β
+χβ + π

4 ]) exp(iσmγ )

−ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−−(rα,rβ) exp(iσ [mα

−χα + m
β
−χβ]) exp[iσ (m + 1)γ ]

⎞⎟⎟⎟⎟⎟⎠ . (4.32)
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Again, this solves the Schrödinger equation only if m
f
− − m

f
+ = n + 1. As for the skyrmion without holes, in this case, m is

again an integer. The resulting radial Schrödinger equation then takes the form

Hrψσ,mα+,mα−,m
β
+,m

β
−,m

(rα,rβ) = E
σ,mα+,mα−,m

β
+,m

β
−,m

ψ
σ,mα+,mα−,m

β
+,m

β
−,m

(rα,rβ), (4.33)

with

ψ
σ,mα+,mα−,m

β
+,m

β
−,m

(rα,rβ) =

⎛⎜⎜⎜⎝
ψ

σ,mα+,mα−,m
β
+,m

β
−,m,++(rα,rβ)

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,+−(rα,rβ)

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−+(rα,rβ)

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−−(rα,rβ)

⎞⎟⎟⎟⎠ . (4.34)

The radial Hamiltonian is given by

Hr = Hα
r + Hβ

r + Hγ
r , (4.35)

with

Hα
r =

⎛⎜⎝Hα
r++ 0 Hα

r+− 0
0 Hα

r++ 0 Hα
r+−

Hα
r−+ 0 Hα

r−− 0
0 Hα

r−+ 0 Hα
r−−

⎞⎟⎠ , Hβ
r =

⎛⎜⎜⎝
H

β
r++ H

β
r+− 0 0

H
β
r−+ H

β
r−− 0 0

0 0 H
β
r++ H

β
r+−

0 0 H
β
r−+ H

β
r−−

⎞⎟⎟⎠ ,

(4.36)

Hγ
r =

⎛⎜⎝
H

γ
r++++ 0 0 0

0 H
γ
r+−+− 0 0

0 0 H
γ
r−+−+ 0

0 0 0 H
γ
r−−−−

⎞⎟⎠ .

The matrix elements of the fermionic part of the radial Hamiltonian are

H
f
r++ = − 1

2M ′

[
∂2
rf

+ 1

rf

∂rf
− 1

r2
f

(
m

f
+ + nρ2n

r2n
f + ρ2n

)2 ]
,

H
f
r+− = H

f
r−+ =

√
2�

nrn−1
f ρn

r2n
f + ρ2n

, (4.37)

H
f
r−− = − 1

2M ′

[
∂2
rf

+ 1

rf

∂rf
− 1

r2
f

(
m

f
− − nρ2n

r2n
f + ρ2n

)2 ]
,

while the rotational skyrmion contributions are given by

H
γ
r++++ = n2

2D(ρ)ρ2

(
m + σn

�

2π
− 1 − ρ2n

r2n
α + ρ2n

− ρ2n

r2n
β + ρ2n

)2

,

H
γ
r+−+− = n2

2D(ρ)ρ2

(
m + σn

�

2π
− ρ2n

r2n
α + ρ2n

+ ρ2n

r2n
β + ρ2n

)2

,

(4.38)

H
γ
r−+−+ = n2

2D(ρ)ρ2

(
m + σn

�

2π
+ ρ2n

r2n
α + ρ2n

− ρ2n

r2n
β + ρ2n

)2

,

H
γ
r−−−− = n2

2D(ρ)ρ2

(
m + σn

�

2π
+ 1 + ρ2n

r2n
α + ρ2n

+ ρ2n

r2n
β + ρ2n

)2

.

E. Symmetry properties of a pair of holes with different flavors localized on a skyrmion

It is worth noticing that the spin operator I , which commutes with the two-hole Hamiltonian H , is given by

I =

⎛⎜⎜⎝
−iσ∂γ + σn �

2π
+ 1 0 0 0

0 −iσ∂γ + σn �
2π

0 0
0 0 −iσ∂γ + σn �

2π
0

0 0 0 −iσ∂γ + σn �
2π

− 1

⎞⎟⎟⎠ , (4.39)
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such that

I�
αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ) =
(

m + σn
�

2π

)
�

αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ). (4.40)

Since m is an integer, as expected, for � = 0 the state with two holes localized on a skyrmion has integer spin (which plays the
role of “isospin”).

The symmetries D′
i , O, and R act on a general two-hole wave function

�αβ
σ,n(rα,χα,rβ,χβ,γ ) =

⎛⎜⎜⎜⎜⎝
�

αβ
σ,n,++(rα,χα,rβ,χβ,γ )

�
αβ
σ,n,+−(rα,χα,rβ,χβ,γ )

�
αβ
σ,n,−+(rα,χα,rβ,χβ,γ )

�
αβ
σ,n,−−(rα,χα,rβ,χβ,γ )

⎞⎟⎟⎟⎟⎠ (4.41)

as follows:

D′
i �αβ

σ,n(rα,χα,rβ,χβ,γ ) = exp
[
i
(
kα
i + k

β

i

)
a
]
⎛⎜⎜⎜⎜⎝

�
αβ
σ,n,−−(rα,χα,rβ,χβ,γ )

−�
αβ
σ,n,−+(rα,χα,rβ,χβ,γ )

−�
αβ
σ,n,+−(rα,χα,rβ,χβ,γ )

�
αβ
σ,n,++(rα,χα,rβ,χβ,γ )

⎞⎟⎟⎟⎟⎠ ,

O�αβ
σ,n(rα,χα,rβ,χβ,γ ) =

⎛⎜⎜⎜⎜⎝
−�

αβ
σ,n,++(rβ,χβ + π

2 ,rα,χα + π
2 ,γ − nπ

2 )

−�
αβ
σ,n,−+(rβ,χβ + π

2 ,rα,χα + π
2 ,γ − nπ

2 )

�
αβ
σ,n,+−(rβ,χβ + π

2 ,rα,χα + π
2 ,γ − nπ

2 )

�
αβ
σ,n,−−(rβ,χβ + π

2 ,rα,χα + π
2 ,γ − nπ

2 )

⎞⎟⎟⎟⎟⎠ , (4.42)

R�αβ
σ,n(rα,χα,rβ,χβ,γ ) =

⎛⎜⎜⎜⎜⎝
�

αβ
σ,n,++(rβ,−χβ,rα,−χα,−γ )

�
αβ
σ,n,−+(rβ,−χβ,rα,−χα,−γ )

�
αβ
σ,n,+−(rβ,−χβ,rα,−χα,−γ )

�
αβ
σ,n,−−(rβ,−χβ,rα,−χα,−γ )

⎞⎟⎟⎟⎟⎠ .

It is straightforward to show that for the two-hole energy eigenstates, this implies

D′
1�

αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ) = �
αβ

−σ,−mα−,−mα+,−m
β
−,−m

β
+,−m

(rα,χα,rβ,χβ,γ ),

D′
2�

αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ) = −�
αβ

−σ,−mα−,−mα+,−m
β
−,−m

β
+,−m

(rα,χα,rβ,χβ,γ ),
(4.43)

O�
αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ) = exp

(
iσ [mα

+ + m
β
− − mn + 1]

π

2

)
�

αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ),

R�
αβ

σ,mα+,mα−,m
β
+,m

β
−,m

(rα,χα,rβ,χβ,γ ) = �
αβ

−σ,m
β
+,m

β
−,mα+,mα−,m

(rα,χα,rβ,χβ,γ ).

Here, we have assumed an appropriate phase convention for the radial wave function ψ
σ,mα+,mα−,m

β
+,m

β
−,m

(rα,rβ). In the context of
the shift symmetries D′

i , we have used

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−−(rα,rβ) = ψ−σ,−mα−,−mα+,−m

β
−,−m

β
+,−m,++(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−+(rα,rβ) = ψ−σ,−mα−,−mα+,−m

β
−,−m

β
+,−m,+−(rα,rβ),

(4.44)
ψ

σ,mα+,mα−,m
β
+,m

β
−,m,+−(rα,rβ) = ψ−σ,−mα−,−mα+,−m

β
−,−m

β
+,−m,−+(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,++(rα,rβ) = ψ−σ,−mα−,−mα+,−m

β
−,−m

β
+,−m,−−(rα,rβ).
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These relations follow from the symmetries of the radial
Schrödinger equation (4.33). Similarly, in the context of the
rotation O, we have used

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,++(rβ,rα) = ψ

σ,m
β
+,m

β
−,mα+,mα−,m,++(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−+(rβ,rα) = ψ

σ,m
β
+,m

β
−,mα+,mα−,m,+−(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,+−(rβ,rα) = ψ

σ,m
β
+,m

β
−,mα+,mα−,m,−+(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−−(rβ,rα) = ψ

σ,m
β
+,m

β
−,mα+,mα−,m,−−(rα,rβ).

(4.45)

Finally, in the context of the reflection symmetry R, we have
used

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,++(rβ,rα) = ψ−σ,m

β
+,m

β
−,mα+,mα−,m,++(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−+(rβ,rα) = ψ−σ,m

β
+,m

β
−,mα+,mα−,m,+−(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,+−(rβ,rα) = ψ−σ,m

β
+,m

β
−,mα+,mα−,m,−+(rα,rβ),

ψ
σ,mα+,mα−,m

β
+,m

β
−,m,−−(rβ,rα) = ψ−σ,m

β
+,m

β
−,mα+,mα−,m,−−(rα,rβ).

(4.46)

The relations in Eq. (4.46) follow from the symmetries
of the radial Schrödinger equation (4.33) for � = 0. For
� �= 0 or π , the Hopf term explicitly breaks the reflection
symmetry.

F. Comparison with two-hole states bound by
one-magnon exchange

In Ref. 14, states of two holes bound by one-magnon
exchange in a square lattice antiferromagnet have been
investigated in great detail. Here, we summarize as well as
extend some of the relevant results. In the rest frame, the
Schrödinger equation for two holes of flavor α and β takes the
form( − 1

M ′ � V αβ(�r)
V αβ(�r) − 1

M ′ �

) (
�1(�r)
�2(�r)

)
= E

(
�1(�r)
�2(�r)

)
. (4.47)

The components �1(�r) and �2(�r) are probability amplitudes
for the spin-flavor combinations α+β− and α−β+, respectively.
The potential

V αβ(�r) = �2

2πρs

cos(2ϕ)

r2
(4.48)

couples the two channels because magnon exchange is
accompanied by a spin flip. Here, �r = �r+ − �r− is the distance
vector between the two holes of spin + and − and ϕ is the
angle between �r and the x axis. Magnon exchange is attractive
between holes of opposite spin, and hence magnon-mediated
two-hole bound states are invariant under the unbroken
subgroup U(1)s . We make the ansatz

�1(�r) ± �2(�r) = R(r)χ±(ϕ). (4.49)

For the angular part of the wave function, this implies

−d2χ±(ϕ)

dϕ2
± M ′�2

2πρs

cos(2ϕ)χ±(ϕ) = −λχ±(ϕ). (4.50)

This is a Mathieu equation, the solution with the lowest
eigenvalue −λ1 of which is given by

χ1
±(ϕ) = 1√

π
ce0

(
ϕ,±M ′�2

4πρs

)
,

(4.51)

λ1 = 1

2

(
M ′�2

4πρs

)2

+ O(�8).

The first excited state and its eigenvalue −λ2 is given by

χ2
+(ϕ) = 1√

π
se1

(
ϕ,

M ′�2

4πρs

)
,

χ2
−(ϕ) = 1√

π
se1

(
ϕ − π

2
,
M ′�2

4πρs

)
= − 1√

π
ce1

(
ϕ,−M ′�2

4πρs

)
,

λ2 = −1 + M ′�2

4πρs

+ 1

8

(
M ′�2

4πρs

)2

(4.52)

− 1

64

(
M ′�2

4πρs

)3

+ O(�8).

For small �, λ2 < 0, which (as we will see) implies that the
corresponding two-hole state is unbound. For M ′�2/4πρs >

0.908 046, on the other hand, λ1,λ2 > 0, such that then
both states are bound. The periodic Mathieu functions
ce0(ϕ,M ′�2/4πρs) and se1(ϕ,M ′�2/4πρs) (Ref. 64) are
shown in Fig. 3. The corresponding radial Schrödinger
equation is given by

−
[
d2Ri(r)

dr2
+ 1

r

dRi(r)

dr

]
− λi

r2
Ri(r)

= M ′EiRi(r), i ∈ {1,2}. (4.53)

The short-distance repulsion between two holes can be
incorporated by a hard core of radius r0, i.e., we require
Ri(r0) = 0. The radial Schrödinger equation for the bound
states is solved by a Bessel function

Ri(r) = AiKν(
√

M ′|Eik|r), k = 1,2,3, . . . , ν = i
√

λi.

(4.54)

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

FIG. 3. (Color online) Angular wave functions
ce0(ϕ,M ′�2/4πρs) (solid curve) and se1(ϕ,M ′�2/4πρs) (dashed
curve) as well as the angle dependence cos(2ϕ) of the potential (dotted
curve) for a pair of holes with flavors α and β (M ′�2/4πρs = 1.25).
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The energy [determined from Kν(
√

M ′|Eik|r0) = 0] is then
given by

Eik ∼ −(
M ′r2

0

)−1
exp(−2πk/

√
λi) (4.55)

for large n. Magnon exchange mediates weak attractive forces
that lead to a small binding energy.

The two lowest-energy states with angular part χ1
+(ϕ) and

χ1
−(ϕ) are degenerate in energy. By linearly combining the two

states to two eigenstates of the rotation O, one obtains

�1
±(�r) = R1(r)

(
χ1

+(ϕ) ∓ iχ1
−(ϕ)

χ1
+(ϕ) ± iχ1

−(ϕ)

)
. (4.56)

The corresponding probability density is illustrated in Fig. 4
(left panel). While the probability density seems to resemble
dx2−y2 symmetry, unlike for an actual d wave, the wave
function is suppressed, but not equal to zero, along the lattice
diagonals. In fact, as one operates on the states �1

±(�r) with the
90◦ rotation O, one obtains the eigenvalues ±i, which show
that they actually have p-wave symmetry.

FIG. 4. Probability distribution for two holes with flavors α

and β. Left panel: the ground state with p-wave symmetry. Right
panel: excited states with s- or d-wave symmetry, but with identical
probability densities (M ′�2/4πρs = 1.25, r0 = a).

Under the discrete symmetries D′
i , O, and R, the ground

states �1
±(�r), which are bound by magnon exchange, transform

as

D′
1�1

±(�r) = R1(r)

(
χ1

+(ϕ) ± iχ1
−(ϕ)

χ1
+(ϕ) ∓ iχ1

−(ϕ)

)
= �1

∓(�r),

D′
2�1

±(�r) = −R1(r)

(
χ1

+(ϕ) ± iχ1
−(ϕ)

χ1
+(ϕ) ∓ iχ1

−(ϕ)

)
= −�1

∓(�r),

(4.57)
O�1

±(�r) = R1(r)

(
χ1

+(ϕ + π
2 ) ± iχ1

−(ϕ + π
2 )

−χ1
+(ϕ + π

2 ) ± iχ1
−(ϕ + π

2 )

)
= R1(r)

(
χ1

−(ϕ) ± iχ1
+(ϕ)

−χ1
−(ϕ) ± iχ1

+(ϕ)

)
= ±i�1

±(�r),

R�1
±(�r) = R1(r)

(
χ1

+(−ϕ) ± iχ1
−(−ϕ)

χ1
+(−ϕ) ∓ iχ1

−(−ϕ)

)
= R1(r)

(
χ1

+(ϕ) ± iχ1
−(ϕ)

χ1
+(ϕ) ∓ iχ1

−(ϕ)

)
= �1

∓(�r).

It should be noted that in Ref. 14 there are two typos in the last line of the previous equation for the reflection symmetry R

[Eq. (6.20) in Ref. 14].
Remarkably, the magnon-mediated two-hole ground states �1

±(�r) transform exactly as the two-hole states localized on
a rotating skyrmion with n = 1, provided that we associate �1

±(�r) with the corresponding two-hole-skyrmion wave function

�
αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ) with the quantum numbers σ = ±, mα
+ = m

β
+ = −1, mα

− = m
β
− = 1, and m = 0. Indeed, according

to Eq. (4.43), one obtains

D′
1�

αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ),

D′
2�

αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ),
(4.58)

O�
αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ) = ±i�
αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ),

R�
αβ

±,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,−1,1,0(rα,χα,rβ,χβ,γ ).

Just as the magnon-mediated bound states, these states are also invariant under U(1)s and they have fermion number 2. One
may argue that the two-hole-skyrmion states, in addition, have skyrmion number as a conserved topological quantum number.
However, as we discussed before, skyrmion number has no analog in the underlying microscopic Hubbard or t-J models and is
just an accidental symmetry of the effective theory. We thus conclude that, in their ground state, two holes bound by magnon
exchange indeed have exactly the same quantum numbers as two holes localized on a rotating skyrmion with n = 1. This implies
that these sets of states may evolve into each other upon doping. In this way, two holes weakly bound by magnon exchange at
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small doping may evolve into a strongly correlated preformed pair of holes localized on a skyrmion. However, as we have just
seen, theses bound states actually have p-wave symmetry.

Let us also consider the excited states, bound by magnon exchange, with angular part χ2
+(ϕ) and χ2

−(ϕ), which are again
degenerate. By linearly combining these two states to two eigenstates of the rotation O, one obtains

�2
±(�r) = R2(r)

(
χ2

+(ϕ) ∓ χ2
−(ϕ)

χ2
+(ϕ) ± χ2

−(ϕ)

)
. (4.59)

Operating on the states �2
±(�r) with the 90◦ rotation O, one now obtains the eigenvalues ±1, which implies that �2

+(�r) represents
an s wave, while �2

−(�r) actually has d-wave symmetry. As a consequence of an interplay of the various symmetries, the two
states are exactly degenerate. The corresponding probability density is illustrated in Fig. 4 (right panel). Interestingly, although
the states have different symmetries, their probability densities are identical.

Under the discrete symmetries D′
i , O, and R, the excited states �2

±(�r), which are bound by magnon exchange, transform as

D′
1�2

±(�r) = −R2(r)

(
χ2

+(ϕ) ± χ2
−(ϕ)

χ2
+(ϕ) ∓ χ2

−(ϕ)

)
= −�2

∓(�r),

D′
2�2

±(�r) = R2(r)

(
χ2

+(ϕ) ± χ2
−(ϕ)

χ2
+(ϕ) ∓ χ2

−(ϕ)

)
= �2

∓(�r),

(4.60)
O�2

±(�r) = R2(r)

(
χ2

+
(
ϕ + π

2

) ± χ2
−
(
ϕ + π

2

)
−χ2

+
(
ϕ + π

2

) ± χ2
−
(
ϕ + π

2

))
= R2(r)

(−χ2
−(ϕ) ± χ2

+(ϕ)

χ2
−(ϕ) ± χ2

+(ϕ)

)
= ±�2

±(�r),

R�2
±(�r) = R2(r)

(
χ2

+(−ϕ) ± χ2
−(−ϕ)

χ2
+(−ϕ) ∓ χ2

−(−ϕ)

)
= R2(r)

(−χ2
+(ϕ) ± χ2

−(ϕ)

−χ2
+(ϕ) ∓ χ2

−(ϕ)

)
= −�2

±(�r).

States with d-wave symmetry can also be constructed for two holes localized on a skyrmion. For example, for n = 1, the
states �

αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ) and �
αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ) have d-wave symmetry. Under the symmetries D′
1 and D′

2,

they transform into �
αβ

∓,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ) and �
αβ

∓,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ), which have s-wave symmetry. According
to Eq. (4.43), under the various symmetries the d-wave states transform as

D′
1�

αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ),
D′

2�
αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ),
O�

αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ) = −�
αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ),
R�

αβ

±,−1,1,0,2,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,0,2,−1,1,0(rα,χα,rβ,χβ,γ ),
(4.61)

D′
1�

αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ),
D′

2�
αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ),
O�

αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ) = −�
αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ),
R�

αβ

±,0,2,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,0,2,0(rα,χα,rβ,χβ,γ ).

Similarly, the s-wave states transform as follows:

D′
1�

αβ

±,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,0,2,0(rα,χα,rβ,χβ,γ ),

D′
2�

αβ

±,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−1,1,0,2,0(rα,χα,rβ,χβ,γ ),

O�
αβ

±,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ) = �
αβ

±,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ),

R�
αβ

±,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ),
(4.62)

D′
1�

αβ

±,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,0,2,−1,1,0(rα,χα,rβ,χβ,γ ),

D′
2�

αβ

±,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,0,2,−1,1,0(rα,χα,rβ,χβ,γ ),

O�
αβ

±,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

±,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ),

R�
αβ

±,−2,0,−1,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,1,−2,0,0(rα,χα,rβ,χβ,γ ).

Hence, just as for the magnon-mediated excited states, as a consequence of the interplay of the various symmetries, s- and d-wave
states are again degenerate.
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Alternatively, d-wave states also arise for two holes localized on a skyrmion with winding number n = 2. For example, the two
states �

αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ) have d-wave symmetry, and they transform into the states �
αβ

∓,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ),
which again have s-wave symmetry, under D′

1 and D′
2. According to Eq. (4.43), the d-wave states transform as

D′
1�

αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ),
D′

2�
αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ),
(4.63)

O�
αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ) = −�
αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ),
R�

αβ

±,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ),

while the s-wave states transform as
D′

1�
αβ

±,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ),
D′

2�
αβ

±,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ) = −�
αβ

∓,−1,2,−1,2,0(rα,χα,rβ,χβ,γ ),
(4.64)

O�
αβ

±,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

±,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ),
R�

αβ

±,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ) = �
αβ

∓,−2,1,−2,1,0(rα,χα,rβ,χβ,γ ).

Depending on the details of the dynamics, the investigation of which goes beyond the scope of this paper, it may be possible that
the degenerate s- and d-wave states have a lower energy than the p-wave states discussed earlier.

G. Possible implications for Cooper-pair formation in
high-temperature superconductors

As we have seen, two holes, one of flavor α and one of
flavor β, can both get localized in the ground state of a single
rotating skyrmion with n = 1, which turns out to have p-
wave symmetry. Alternatively, the holes may get localized on
a rotating n = 1 or 2 skyrmion with s- or d-wave symmetry.
As discussed in the Appendix, two holes of the same flavor
can also get localized on a skyrmion. It will be the subject of
a subsequent publication to decide which of the various states
is energetically most favorable.

While in this paper we have concentrated on a detailed
symmetry analysis, we also want to get at least a crude estimate
of the binding energy of two-hole states localized on an n = 1
skyrmion. Ignoring contact interactions between the two holes,
the total energy of the bound state of two holes and a skyrmion
can then be estimated as

Etot = 2M + 4πρs + 2E0, (4.65)

while two free holes (not localized on a skyrmion) just have
their rest energy 2M . Using the result of Eq. (4.13), the
perturbative ground state thus becomes unstable against the
formation of two-hole-skyrmion bound states when

4πρs + 2E0 < 0 ⇒ 0.270M ′�2 > 4πρs. (4.66)

Hence, for sufficiently small spin stiffness ρs , the instability
will indeed arise. Similar instabilities are related to the
formation of spiral phases in the staggered magnetization order
parameter. In particular, in Ref. 25 we have shown that the
ground state with a spatially constant staggered magnetization
becomes unstable against the formation of a 45◦ spiral phase
for M ′�2 > 4πρs . Since antiferromagnetism is weakened
upon doping, ρs is expected to eventually go to zero. Before
this happens, pairs of holes will get localized on a skyrmion.

In order to get at least a rough idea of the involved
energy scales, let us estimate the values of the relevant
low-energy parameters for realistic lightly doped quantum

antiferromagnets. By comparison with Refs. 23, 26 and 27,
where a generalized t-J model on a square lattice with spacing
a was considered at J/t ≈ 0.3, one obtains the rough estimate

M ′ ≈ 1

ta2
≈ 0.3

Ja2
, � ≈ 2.5Ja. (4.67)

It would be interesting and definitely feasible to extract these
parameters with high precision from numerical simulations.
In this way, in the Heisenberg model (i.e., the undoped t-J
model), very accurate numerical results have been obtained
for the spin stiffness, the spin-wave velocity, and the staggered
magnetization per lattice site:1,3,4

ρs = 0.18081(11)J, c=1.6586(3)Ja, Ms =0.30743(1)/a2.

(4.68)

Hence, one obtains 0.270M ′�2 ≈ 0.5J compared to 4πρs =
2.2721(1)J , which implies that two-hole-skyrmion bound
states are still far from being energetically favorable at zero
doping. The exchange coupling of undoped La2CuO4 is J =
1540(60) K.1 A high transition temperature of Tc ≈ 50 K, and
hence Tc ≈ 0.03J , would thus require a two-hole-skyrmion
bound-state energy of about

4πρs + 2E0 = 4πρs − 0.270M ′�2 ≈ −0.03J ⇒ρs ≈ 0.04J.

(4.69)
If doping reduces ρs by a factor of about 4 or 5 (and assuming
for simplicity that the other parameters remain unchanged),
the estimated energy scales should indeed be of the right
magnitude in order to make two holes localized on a rotating
skyrmion a viable candidate for a preformed Cooper pair of
a high-temperature superconductor. Using Eq. (4.12), one can
estimate the radius of the skyrmion, which sets the scale for the
size of the candidate Cooper pair, as ρ ≈ 1/(0.271M ′�) ≈ 5a,
which again seems reasonable.

It may involve some wishful thinking to assume that the
d-wave state of two holes localized on an n = 1 or 2 skyrmion
will not only turn out to be energetically favorable, but also
ready to condense at sufficiently large doping. However, we
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think that it is worthwhile to take this possibility seriously.
Deciding whether the radial dynamics favors these states as
promising candidates for a preformed Cooper pair in the
pseudogap phase is the natural next step. The question of
condensation is another important issue.

V. CONCLUSIONS

We have performed a detailed study of the localization of
holes on a skyrmion in a square lattice antiferromagnet. When
two holes get localized on the same skyrmion, they form a
bound state. Interestingly, in some cases, the quantum numbers
of these topologically nontrivial bound states are the same as
those of the topologically trivial bound states resulting from
one-magnon exchange between two holes. The ground state of
two holes weakly bound by one-magnon exchange has p-wave
symmetry and may evolve into a strongly bound state of two
holes localized on an n = 1 skyrmion at strong coupling.

Magnon-mediated two-hole bound states which are excited
in the angular motion have s- or d-wave symmetry. Remark-
ably, s- and d-wave states are degenerate due to an interplay
of the various symmetries. Similarly, there are strongly bound
states of two holes localized on an n = 1 or 2 skyrmion which
also have s- or d-wave symmetry, and are again degenerate.
Which of these states is energetically most favorable will be
an interesting subject for future studies. If a d-wave state turns
out to be the ground state at sufficiently strong doping, two
holes localized on a skyrmion are a promising candidate for a
preformed Cooper pair in the pseudogap regime. Interestingly,
the effective theory provides detailed predictions for the
anatomy of these objects. In particular, their angular structure
follows unambiguously from our symmetry analysis, and is
insensitive to the details of the radial dynamics.

Understanding the dynamical mechanism responsible for
high-temperature superconductivity has proved to be one of the
most challenging problems in theoretical physics. While hole-
pair localization on a rotating skyrmion may ultimately turn out
not to be the relevant mechanism, it seems rather promising.
Beyond the symmetry analysis presented here, studying its
dynamics in more detail is certainly worthwhile.
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verstätskonferenz (SUK/CRUS).

APPENDIX: HOLE PAIRS OF THE SAME FLAVOR

In this Appendix, we consider a pair of holes in a square
lattice antiferromagnet residing in the same hole pocket. First,
we investigate two holes localized on a rotating skyrmion, and
then we compare the results with the corresponding two-hole
magnon-mediated bound states.

1. Schrödinger equation for a pair of holes of the same flavor
localized on a rotating skyrmion

Let us consider bound states of two holes of the same
flavor f localized on a rotating skyrmion. In this case, as a
consequence of the Pauli principle, the holes can not occupy
the same quantum state. We distinguish the holes by an
unphysical label 1 or 2. In order to satisfy the Pauli principle,
the wave function must be antisymmetric under the exchange
of the two labels.

The Hamiltonian for two holes of the same flavor f is then
given by

H = H 1 + H 2 + Hγ , (A1)

where

H 1 =

⎛⎜⎜⎜⎜⎝
H

f
++ 0 H

f
+− 0

0 H
f
++ 0 H

f
+−

H
f
−+ 0 H

f
−− 0

0 H
f
−+ 0 H

f
−−

⎞⎟⎟⎟⎟⎠ , H 2 =

⎛⎜⎜⎜⎜⎝
H

f
++ H

f
+− 0 0

H
f
−+ H

f
−− 0 0

0 0 H
f
++ H

f
+−

0 0 H
f
−+ H

f
−−

⎞⎟⎟⎟⎟⎠ ,

(A2)

Hγ =

⎛⎜⎜⎜⎝
H

γ
++++ 0 0 0

0 H
γ
+−+− 0 0

0 0 H
γ
−+−+ 0

0 0 0 H
γ
−−−−

⎞⎟⎟⎟⎠ ,

with H
f
±± and H

γ
±±±± given in Eq. (4.31).
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Before antisymmetrizing the wave function in the artificial labels 1 and 2, we ignore the Pauli principle, and make
the following ansatz for an energy eigenstate of two holes (distinguished by the labels 1 and 2):

�
ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ )

=

⎛⎜⎜⎜⎝
ψσ,m1+,m1−,m2+,m2−,m,++(r1,r2) exp

(
iσ

[
m1

+χ1 + m2
+χ2 − σf

π
4

])
exp[iσ (m − 1)γ ]

σσf ψσ,m1+,m1−,m2+,m2−,m,+−(r1,r2) exp(iσ [m1
+χ1 + m2

−χ2]) exp(iσmγ )

σσf ψσ,m1+,m1−,m2+,m2−,m,−+(r1,r2) exp(iσ [m1
−χ1 + m2

+χ2]) exp(iσmγ )

ψσ,m1+,m1−,m2+,m2−,m,−−(r1,r2) exp
(
iσ

[
m1

−χ1 + m2
−χ2 + σf

π
4

])
exp[iσ (m + 1)γ ]

⎞⎟⎟⎟⎠ . (A3)

As before, this solves the Schrödinger equation only if mi
− − mi

+ = n + 1, i = 1,2. In this case, m is again an integer. The
resulting radial Schrödinger equation now takes the form

Hrψσ,m1+,m1−,m2+,m2−,m(r1,r2) = Eσ,m1+,m1−,m2+,m2−,mψσ,m1+,m1−,m2+,m2−,m(r1,r2), (A4)

with

ψσ,m1+,m1−,m2+,m2−,m(r1,r2) =

⎛⎜⎜⎝
ψσ,m1+,m1−,m2+,m2−,m,++(r1,r2)
ψσ,m1+,m1−,m2+,m2−,m,+−(r1,r2)
ψσ,m1+,m1−,m2+,m2−,m,−+(r1,r2)
ψσ,m1+,m1−,m2+,m2−,m,−−(r1,r2)

⎞⎟⎟⎠ . (A5)

The radial Hamiltonian is given by

Hr = H 1
r + H 2

r + Hγ
r , (A6)

with

H 1
r =

⎛⎜⎜⎜⎝
H 1

r++ 0 H 1
r+− 0

0 H 1
r++ 0 H 1

r+−
H 1

r−+ 0 H 1
r−− 0

0 H 1
r−+ 0 H 1

r−−

⎞⎟⎟⎟⎠ , H 2
r =

⎛⎜⎜⎜⎝
H 2

r++ H 2
r+− 0 0

H 2
r−+ H 2

r−− 0 0

0 0 H 2
r++ H 2

r+−
0 0 H 2

r−+ H 2
r−−

⎞⎟⎟⎟⎠ , (A7)

Hγ
r =

⎛⎜⎜⎜⎝
H

γ
r++++ 0 0 0

0 H
γ
r+−+− 0 0

0 0 H
γ
r−+−+ 0

0 0 0 H
γ
r−−−−

⎞⎟⎟⎟⎠ .

The matrix elements of the fermionic part of the radial Hamiltonian are given by

Hi
r++ = − 1

2M ′

[
∂2
ri

+ 1

ri

∂ri
− 1

r2
i

(
mi

+ + nρ2n

r2n
i + ρ2n

)2 ]
,

H i
r+− = Hi

r−+ =
√

2�
nrn−1

i ρn

r2n
i + ρ2n

, (A8)

Hi
r−− = − 1

2M ′

[
∂2
ri

+ 1

ri

∂ri
− 1

r2
i

(
mi

− − nρ2n

r2n
i + ρ2n

)2 ]
,

while the rotational skyrmion contributions are given by

H
γ
r++++ = n2

2D(ρ)ρ2

(
m + σn

�

2π
− 1 − ρ2n

r2n
1 + ρ2n

− ρ2n

r2n
2 + ρ2n

)2

,

H
γ
r+−+− = n2

2D(ρ)ρ2

(
m + σn

�

2π
− ρ2n

r2n
1 + ρ2n

+ ρ2n

r2n
2 + ρ2n

)2

,

(A9)

H
γ
r−+−+ = n2

2D(ρ)ρ2

(
m + σn

�

2π
+ ρ2n

r2n
1 + ρ2n

− ρ2n

r2n
2 + ρ2n

)2

,

H
γ
r−−−− = n2

2D(ρ)ρ2

(
m + σn

�

2π
+ 1 + ρ2n

r2n
1 + ρ2n

+ ρ2n

r2n
2 + ρ2n

)2

.
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2. Symmetry properties of a pair of holes with the same flavor localized on a skyrmion

The spin operator I is again given by Eq. (4.39), such that

I�
ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) =

(
m + σn

�

2π

)
�

ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ). (A10)

Since m is an integer, at least for � = 0, the state with two holes of the same flavor localized on a skyrmion again has integer
spin.

The symmetries D′
i , O, and R act on the two-hole wave function

�ff
σ,n(r1,χ1,r2,χ2,γ ) =

⎛⎜⎜⎜⎜⎝
�

ff
σ,n,++(r1,χ1,r2,χ2,γ )

�
ff
σ,n,+−(r1,χ1,r2,χ2,γ )

�
ff
σ,n,−+(r1,χ1,r2,χ2,γ )

�
ff
σ,n,−−(r1,χ1,r2,χ2,γ )

⎞⎟⎟⎟⎟⎠ (A11)

as follows:

D′
i �ff

σ,n(r1,χ1,r2,χ2,γ ) = exp
(
2ik

f

i a
)
⎛⎜⎜⎜⎜⎝

�
ff
σ,n,−−(r1,χ1,r2,χ2,γ )

−�
ff
σ,n,−+(r1,χ1,r2,χ2,γ )

−�
ff
σ,n,+−(r1,χ1,r2,χ2,γ )

�
ff
σ,n,++(r1,χ1,r2,χ2,γ )

⎞⎟⎟⎟⎟⎠ ,

O�ff
σ,n(r1,χ1,r2,χ2,γ ) =

⎛⎜⎜⎜⎜⎝
�

ff
σ,n,++

(
r1,χ1 + π

2 ,r2,χ2 + π
2 ,γ − nπ

2

)
σf �

ff
σ,n,+−

(
r1,χ1 + π

2 ,r2,χ2 + π
2 ,γ − nπ

2

)
σf �

ff
σ,n,−+

(
r1,χ1 + π

2 ,r2,χ2 + π
2 ,γ − nπ

2

)
�

ff
σ,n,−−

(
r1,χ1 + π

2 ,r2,χ2 + π
2 ,γ − nπ

2

)

⎞⎟⎟⎟⎟⎠ , (A12)

R�ff
σ,n(r1,χ1,r2,χ2,γ ) =

⎛⎜⎜⎜⎜⎝
�

ff
σ,n,++(r1, − χ1,r2, − χ2, − γ )

�
ff
σ,n,+−(r1, − χ1,r2, − χ2, − γ )

�
ff
σ,n,−+(r1, − χ1,r2, − χ2, − γ )

�
ff
σ,n,−−(r1, − χ1,r2, − χ2, − γ )

⎞⎟⎟⎟⎟⎠ .

For the two-hole energy eigenstates, this implies

D′
i �

ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = −�

ff

−σ,−m1−,−m1+,−m2−,−m2+,−m
(r1,χ1,r2,χ2,γ ),

O�αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = − exp

(
iσ [m1

+ + m2
− − mn]

π

2

)
×�

ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

O�
ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = exp

(
iσ [m1

+ + m2
− − mn]

π

2

)
(A13)

×�αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

R�αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = �

ββ

−σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

R�
ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = �αα

−σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ).

Here, we have again assumed an appropriate phase convention for the radial wave function ψσ,m1+,m1−,m2+,m2−,m(r1,r2). In the context
of the shift symmetries D′

i , we have used

ψσ,m1+,m1−,m2+,m2−,m,−−(r1,r2) = ψ−σ,−m1−,−m1+,−m2−,−m2+,−m,++(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,−+(r1,r2) = ψ−σ,−m1−,−m1+,−m2−,−m2+,−m,+−(r1,r2),
(A14)

ψσ,m1+,m1−,m2+,m2−,m,+−(r1,r2) = ψ−σ,−m1−,−m1+,−m2−,−m2+,−m,−+(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,++(r1,r2) = ψ−σ,−m1−,−m1+,−m2−,−m2+,−m,−−(r1,r2).
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These relations follow from the symmetries of the radial Schrödinger equation (A4). In the context of the reflection symmetry
R, we have used

ψσ,m1+,m1−,m2+,m2−,m,++(r1,r2) = ψ−σ,m1+,m1−,m2+,m2−,m,++(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,+−(r1,r2) = ψ−σ,m1+,m1−,m2+,m2−,m,+−(r1,r2),
(A15)

ψσ,m1+,m1−,m2+,m2−,m,−+(r1,r2) = ψ−σ,m1+,m1−,m2+,m2−,m,−+(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,−−(r1,r2) = ψ−σ,m1+,m1−,m2+,m2−,m,−−(r1,r2).

The relations in Eq. (A15) follow from the symmetries of the radial Schrödinger equation (A4) for � = 0. As before, for � �= 0
or π , the Hopf term explicitly breaks the reflection symmetry.

Let us now impose the Pauli principle by explicitly antisymmetrizing the wave function in the artificial indices 1 and 2. For
this purpose, we act with the pair permutation P , i.e.,

P �ff
σ,n(r1,χ1,r2,χ2,γ ) =

⎛⎜⎜⎜⎜⎝
�

ff
σ,n,++(r2,χ2,r1,χ1,γ )

�
ff
σ,n,−+(r2,χ2,r1,χ1,γ )

�
ff
σ,n,+−(r2,χ2,r1,χ1,γ )

�
ff
σ,n,−−(r2,χ2,r1,χ1,γ )

⎞⎟⎟⎟⎟⎠ . (A16)

For an energy eigenstate, this implies

P �
ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = �

ff

σ,m2+,m2−,m1+,m1−,m
(r1,χ1,r2,χ2,γ ). (A17)

Here, we have assumed a symmetric radial wave function, i.e.,

ψσ,m1+,m1−,m2+,m2−,m,++(r2,r1) = ψσ,m2+,m2−,m1+,m1−,m,++(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,−+(r2,r1) = ψσ,m2+,m2−,m1+,m1−,m,+−(r1,r2),
(A18)

ψσ,m1+,m1−,m2+,m2−,m,+−(r2,r1) = ψσ,m2+,m2−,m1+,m1−,m,−+(r1,r2),

ψσ,m1+,m1−,m2+,m2−,m,−−(r2,r1) = ψσ,m2+,m2−,m1+,m1−,m,−−(r1,r2).

The properly antisymmetrized wave function now takes the form

�̃ff
σ,n(r1,χ1,r2,χ2,γ ) = 1√

2

[
�ff

σ,n(r1,χ1,r2,χ2,γ ) −P �ff
σ,n(r1,χ1,r2,χ2,γ )

]
. (A19)

For an energy eigenstate, this implies

�̃
ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ )

= 1√
2

[
�

ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) − �

ff

σ,m2+,m2−,m1+,m1−,m
(r1,χ1,r2,χ2,γ )

]
. (A20)

As expected, in order to obtain a nonvanishing wave function, the two sets of quantum numbers m1
+,m1

− and m2
+,m2

− must
be different because otherwise two identical fermions would occupy the same single-particle state. If one would consider an
antisymmetric radial wave function, one could allow m1

+ = m2
+ and m1

− = m2
−.

Based on Eq. (A13), the properly antisymmetrized two-hole energy eigenstates transform as follows:

D′
i �̃

ff

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = −�̃

ff

−σ,−m1−,−m1+,−m2−,−m2+,−m
(r1,χ1,r2,χ2,γ ),

O�̃αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = − exp

(
iσ [m1

+ + m2
− − mn]

π

2

)
× �̃

ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

O�̃
ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = exp

(
iσ [m1

+ + m2
− − mn]

π

2

)
(A21)

× �̃αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

R�̃αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = �̃

ββ

−σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

R�̃
ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) = �̃αα

−σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ).

In order to show this for the rotation O, we have used m1
+ + m2

− = m2
+ + m1

−.

155113-22



SYMMETRY ANALYSIS OF HOLES LOCALIZED ON A . . . PHYSICAL REVIEW B 86, 155113 (2012)

Finally, let us combine states with flavors αα and ββ to eigenstates of O:

�̃±
σ,m1+,m1−,m2+,m2−,m

(r1,χ1,r2,χ2,γ )

= 1√
2

[
�̃αα

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ) ± i�̃

ββ

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ )

]
, (A22)

which transform as
D′

i �̃±
σ,m1+,m1−,m2+,m2−,m

(r1,χ1,r2,χ2,γ ) = −�̃±
−σ,−m1−,−m1+,−m2−,−m2+,−m

(r1,χ1,r2,χ2,γ ),

O�̃±
σ,m1+,m1−,m2+,m2−,m

(r1,χ1,r2,χ2,γ ) = ±i exp

(
iσ [m1

+ + m2
− − mn]

π

2

)
(A23)×�̃±

σ,m1+,m1−,m2+,m2−,m
(r1,χ1,r2,χ2,γ ),

R�̃±
σ,m1+,m1−,m2+,m2−,m

(r1,χ1,r2,χ2,γ ) = ±i�̃∓
−σ,m1+,m1−,m2+,m2−,m

(r1,χ1,r2,χ2,γ ).

The lowest-energy states in the same flavor channel are expected to correspond to m1
+ = −1, m1

− = 1, m2
+ = −2, m2

− =
0, m = 0 or m1

+ = −1, m1
− = 1, m2

+ = 0, m2
− = 2, m = 0. These states transform as

D′
i �̃±

σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ) = −�̃±
−σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ),

O�̃±
σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ) = ±σ�̃±

σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ),
R�̃±

σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ) = ±i�̃∓
−σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ),

(A24)
D′

i �̃±
σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ) = −�̃±

−σ,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ),
O�̃±

σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ) = ∓σ�̃±
σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ),

R�̃±
σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ) = ±i�̃∓

−σ,−1,1,0,2,0(r1,χ1,r2,χ2,γ ).

This implies that the states �̃+
+,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ), �̃−

−,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ), �̃+
−,−1,1,0,2,0(r1,χ1,r2,χ2,γ ),

�̃−
+,−1,1,0,2,0(r1,χ1,r2,χ2,γ ) are s waves, while the states �̃+

+,−1,1,0,2,0(r1,χ1,r2,χ2,γ ), �̃−
−,−1,1,0,2,0(r1,χ1,r2,χ2,γ ),

�̃+
−,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ), �̃−

+,−1,1,−2,0,0(r1,χ1,r2,χ2,γ ) are d waves.

3. Comparison with magnon-mediated two-hole
bound states of the same flavor

In Ref. 14, states of two holes of the same flavor bound by
one-magnon exchange have also been investigated. Here, we
summarize as well as extend some of the relevant results. We
consider two holes of the same flavor f with opposite spins
+ and −. In the rest frame, the wave function depends on the
distance vector �r which points from the spin + hole to the spin
− hole. Since magnon exchange is accompanied by a spin
flip, the vector �r changes its direction in the magnon exchange
process. The Schrödinger equation thus takes the form

− 1

M ′ ��(�r) + V ff (�r)�(−�r) = E�(�r). (A25)

The one-magnon exchange potential for two holes of the same
flavor is given by

V αα(�r) = �2

2πρs

sin(2ϕ)

r2
, V ββ(�r) = − �2

2πρs

sin(2ϕ)

r2
.

(A26)
We make a separation ansatz

�(�r) = R′(r)χ ′(ϕ). (A27)

The ground state is even with respect to the reflection of �r to
−�r , i.e.,

χ ′1(ϕ + π ) = χ ′1(ϕ). (A28)

The angular part of the Schrödinger equation then takes the
form

−d2χ ′1
± (ϕ)

dϕ2
± M ′�2

2πρs

sin(2ϕ)χ ′1
± (ϕ) = −λ1χ

′1
± (ϕ). (A29)

Here, + and − are associated with an αα and a ββ pair,
respectively. Again, Eq. (A29) is a Mathieu equation. The
ground state with eigenvalue −λ1 takes the form

χ ′1
± (ϕ) = χ1

±

(
ϕ − π

4

)
= 1√

π
ce0

(
ϕ − π

4
,±M ′�2

4πρs

)
,

λ1 = 1

2

(
M ′�2

4πρs

)2

+ O(�8). (A30)

The first excited states are odd with respect to the reflection
of �r to −�r , i.e.,

χ ′2
± (ϕ + π ) = −χ ′2

± (ϕ), (A31)
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FIG. 5. (Color online) Angular wave functions ce0(ϕ − π

4 , 1
2 M ′γ )

(solid curve) and se1(ϕ − π

4 , 1
2 M ′γ ) (dashed curve) as well as angle

dependence sin(2ϕ) of the potential (dotted curve) for two holes of
flavor α residing in a circular hole pocket (M ′�2/4πρs = 1.25).

and the angular part of the Schrödinger equation now reads as

−d2χ ′2
∓ (ϕ)

dϕ2
∓ M ′�2

2πρs

sin(2ϕ)χ ′2
∓ (ϕ) = −λ2χ

′2
∓ (ϕ). (A32)

Now, − and + are associated with an αα and a ββ pair,
respectively. The excited states with eigenvalue −λ2 are given
by

χ ′2
+ (ϕ) = χ2

+

(
ϕ − π

4

)
= 1√

π
se1

(
ϕ − π

4
,
M ′�2

4πρs

)
,

χ ′2
− (ϕ) = χ2

−

(
ϕ − π

4

)
= − 1√

π
ce1

(
ϕ − π

4
,−M ′�2

4πρs

)
,

λ2 = −1 + M ′�2

4πρs

+ 1

8

(
M ′�2

4πρs

)2

− 1

64

(
M ′�2

4πρs

)3

+O(�8). (A33)

The angular wave functions for the ground state and for the
first excited state together with the angular dependence of the
one-magnon exchange potential are shown in Fig. 5.

As before, the radial Schrödinger equation takes the form
of Eq. (4.53). Again, the short-distance repulsion between two
holes is modeled by a hard core of radius r ′

0, i.e., R′(r ′
0) = 0.

The value of r ′
0 may, however, differ from r0 in the αβ case.

The radial wave functions are thus given by

R′
i(r) = A′

iKν(
√

M ′|E′
ik|r), k = 1,2,3, . . . , ν = i

√
λi

(A34)
and the energy is determined from Kν(

√
M ′|E′

ik|r ′
0) = 0.

There are two degenerate states, one for an αα and one for
a ββ pair, which are eigenstates of flavor related to each other
by a 90◦ rotation. The two degenerate states can be combined
to eigenstates of the rotation symmetry O. For this purpose,
we construct the two-component wave functions

� ′1
± (�r) = R′

1(r)

(
χ ′1

+ (ϕ)

±iχ ′1
− (ϕ)

)
, � ′2

± (�r) = R′
2(r)

(
χ ′2

− (ϕ)

±χ ′2
+ (ϕ)

)
,

(A35)
the first component of which represents the αα and the second
component of which represents the ββ pair. Under the various

FIG. 6. Probability distribution for bound states of two holes with
flavors αα or ββ, combined to an eigenstate of the 90◦ rotation
symmetry O. Left panel: the ground state with p-wave symmetry.
Right panel: excited states with s- or d-wave symmetry, but with
identical probability densities (M ′�2/4πρs = 1.25, r ′

0 = a).

symmetries, the two degenerate ground states transform as

D′
i � ′1

± (�r) = R′
1(r)

(
χ ′1

+ (ϕ + π )
±iχ ′1

− (ϕ + π )

)
= R′

1(r)

(
χ ′1

+ (ϕ)
±iχ ′1

− (ϕ)

)
= � ′1

± (�r),

O� ′1
± (�r) = R′

1(r)

(±iχ ′1
− (ϕ + π

2 )
−χ ′1

+ (ϕ + π
2 )

)
(A36)

= R′
1(r)

(±iχ ′1
+ (ϕ)

−χ ′1
− (ϕ)

)
= ±i� ′1

± (�r),

R� ′1
± (�r) = R′

1(r)

(±iχ ′1
− (−ϕ)

χ ′1
+ (−ϕ)

)
= R′

1(r)

(±iχ ′1
+ (ϕ)

χ ′1
− (ϕ)

)
= ±i� ′1

∓ (�r).

Again, the corresponding eigenvalues of the 90◦ rotation O

are o = ±i, and hence, as for αβ pairs, the symmetry is
actually p wave. Similarly, the two degenerate first excited
states transform as

D′
i � ′2

± (�r) = −R′
2(r)

(
χ ′2

− (ϕ)
±χ ′2

+ (ϕ)

)
= −� ′2

± (�r),

O� ′2
± (�r) = R′

2(r)

(±χ ′2
+ (ϕ + π

2 )
−χ ′2

− (ϕ + π
2 )

)
= R′

2(r)

(∓χ ′2
− (ϕ)

−χ ′2
+ (ϕ)

)
= ∓� ′2

± (�r), (A37)

R� ′2
± (�r) = R′

2(r)

(±χ ′2
+ (−ϕ)

χ ′2
− (−ϕ)

)
= R′

2(r)

(±χ ′2
− (ϕ)

χ ′2
+ (ϕ)

)
= ±� ′2

± (�r).

Again, the first excited states transform as s or d waves.
The resulting probability distributions, which resemble dxy

symmetry, are illustrated in Fig. 6 for the ground state (left
panel) and the first excited state (right panel). Unlike for an
αβ pair, in the same flavor case, the lowest-energy bound
states localized on a skyrmion have a different transformation
behavior than the magnon-mediated two-hole bound states.
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