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Universality class of the Mott transition in two dimensions
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We use the two-step density-matrix renormalization group method to elucidate the long-standing issue of
the universality class of the Mott transition in the Hubbard model in two dimensions. We studied a spatially
anisotropic two-dimensional Hubbard model with a nonperfectly nested Fermi surface at half-filling. We find that
unlike the pure one-dimensional case where there is no metallic phase, the quasi-one-dimensional model displays
a genuine metal-insulator transition at a finite value of the interaction. The critical exponent of the correlation
length is found to be v ~ 1.0. This implies that the fermionic Mott transition belongs to the universality class of

the 2D Ising model.
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I. INTRODUCTION

In the studies of the Mott transition-? in the ground state
of the Hubbard model,’ there are well controlled results in
the pure one-dimensional (1D) case* and in the limit of
infinite dimensions>~’ only. In 1D, there is no metallic phase,
the Mott gap opens as soon as the interaction U > 0. In
infinite dimensions, the dynamical mean-field theory, which
exactly predicts a Mott transition at the critical coupling,
U.~ W, W is the bandwidth. However, the transition has
mean-field critical exponents. This anomaly is due to the
local nature of the infinite-dimensional solution. Hence the
one-dimensional and the infinite-dimensional solutions may
not be directly applicable to experiments. Studies of the
Mott transition in the Hubbard beyond these special limits
of one dimension and infinite dimension are thus of crucial
importance.

For more than a decade, a great deal of effort has been
devoted to applying quantum cluster theories®'# to the study
of the Mott transition in the Hubbard model in two dimensions
(2D). Quantum cluster theories include nonlocal correlations.
They predict a finite critical value for the interaction at the
transition. This critical value depends on the cluster size.
However, when applied to a finite dimensional model, they are
exact only in the limit of infinite cluster size. In quantum cluster
theories, the effect of the interaction on physical quantities
such as the single-particle Green’s function is restricted to
the cluster sites. The correlations are fully accounted for
distances that are smaller than the cluster length, » < L.. When
r 2 L.,the Green’s function has an effective mean-field decay.
Restricting the effect of the interaction at distances r < L. is
probably justified away enough from the critical point where
the correlations are expected to be short ranged. A consequence
of this restriction of the correlations to the cluster length
is that the exponents at the transition are always mean-field
like for a fixed cluster size.'® A systematic finite cluster size
analysis is therefore necessary for a correct description of the
transition. However, most of applications of quantum cluster
simulations have been done on relatively small clusters. These
are not enough to reliably predict the low-energy physics at
the quantum critical point.
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Unlike the fermionic model, in the 2D Bose-Hubbard
model, which displays a transition from a superfluid to a Mott
insulator, analytical approaches'>'® and large scale Monte
Carlo simulations'” have yielded reliable information about its
critical behavior. The transition for fixed boson density belongs
to the universality class of the classical three-dimensional (3D)
XY model. This has also been reported on the 2D Jaynes-
Cummings-Hubbard model.'® Unfortunately, for the fermionic
Hubbard model, Monte Carlo simulations predict U, = 0.
This is because of the nesting induced Slater transition.'**°
In absence of perfect nesting, the Monte Carlo method is
hampered by the sign problem. Large scale simulations are
not possible.

Recent interest has been raised by slave rotor analyses.
These analyses suggest that the transition in the 2D fermionic
Hubbard model may belong to the 3D XY universality class as
the bosonic Hubbard model. In Refs. 21 and 22, a slave rotor
representation of the fermionic operator ¢;, = b; fi;, Where
b; is a spinless boson and f;, a charge-less spin, was used
to map the Hubbard model to a free spinon Hamiltonian self-
consistently coupled to a bosonic term (or XY term in a spin
representation of bosons). The fermionic Mott transition is
in this form a transition between condensed (Fermi liquid)
and noncondensed (Mott insulator) phases of bosons. This
factorization may be justified in the Mott phase where, because
of the Mott gap, spin, and charge degrees of freedom may be
separated. However, as the critical point is approached, is the
gauge field weak enough to justify the decoupling between
spin and charge? If not, would that modify the critical behavior
predicted by the slave-rotor approximation? Only a nonbiased
calculation of the Hubbard model can yield the answer.

The slave-rotor prediction is in disagreement with an earlier
approximate mapping>’ of the Hubbard model to a generalized
Blume-Emery-Griffiths model®* of the H3>-H? mixtures with
an additional term whose effect on the nature of the transition
is not known. In this mapping, doubly occupied and empty
sites corresponds to H_ sites and singly occupied sites to H?
sites. This mapping suggests instead that the Hubbard model is
in the universality class of the Ising model. But the extra term
which accompanies the Blume-Emery-Griffiths model could
well lead to another universality class.
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In a recent paper,” we reported a two-step density-matrix
renormalization group (DMRG)?® study of the Mott transition
in the ground state of the quasi-one-dimensional (1D) Hubbard
model at half-filling. We find that in contrast to the pure 1D case
for which there is no metallic phase, there is an authentic Mott
transition in the quasi-1D model. However, it is possible to ar-
gue that in the quasi- 1D dimensional Hubbard model studied in
Ref. 25, the Fermi surface is perfectly nested, thus our analysis
which predicts a gapless phase in the weak-coupling regime,
would miss an exponentially small gap A o exp —2—5’, that
would open as a consequence of a Slater transition. However,
our numerical data did not support the existence of such a
gap. Arguments supporting a gap opening induced by perfect
nesting are perturbative: the divergence of the noninteracting
susceptibility xo(q) at the nesting wave vector leads to that of
the interacting spin susceptibility, x,(q) o< 1/[1 — U xo(q)].
However, the actual susceptibilities and interaction in the
expression of x,(q) are renormalized. Attempts to compute the
renormalized susceptibilities and interaction within the self-
consistent parquet formalism?’ lead to intractable equations.
Hence the effect of these renormalization effects on the
mean-field solution remains an open problem.

In this paper, we present a well controlled study of the
Mott transition in the Hubbard model with a nonperfectly
nested Fermi surface beyond the special cases of 1D and
infinite dimensions. The choice of the nonperfectly nested
Fermi surface precludes the theoretical possibility of a gap
induced by the Slater anti-ferromagnetism mechanism. The
two-step DMRG method is first checked on the transition
between a paramagnetic and an anti-ferromagnetic ground
states in the quasi-1D Heisenberg model with S =1. In
agreement with a quantum Monte carlo study,?® we find that
this transition belongs to universality class of the 3D classical
Heisenberg model. For the quasi-1D Hubbard model, we find
that, in contrast to the pure one-dimensional model, there is a
genuine ground-state Mott transition at a finite critical value
of the interaction. Data analysis of the critical behavior of
this model show that, in agreement with the mapping to the
Blume-Emery-Griffiths model,? the Mott transition in the 2D
Hubbard model belongs to the universality class of the 2D Ising
model. Hence our study shows the importance of studying
quasi-1D models. These models are not only directly relevant
for the physics of highly anisotropic materials, but they also
yield crucial information about the isotropic models as well.

II. MODEL

We consider the Hubbard model with the local interaction
U and the following noninteracting single-particle energies:

€(ky,ky) = —2t; cosk, — 2t, cosk, — 2t; cos(ky + ky)
— 2tg cos(k, — k), (1)

the hopping parameters ., t,, and #;, respectively, in the
longitudinal, transverse, and diagonal directions, are illustrated
in Fig. 1. The presence of #; ensures that the noninteracting
Fermi surface is not perfectly nested. 7, and 7; must be
(ty,tq) < ty for the two-step DMRG method to be accurate.
In this study, we set t, = 1 and ¢, = t; = 0.05z,. The choice
of this model thus precludes the theoretical possibility of the
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FIG. 1. (Color online) The anisotropic frustrated lattice with
longitudinal ¢,, transverse ?,, and diagonal #, hopping parameters.

nesting induced exponentially small gap. The bandwidth is
W =44t ,wesetu =U/W.

III. TWO-STEP DENSITY-MATRIX
RENORMALIZATION GROUP

The two-step DMRG is a generalization of the conventional
DMRG method® to quasi-1D Hamiltonians. The DMRG is a
RG procedure in which the reduced density-matrix is used to
retain the most important states of the system. The DMRG
itself is a crucial improvement over the block RG method,*
which extended the Wilson RG method?! used in the solution
of the Kondo impurity problem to lattice models. The block
method has a major handicap, by dividing the lattice into
independent blocks, it neglects at its initial step the interblock
interaction. But if the interblock interaction is of the same
order as the intrablock interaction, this introduces an error
from which it is difficult to recover even by keeping a large
number of states. In the DMRG, the lattice is built by initially
coupling the block to the rest of the lattice. Let us consider a
system (S) coupled to an environment (E), let Ny and N, be,
respectively, the number of states respectively of the system
and for the environment. Let ® be for instance the ground-state
wave function of the supersystem including the system and the
environment,

O(S,E) = Z

iy=1,Ny3i,=1,N,

a; i Vi Xi,» ()

where the 1; ’s represent the system’s basis states and the yx;,’s
the environment basis states; Ny and N, are respectively the
total number of states of the system and of the environment.
The essence of the RG procedure is the truncation of the
Hilbert’s space, starting with a small system for which the total
number of states can be kept, at some step when the lattice
gets large, only a smaller number m; < N; of the system’s
states can be kept. The error in this truncation is given by the
eigenvalues A;, of the reduced density matrix of the system,
Dg = Z O(S,E)D*(S,E). (3)

ir=1,N,

From the relation

S =1, 0

is=1,Nj
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the error made by representing the system by m; states instead
of N; is given by

p=1-— Z A ()

For a large number of 1D models, p is very small if m;
is only a few hundreds. Application of the DMRG method
to Heisenberg chains with S =1/2 or S =1, m, < 100,
the ground-state energy, correlation functions, and lowest
excitation gap were obtained with an astonishing accuracy.

It was hoped that, given the level of accuracy of the DMRG
for 1D models, the method would also perform reasonably
well for 2D models. However, for a 2D lattice, the value
of my necessary to retain good accuracy appears to increase
exponentially with the system size. This is related to the
entropy area law which predicts an exponential increase of
mg o 2°"" in 2D. The entropy area law implies that the
direct application of the 2D DMRG would only be limited
to relatively narrow systems, it however leaves a window of
success for quasi-1D systems as we will explain below. The
study of quasi-1D models would yield valuable information
about the corresponding isotropic models. Most importantly,
the two-step approach had a direct relevance to the physical
properties of quasi-1D materials for which 7, < ¢, such as the
organic and inorganic quasi-1D conductors.

Let us consider for instance the Hubbard chain with a charge
gap A. If the transverse coupling ¢, is infinitely small with
respect to A, so that the system remains in the same phase as
the decoupled chains. It is obvious that the decoupled chain
limit is a good starting point to describe the weakly coupled
chain system. As t, increases, the quality of decoupled chain
as a starting point will decrease, if the same number of states
is kept, until 7, reaches a quantum critical point 7}, at which the
systems enters in the 2D regime. In principle, when #, is in the
2D phase, it would be wrong to start from the decoupled chain
limit. This is because there are a huge number of low-lying
states with nearly equal weight in the reduced density-matrix.

The important point which nevertheless makes calculations
possible is that actual calculations are done on finite systems
which have a discrete spectrum. Thus even if 7, has a value
corresponding to the 2D phase for a system size L, given the
discreteness of the energy spectrum for a finite system, if the
energy width of the states kept is such that AE > 1, starting
from decoupled chain might still lead to accurate results. For
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such a system, the DMRG can be used to study the ground-
state phase transition since it will display a different scaling
behavior above and below #¢. The same type of analysis may
be used for gapless chains as well, A(L) will yield the relevant
energy scale above and below the transition.

The separation of the energy scales is basic idea of the two-
step DMRG.?® The two-step DMRG uses the extraordinary
accuracy that the DMRG can achieve in 1D in two steps. In the
first step, the low-energy Hamiltonian is obtained accurately
using the DMRG. Then, in the next step small transverse
perturbations are inserted. The 2D effective Hamiltonian is
1D, the DMRG is again applied to solve the problem in the
transverse direction. Indeed, this procedure is valid only if
the transverse couplings are very small with respect to the
longitudinal couplings. The success of the two-step DMRG in
yielding reliable results on the eventual new physics induced
by the perturbation will depend on the value of the critical
transverse coupling necessary to drive the systems in a new
phase. If the magnitude of the perturbation ¢, necessary to drive
the system away from the 1D physics is small in comparison
with the width of the states kept, the two-step DMRG is
expected to be successful. This is, for instance, the case of
coupled Haldane chains studied in Sec. IV. However, if the
magnitude of the perturbation is too large, the two-step DMRG
would not be able to describe the 2D physics accurately.

The real challenge in the two-step starts after finishing
making the program code work. The essential part of the
subsequent activity is finding a region in the parameter space
of a given model where interesting physical results can
be extracted. For more details about the two-step DMRG, we
refer the reader to Ref. 26.

In the first step of the DMRG, we targeted charge sectors
with N,,N, = 1,N, & 2, where N, corresponds to the number
of electrons at half-filling; for each charge sector, we targeted
the spin sectors with the lowest S;, S, & 1; hence we targeted
a total of ny = 17 charge-spin sectors during each DMRG
iteration. The reduced density-matrix was given by

Ds= Y o Y Ou(S.E)DI(S.E), (6)

k=lLngs  ic=1.N,

where we assigned an equal weight w; = 1/17 to each state
®,. In all the simulations, we kept ms; = 512 states such that
the largest truncation error was p; &~ 10~° for systems of up
to L, = 32 as can be seen in Table 1.

TABLE 1. Energy width AE, truncation errors p; (first DMRG step), p, (second DMRG step) for u = 0, u = 0.4261 (near the quantum
critical point), and for u = 0.6818 in the Hubbard lattice when m; = 512 and m, = 96 states are retained.

12 x 13 16 x 17 20 x 21 24 x 25 28 x 29 32 x 33
AE(u =0) 1.6220 1.2683 1.0410 0.8819 0.7685 0.6772
p1(u =0) 8 x 107° 3x 1077 7 x 1077 1x10°6 3x107° 4 x107°
02t = 0) 0 0 0 0 0 4x 10
AE(u = 0.4261) 1.5630 1.2333 1.0204 0.8733 0.7825
p1(u = 0.4261) 1x 1077 3x 1077 7 x 1077 1x10°° 2 x 107
oo = 0.4261) 2 x 10-8 1 x 107 3 % 10~ 5% 107 2 x 106
AE(u = 0.6818) 1.6249 1.3121 1.1128 0.9907 0.9134 0.8463
p1(u = 0.6818) 9x 1078 3 x 1077 5x 1077 1x10°° 2 x 1076 3 x107°
o = 0.6818) 2 x 10-8 8 x 10-8 1 x 107 2 % 107 2 x 107 7 x 107
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In the second step, we targeted ny, = 3 charge sectors
N,,N, £ 1 with the lowest S;. The reduced density-matrix was
formed by attributing an equal weight w; = 1/3 for each of
k = 1,n, states. We kept ms, = 96 states such that the width
of the retained states, AE > t,,t; forty =t, = 0.05¢,. AE is
displayed in Table I. For these parameters, the truncation error
during the second step was such that p, < p; for systems of
up to Ly x Ly =32 x 33 when three superblock states were
targeted. We empirically chose ms, such that AE/t, = 10.
For this ratio, we can accurately reproduce the exact result at
u=20.

IV. FINITE-SIZE SCALING

A. General concepts

We apply finite-size scaling®? to analyze the results on the
charge gap A. The procedure is simple. We accurately compute
A in order to locate the quantum critical point. We then
collapse the data using the exponents v of known universality
classes in order to find the class corresponding to the Mott
transition. We emphasize that in this procedure there is no
extrapolation or external parameter besides the data and the
exponent of the chosen universality class.

The accurate location of the critical point is done by plotting
the product L_'¢ as function of the interaction driving the
transition. £ is the correlation length. This is because at the
transition, L;lé is independent of L, . For the gap, the function
L' translates to L A~!, where z is the dynamical exponent.
Near the the quantum critical point, the product LA is given
by a universal function

LiA = f[(g — g)LY"]. @)

where g is a generic coupling driving the transition, g, is its
magnitude at the quantum critical point, and v is the correlation
length critical exponent.

B. Application to coupled Heisenberg chains with § = 1

In Fig. 2, we illustrate the finite-size analysis that we apply
below to weakly coupled Heisenberg chains with § = 1. The

3.2 prrrrrr T T
.29
=k
2.8 é_ -8 Lx L =16x17
3 L x L =20x21
2.7F A-ALX L;,=24xzs
E +—+ L xL=18x19 E
2.6F LxL=22x23 4
0.042 0.0425 0.043 0.0435 0.044 0.0445 0.045
J
y

FIG. 2. (Color online) Scaled spin gap in the quasi-1D Heisenberg
model as a function of J,.
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model that was studied in Ref. 25 is given by the Hamiltonian

H, = J, Z Si.i,Sip+1i, +Jy Z SiviySiyiy+1- (8)
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FIG. 3. (Color online) A x L, as a function of (J, — JS)LY" for
different L, x L, and for different universality classes: mean-field
(v = 0.5), classical 3D Heisenberg (v = 0.7048), 2D Ising (v = 1.0),
and a fictitious case (v = 1.5).
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In the model (8), there is transition from a magnetically disor-
dered ground state, the Haldane gap phase, to a magnetically
ordered ground state, which is induced by the transverse
coupling J,. This transition has been studied by the quantum
Monte Carlo method.?® In this transition, z = 1, and it belongs
to the universality class of the 3D classical Heisenberg model
for which v = 0.7048.3 In Fig. 2, we plot L, A, as function
of J,, where A, is the spin gap. We studied systems ranging
from L, x L, =12 x 13 to 24 x 25. We applied periodic
boundary conditions along the x direction and open boundary
conditions along the y direction. At the quantum critical point,
Jy = Jy", LAy is independent of L,. There are small size
effects for smaller systems. We thus included only systems
larger than 16 x 17. All the curves L,A; cross at ch. The
critical point J§ = 0.04368 was located graphically. It is
in perfect agreement with the quantum Monte Carlo value
Jy = 0.043 648(8).

The determination of the universality class is done by
plotting L, Ay as function of (J, — J;)L}/V. InFig.3, L, Ay is
displayed for different values of v corresponding to mean-
field, classical 3D Heisenberg, 2D Ising, and a fictitious
universality class with v =1.5. As expected from Monte
Carlo simulations, the best data collapse was obtained for

16-055 """"" (RARARRALL (RRRARRARL (RRRARRARL (RRRRARRAL IRRARRRALY (RARARRAL E
(@
le-06 E
0
2=}
16-07:— -
le-08 Lo Lassniainng IFETERETET Livsvanan Livasniing Lasviiains Lassvninng
8 12 16 20 24 28 32 36
L
X
O Exact (b)
i + DMRG
(&)
0.1? @ 45
E ) ]
i ©
<1 0.01F ® 3
0.001F o 7
3 +
0.0001 ITTTTTETTI [TTRTTET] INTRTRTTRI FIATRTRTTI FITARTUT INTATRTOTI ATRTATRTNI ATRTTATETA FATRTATETI TTITTIIN
: 0.01 0.02 0.03 0.04 0.051 0.06 0.07 0.08 0.09 0.1
L -
X

FIG. 4. (Color online) Error in the ground-state energy for quasi-
one-dimensional systems as a function of the linear dimension L,
of the lattice. Single-particle two-step DMRG gaps vs exact gaps as
function of L,.
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v ~ (0.7048 which is predicted Monte Carlo value® for the
classical 3D Heisenberg universality class.

V. RESULTS AND DISCUSSION

We can now confidently apply the same method to the
Hubbard model. First, we compared the two-step DMRG
results with the exact energies at u = 0. We emphasize that this
test is nontrivial for a real-space technique such as the DMRG
because in real space, the hopping term is nondiagonal. In
Fig. 4(a), we show the error §E in the ground-state energies
per site for systems ranging from L, x L, =12 x 13 to
32 x 33. The two-step DMRG is in very good agreement with
the exact result; SE < 107® and increases relatively slowly
with L, for systems L, x L, < 28 x 29 and starts to grow
sharply beyond this size. In Fig. 4(b), we compare the single-
particle gap, A = %[EO(N + 1)+ Eo(N — 1) — 2Ey(N)], ob-
tained with the two-step DMRG to the exact gap. The largest
error for the gap was about 5 x 10~ in the 32 x 33 systems.
Since for this size the exact gap is only A = 0.00103, we
excluded the 32 x 33 systems from the data used to extract the
critical exponent. For the largest systems kept for the analysis
28 x 29, the two-step DMRG gap is A = 0.008 95 which is

g T T RRRRRRRER [RRARRERES
- (a)
-
< 0k A .
......... [ I N A A AN A A A A A
0.015 0.02 004 006 008 0
-1
L
X
1prrrrre RARERRARE RAREREARA RAREREARA RRRRRRARE
g ®)
< 04k 1
nnnnnnnnn Lovav v v s by v v s by vy aa s o vy sy
0.015 0.02 004 006 008 0
-1
LX

FIG. 5. (Color online) Quasiparticle gaps as a function of L,
for two characteristic values of the interaction: (a) u = 0.2273,
(b) u = 0.6818 for 1D (circles), and quasi-1D (squares) systems.
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to be compared to the exact gap A = 0.008 83. The relatively
large loss of accuracy in the gap for 32 x 33 systems follows
from the sharp increase in § E.

When u # 0, the two-step DMRG retains the same level of
accuracy as at u = 0. This is because, when the same number
of states m, is kept, the truncation error p remains close to
that of u = 0 as seen in Table I. AE slightly increases with u,
hence, the condition AE > t,,#4 is also fulfilled. Unlike the
pure 1D model, the metallic phase is expected to have a finite
width in the quasi-1D model. In Fig. 5, we show the gap as a
function of L, for two characteristic values of the interaction at
u = 0.2273 and u = 0.6818 for the 1D and quasi-1D systems.
There appear to be two regimes. In Fig. 5(a), for u = 0.2273,
the quasi-1D gap shows a sharp decay in contrast to the 1D
gap which decays more slowly. This is consistent with the
finite value of the 1D gap and the presumably zero value of
the quasi-1D gap in the thermodynamic limit. In Fig. 5(b), for
u = 0.6818, both gaps remain very close and have a finite value
in the thermodynamic limit. This behavior suggests that there
would be a quantum critical point at 0.2273 < u. < 0.6818.
We would like to emphasize that in Ref. 25, in 1D in agreement
with the exact result* the DMRG yielded u. = 0.

We analyze our results using the language of second
order transitions. This is justified because we did not see
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FIG. 6. (Color online) A x L, as function of u for the Hubbard
model: (a) extendend range of u, (b) for u in the vicinity of the
quantum critical point.
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any sharp change in our data for the ground-state energy
or the gap. Generally, in a first-order transition, it would
usually be expected that the ground-state energy would be
nondifferentiable and the gap would show a discontinuity at the
transition point. These were not seen in our data. The absence
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FIG. 7. (Color online) A x L, as a function of (u — uC)L)‘/”
for different L, x L, for v corresponding to different universality
classes: mean-field (v = 0.5), 3D classical XY (v = 0.67095), 2D
Ising (v = 1.0), and fictitious (v = 1.5).
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of a discontinuity is seen for instance in the behavior of L, A
in Fig. 6. This justifies the assumption that the transition is of
second order.

As for the Heisenberg model above, in Refs. 17 and 18,
the value z =1 was predicted for the interaction induced
Mott transition. But in the density induced transition, the
dynamical exponent is z = 2. In order to find the value of z,
we plotted both L, A and L2 A. However, the rough estimate
of the critical value found for L?CA, u. ~ 0.1705 was very
inconsistent with the direct extrapolation of the data. For
instance, at u = 0.2273, A extrapolates to 0. This allows us to
rule out z = 2 as well as higher values of z since they yield
even smaller u,.

We show for z = 1, L, A as function of u in Fig. 6. A first
sweep of the interaction range 0 < u < 0.6818 in Fig. 6(a)
indicates that 0.4 < u. < 0.5. In Fig. 6(b), to precisely locate
u., we concentrate in the interaction range 0.420 < u < 0.432,
a graphical estimate yields u, = 0.4255. The range of values
of u for the critical analysis du = 0.02656u, is comparable to
that used in Ref. 17 |6(J/U)| = 0.01526(J/U). for the Bose
Hubbard model, and in Ref. 18 |§(z/g)| = 0.01339(¢/g). for
the Jaynes-Cummings-Hubbard model. (J/U) and f/ g are the
ratio of the hopping parameter over the interaction.

As for the Heisenberg model above, we determine the
universality class of the Hubbard model by plotting L, A as
function of (u — u.)L'/". In Fig. 7, we tried different values
of v corresponding to the mean-field v = 0.5, 3D XY, 2D
Ising v = 1.0, and a fictitious v = 1.5 cases. For the 3D XY
model, Monte Carlo values v are found between v = 0.662(7)
and 0.6723,>* and with the bosonic Hubbard model'” and the
Jaynes-Cummings-Hubbard model'® for which v = 0.6715.
The experiments on H films are believed to yield the best
estimate of v for the 3D XY models. Experiments have smaller
errors than Monte Carlo simulations. For instance, v was found
to be v = 0.6708(4) in Ref. 35, v = 0.6705(6) in Ref. 36, and
v = 0.67095(13) in Ref. 37. We used this last value to collapse
the data for the test of the 3D XY universality class.

Figure 7 clearly shows that the best fit to the data is obtained
for v = 1.0. This implies that the Mott transition in the
Hubbard model belongs to the universality class of the 2D Ising
model as predicted by the approximate mapping of Ref. 23.

The 3D XY universality class for the Mott transition in
2D was conjectured in approximate slave-rotor analyses of the
fermionic Hubbard model in Refs. 21 and 22. This work shows
that the neglect of the gauge field during the factorization of
the fermionic operators into a spinless boson and a charge-less
spin is not justified. It should be noted that the 3D Ising and 3D
Heisenberg universality class for which v is close to that of the
3D XY class, respectively, v = 0.6298(5)% and v = 0.70483
were also ruled out.

VI. CONCLUSION

In this paper, we used the two-step DMRG to analyze
the finite size behavior of the quasiparticle gap in the
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ground-state Mott transition in the quasi-1D Hubbard model.
We chose a nonbipartite lattice to avoid the issue related to
the possible nesting induced Slater transition. We studied
systems ranging from 12 x 13 to 32 x 33. We believe that
there are not significant finite size effects in our work as
seen from the quality of the data collapse. The most solid
evidence supporting our work is the preliminary analysis
of the paramagnetic-antiferromagnetic transition in quasi-1D
Heisenberg systems. In this analysis, the critical transverse
coupling is J, = 0.043, which is of the same order with
t, =0.05 in the quasi-1D Hubbard. We studied nearly the
systems with the same sizes in the two transitions. In both
transitions, the gap at the transition has a power law behavior
with v = 0.7 and 1, respectively. We were thus able to find
the universality class of the Mott transition in an unbiased
calculation.

In contrast to the pure 1D model, we find that the quasi-1D
models displays a genuine Mott transition at a finite critical
interaction. Moreover, the quasi-1D solution does not have the
pathologies of the infinite dimensional solution. It could thus
serve as a basis for more realistic studies of the detailed and
well controlled analysis of the Mott transition. The critical
behavior of the quasi-1D model Hubbard model is found
to belong to the universality class of the 2D Ising model.
The fact that the transitions in the quasi-1D Heisenberg and
Hubbard models belong to the universality classes of their
isotropic counterparts shows that despite the restriction of the
two-step DMRG method to highly anisotropic 2D models, it is
nevertheless very useful for the understanding of the physics
of isotropic 2D systems.

We did not discuss the spin degrees of freedom. They are
expected to be gap-less in either side of the Mott transition.
Spin fluctuactions are expected to be very strong in the Mott
insulating phase as well as in the metallic phase in the vicinity
of the quantum critical point. The simplest ground-state picture
is that the antiferromagnetic transition takes place at the same
point as the Mott transition. But there is alternative possibility
of intermediate phases between the Fermi liquid and the
antiferromagnetic Mott insulator. In the metallic region, this
could be a non-Fermi liquid as the one discussed in Ref. 39.
In the insulating region, a gap-less spin liquid ground state
with a spinon Fermi surface as suggested in Refs. 21 and 22
could be the most stable. The isomorphism SU(2)/Z, = SO(3)
implies that, in principle, after the Mott transition which
involves the breaking of a Z, Ising symmetry, the effective
spin Hamiltonian, obtained by projecting out the empty and
doubly occupied states, can retain the full spin SO(3) spin
rotational symmetry.
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