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Persistent current induced by quantum light
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It is demonstrated that the strong coupling of an electron gas to photons in systems with broken time-reversal
symmetry results in bound electron-photon states which cannot be backscattered elastically. As a consequence, the
electron gas can flow without dissipation. This quantum macroscopic phenomenon leads to the unconventional
superconductivity which is analyzed theoretically for a two-dimensional electron system in a semiconductor
quantum well exposed to an in-plane magnetic field.
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I. INTRODUCTION

Advances in laser physics achieved in recent decades have
made possible the use of lasers as tools to manipulate the
electronic properties of various quantum systems. Since the
strong interaction between electrons and an intense laser field
cannot be described as a weak perturbation, it is necessary
to consider the system “electron + field” as a whole. Such
a bound electron-photon object, which was called “electron
dressed by field” (dressed electron), became commonly used
model in modern physics.1,2 The field-induced modification
of the energy spectrum of dressed electrons—also known as a
dynamic (ac) Stark effect—was discovered experimentally in
both atoms3 and solids4 many years ago and has been studied
in various electronic systems. Particularly, it is well known
that the interaction between a solid and a monochromatic
electormagnetic field can open energy gaps �ε within electron
energy bands of the solid (see, e.g., Refs. 5–8). Such a gap
opening is pictured schematically in Fig. 1(a) for the case of
interaction between a bulk semiconductor with the band gap
εg and an electromagnetic field with the frequency ω0 > εg/h̄

(Ref. 6). It should be stressed that the gaps �ε are opened in
the resonant points of k space (i.e., at electron wave vectors k
satisfying the condition of “the photon energy h̄ω0 is equal to
the energy interval between electron bands”). If the electron
energy spectrum of the solid is symmetric, ε(k) = ε(−k),
the resonant points—and, correspondingly, the gaps �ε—are
positioned symmetrically in the k space with respect to band
edges [see Fig. 1(a)]. Though the light-induced gap opening
has been known for a long time,5,6 its theory is developed
exclusively for solids with such a symmetric electron energy
spectrum. Electronic systems with an asymmetric energy
spectrum ε(k) �= ε(−k) escaped attention before and will be
considered below.

It follows from the fundamentals of quantum mechanics
that the asymmetric energy spectrum of electrons can exist
in systems with broken both time-reversal symmetry and
inversion symmetry. Particularly, it takes place in nanos-
tructures without an inversion center in the presence of a
magnetic field, including asymmetric quantum wells,9–13 chi-
ral carbon nanotubes,14–16 hybrid semiconductor/ferromagnet
nanostructures,17 and so on. For definiteness, let us consider
such a simple nanostructure as a quantum well (QW). Gener-
ally, a QW confines charge carriers, which were originally free
to move in three dimensions (x,y,z), to two dimensions (x,y),
forcing them to occupy a planar region inside the QW.18 As a

consequence, the physical properties of a QW depend on the
electron potential energy U (z) describing this confinement.
In what follows, we will consider a QW with a confining
potential U (z) devoid of an inversion center (asymmetric QW).
Technologically, such asymmetric QWs are fabricated on the
basis of semiconductor heterojunctions (see, e.g., Refs. 18
and 19). If an asymmetric QW is exposed to an in-plane
magnetic field Hy directed along the y axis, the electron
energy spectrum of the QW consists of a set of subbands
which are shifted along the kx axis with respect to each other
by the wave vector �kx ∝ Hy (Ref. 18). This shifting, which
is schematically pictured in Fig. 1(b), leads to the asymmetric
energy spectrum of electrons ε(kx) �= ε(−kx). Let an electron
system with such an asymmetric energy spectrum be subjected
to an electromagnetic field with the frequency ω0. Then the
resonant points of the intersubband electron-photon interaction
are positioned asymmetrically in the k space with respect to
subband edges. Correspondingly, it is reasonable to expect
that the photon-induced energy gaps �ε will be positioned
asymmetrically within the subbands. The remarkable feature
of such an asymmetrically gapped energy spectrum is the
nondissipative flowing of electron gas. For instance, let an
electron gas fill dressed states under the Fermi level μ [see
Fig. 1(b)]. It is easy to show that the electric current along
the x axis, produced by the electron gas, is jx ∝ �ε. Since
this nonzero current is associated to the ground state of
the electron system, it flows without dissipation. Thus, the
photon-dressed electron system with broken time-reversal
symmetry can demonstrate the superconductor-like behavior.
The given paper is devoted to the theoretical justification of
this phenomenon.

The paper is organized as follows. In the Sec. II we
introduce the electron-photon Hamiltonian and find its exact
eigenstates and eigenvalues. Section III is devoted to an anal-
ysis of electron transport in photon-dressed QWs. Section IV
contains a discussion and conclusions.

II. ELECTRON-PHOTON HAMILTONIAN

The electron energy spectrum of a QW exposed to an in-
plane magnetic field Hy can be described by the expression18

εn(k) = εn0 − h̄z̄neHy

cm∗ kx + h̄2
(
k2
x + k2

y

)
2m∗ , (1)
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FIG. 1. (Color online) Energy spectrum of free electrons (thin
lines) and electrons dressed by an electromagnetic field with the
frequency ω0 (solid lines): (a) conductivity band and valence band
in a bulk semiconductor with the band gap εg; (b) first two electron
subbands in an asymmetric quantum well exposed to an in-plane
magnetic field Hy . The Fermi level of the electron system μ is pictured
by the dashed line.

which takes into account linear magnetic-field terms. Here
k is the in-plane electron wave vector, n = 1,2,3, . . . , is the
number of electron subbands, m∗ is the effective electron mass
in the QW, e is the electron charge, εn0 is the energy of subband
edge, and z̄n = 〈ψn(z)|z|ψn(z)〉 is the averaged z coordinate
of the electrons in the QW. Correspondingly, electron wave
functions in the subbands (1) are ψn(k) = exp (ikr)ψn(z),
where r is the in-plane radius vector, and the wave function
ψn(z), arising from the confining potential U (z), meets the
Schrödinger equation

− h̄2

2m∗
d2ψn(z)

dz2
+ U (z)ψn(z) = εn0ψn(z).

Let us restrict our consideration by electron processes in the
two lowest subbands (1) with n = 1,2. Hereafter we will mark
these subbands ε1,2(k) and their wave functions ψ1,2(k) by
the symbols ε±(k) and ψ±(k), respectively, where the sign
“−” corresponds to the lower subband in Fig. 1(b) (n = 1),
and the sign “+” corresponds to the upper one (n = 2).
Correspondingly, the shifting of the electron subbands in k
space, pictured in Fig. 1(b), is �kx = (z̄1 − z̄2)eHy/ch̄.

Let the QW be exposed to a plane monochromatic electro-
magnetic wave with the frequency ω0 (dressing field), which
is linearly polarized along the z axis. For simplicity, we will
neglect any spatial inhomogeneity of the dressing field, but
a proper generalization can be easily made. To describe the
wave-induced mixing of the electron states from the two
subbands ε+(k) and ε−(k), the electron Hamiltonian should
be written as a 2 × 2 matrix Ĥe = [ε+(k) + ε−(k)]Î /2 +
[ε+(k) − ε−(k)]σ̂z/2, where Î is the unity matrix, and σ̂x,y,z

are the Pauli matrices written in the basis of the two electron
states ψ±(k). As to the Hamiltonian of the intersubband
electron-wave interaction, it can be expressed within the dipole
approximation by Ĥint = −dEσ̂x , where E = (0, 0, E) is the
electric field vector of the wave (the dressing field vector),
and d = e〈ψ1(z)|z|ψ2(z)〉 is the intersubband matrix element
of the electric dipole moment which is assumed to be real
and positive. Considering the problem within the conventional
quantum-field approach,1,2 the classical field E should be
replaced with the field operator Ê = i

√
2πh̄ω0/V (â − â†),

where V is the quantization volume of the field, â and â† are
the photon operators of annihilation and creation, respectively,

written in the Schrödinger picture (the representation of occu-
pation numbers20). After such a replacement, the interaction
Hamiltonian takes the form Ĥint = −id

√
2πh̄ω0/V (σ̂+â +

σ̂−â − σ̂−â† − σ̂+â†), where σ̂± = (σ̂x ± iσ̂y)/2. In what fol-
lows, we will assume that the photon energy h̄ω0 is much
more than the characteristic energy of the electron-field
interaction dE0, where E0 is the field amplitude. Then the
terms σ̂+â† and σ̂−â can be neglected, which corresponds to
the rotating-wave approximation commonly used in quantum
optics.1,2 As a result, the interaction Hamiltonian is Ĥint =
−id

√
2πh̄ω0/V (σ̂+â − σ̂−â†). Since the operator of the field

energy is Ĥ0 = h̄ω0â
†â, the full Hamiltonian of the considered

electron-photon system, Ĥ = Ĥ0 + Ĥe + Ĥint, reads as

Ĥ = h̄ω0â
†â + ε+(k) + ε−(k)

2
Î + ε+(k) − ε−(k)

2
σ̂z

− id

√
2πh̄ω0

V
(σ̂+â − σ̂−â†). (2)

The Hamiltonian (2) is formally similar to the Hamil-
tonian of the exactly solvable Jaynes-Cummings model.21

Therefore, the Schrödinger problem with the electron-photon
Hamiltonian (2) can also be solved exactly. Applying the
methodology22,31 to the problem, let us introduce the joined
electron-photon space |±,N〉 = |ψ±(k)〉 ⊗ |N〉 to describe the
electron being in the state with the wave function ψ±(k) and
the dressing field being in the state with the photon occupation
number N = 1,2,3, . . .. The basic states of this space |±,N〉
are orthonormal and meet the conditions 〈±,N |±,N ′〉 = δN,N ′

and 〈±,N |∓,N ′〉 = 0. Therefore, the exact eigenstates of the
Hamiltonian (2), ϕ+

N (k) and ϕ−
N (k), can be written as

|ϕ±
N (k)〉 =

√

±(k) + |ω(k)|

2 
±(k)
|±,N〉

+ iη(k)

√

±(k) − |ω(k)|

2 
±(k)
|∓,N ± 1〉, (3)

where 
±(k) =
√

8d2(N + 1/2 ± 1/2)(πω0/h̄V ) + ω2(k),
ω(k) = ω0 − [ε+(k) − ε−(k)]/h̄, and

η(k) =
{−1, ω(k) > 0,

1, ω(k) � 0.

The two energy branches corresponding to the electron-photon
states (3), ε+

N (k) and ε−
N (k), are given by

ε±
N (k) = Nh̄ω0 + ε+(k) + ε−(k)

2
± h̄ω0

2
± η(k)

h̄
±(k)

2
.

(4)

The expressions (3) and (4) can be easily verified by direct sub-
stitution into the Schrödinger equation Ĥϕ±

N (k) = ε±
N (k)ϕ±

N (k)
with the Hamiltonian (2), keeping in mind the relations20,23

σ̂± |∓,N〉 = |±,N〉 , σ̂± |±,N〉 = 0 ,

â |±,N〉 =
√

N |±,N − 1〉, σ̂z |±,N〉 = ±|±,N〉,
â† |±,N〉 = √

N + 1 |±,N + 1〉.
As expected, the state |ϕ±

N (k)〉 turns into the state |±,N〉 when
the electron-photon interaction vanishes (i.e., when d = 0). In
the most interesting case of a laser-generated intense dressing
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field (when the values of N and V tend to infinity while the
ratio N/V is constant1), the full energy of the electron-photon
system (4) can be written as a sum Nh̄ω0 + ε(k), where Nh̄ω0

is the energy of the dressing field, and

ε(k) = ε+(k) + ε−(k)

2
± h̄ω0

2
± η(k)


(k)

2
(5)

is the desired energy spectrum of the dressed electrons. Here

(k) =

√
(h̄
R)2 + [h̄ω0 − ε+(k) + ε−(k)]2, 
R = dE0/h̄ is

the Rabi frequency of intersubband electron transitions, and
E0 = √

8πNh̄ω0/V is the classical amplitude of the dressing
field. The two branches of the spectrum (5) describe two
subbands of dressed electrons, which are pictured in Fig. 1(b)
with solid lines: The branch with the sign “+” corresponds to
the upper pictured subband and the branch with the sign “−”
corresponds to the lowest one. As expected, the energy gaps

�ε = h̄
R, (6)

pictured in Fig. 1(b), are opened at the electron wave vector
k = k0 satisfying the resonance condition h̄ω0 = ε+(k0) −
ε−(k0). If the dressing field is absent (E0 = 0), the expres-
sion (5) turns into the the spectrum of the free electron,
ε1,2(k), given by Eq. (1) and pictured in Fig. 1(b) with thin
lines. It should be noted that the energy spectrum of dressed
electrons, written in the form (5), is of universal character
and applicable to describe dressed electron states arising from
any two photon-mixed energy bands of free electrons ε−(k)
and ε+(k) in any solid. Particularly, in the case of a direct
gap semiconductor, the energy spectrum of the free electrons
has the form ε±(k) = ±εg/2 ± h̄2k2/2m∗, where εg is the
semiconductor band gap. Substituting this expression into
Eq. (5), we arrive at the energy spectrum of dressed electrons
in a bulk semiconductor, which is pictured in Fig. 1(a) and was
shown for the first time in Ref. 6.

III. TRANSPORT PROPERTIES OF
DRESSED ELECTRONS

The electric current along the x axis, which is produced by a
dressed electron with the wave vector k, is jx(k) = evx(k)/Lx ,
where Lx,y are the in-plane dimensions of the QW along the
x,y axes, and v(k) is the average velocity of the dressed
electron in the state (3). This average velocity is given
by the conventional quantum-mechanical expression v(k) =
〈ϕ±

N (k)|v̂|ϕ±
N (k)〉, where v̂ = (i/h̄)[Ĥr̂ − r̂Ĥ] is the operator

of the electron velocity, and r̂ is the operator of the electron
coordinate. To calculate the matrix element 〈ϕ±

N (k)|v̂|ϕ±
N (k)〉,

we will use the k representation of the coordinate operator
r̂ = i∂/∂k (Ref. 23). Then the expression for the velocity of
the dressed electron takes the form v(k) = (1/h̄)∂ε±

N (k)/∂k.
As expected, this expression coincides formally with the
well-known classical Hamilton equation v(p) = ∂ε(p)/∂p,
describing the velocity of a particle with an energy ε(p) and
the generalized particle momentum p = h̄k. In the case of the
many-electron system, the full current along the x axis is jx =∑

k jx(k), where the summation should be performed over
filled states (3). Taking into account the aforesaid, the current
produced by dressed electrons lying under the Fermi level μ

[see Fig. 1(b)] is jx0 = (eLy/2π2h̄)
∫

(∂ε(k)/∂kx)d2k, where
the integration should be performed over the spectrum (5) with

FIG. 2. (Color online) Scheme of the light-induced supercon-
ductivity: (a) asymmetrically gapped energy spectrum of electrons
as a physical reason of the persistent current; (b) sketch of a
proposed experimental setup for electron transport measurements in
a photon-dressed quantum well; (c) voltage-current characteristic of
the photon-dressed quantum well.

the energy ε(k) � μ. As a result of the integration, we arrive
at the expression

jx0 = eLy

π2h̄2

√
2m∗μ�ε. (7)

Since the current (7) is associated to the ground state of the
photon-dressed electron system, it flows without dissipation
and should be considered as a persistent current. It follows
from Eq. (7) that the current arises from the photon-induced
energy gap (6): If the dressing field is absent (E0 = 0), both
the gap (6) and the current (7) vanish. The physical reason of
the interrelationship between the persistent current (7) and the
gap (6) is clarified in Fig. 2(a). Since the gap (6) forbids
an elastic backscattering of electrons from states lying in
the energy range �ε, a current associated to these electron
states flows without dissipation. Therefore, we mark these
states in Fig. 2(a) as “electron states with persistent current.”
As expected, the full current of the marked states is exactly
equal to the persistent current (7). It should be stressed that
the gap (6) arises from stationary solutions of the time-
independent Schrödinger problem with the stationary Hamil-
tonian (2) describing the closed system “electron + quantized
electromagnetic field.” Therefore, it is the true (stationary) gap
in the density of electron-photon states (3). As a consequence,
the gap (6) will manifest itself directly in all phenomena
sensitive to the density of states of charge carriers, including
backscattering processes marked by the arrow in Fig. 2(a).

It follows from the charge conservation law that an electric
current in any conductor must satisfy the continuity condition.
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Applying this general rule to the considered system, we arrive
at the evident result: The ground state of a QW with the
nonzero current (7) satisfies the continuity condition only
if the QW is a part of a closed electrical circuit, where
the current jx = jx0 flows [see Fig. 2(b)]. If the circuit is
broken, the continuity condition requires the zero current
jx = 0. Particularly, a state of the photon-dressed electron
system with the zero current always takes place in an isolated
QW: Though the state is not ground, it corresponds to the
minimal energy under the additional condition of jx = 0.
As a consequence, the expected voltage-current characteristic
of the QW, V (jx), takes the form pictured schematically in
Fig. 2(c). The remarkable feature of the characteristic is the
zero electrical resistance in the broad range of currents jx0 <

jx < 0, which arises from the electron states with persistent
current. Though such a zero-resistance behavior of photon-
dressed QW is superconductor-like, the physical reason of the
declared effect differs conceptually from both the conventional
superconductivity in solids and superfluidity in quantum
liquids. Indeed, these known mechanisms of the nondissipative
flow are based on interaction processes in strongly correlated
many-particle systems, whereas the discussed phenomenon
arises from the one-electron Hamiltonian (2) and takes place
for a photon-dressed gas of noninteracting electrons. Thus, the
declared effect results in an unconventional superconductivity
which is discussed below.

IV. DISCUSSION AND CONCLUSION

The electron-photon Hamiltonian (2) does not take into
account a scattering of electrons, which leads to the finite
lifetime of electron states (1), τ . Therefore, the results obtained
above from the Hamiltonian (2) are correct if the photon-
induced energy gap �ε is much large than the scattering-
induced washing of the electron energy spectrum h̄/τ . Taking
into account Eq. (6), this condition of applicability of the
Hamiltonian (2) can be written in the form


Rτ � 1, (8)

which coincides with the condition of photon-induced Rabi
oscillations of electrons between the subbands ε−(k) and
ε+(k) (Ref. 2). Thus, the gap (6)—and, correspondingly, the
light-induced persistent current (7)—takes place when the
electron subsystem is in the regime of intersubband Rabi
oscillations. The coexistence of the persistent current and the
Rabi oscillations has a deep physical meaning. To clarify it,
let us write the eigenstates (3) in the resonant point k = k0,
where the gap (6) is opened. Since the wave vector k0 satisfies
the condition ω(k0) = 0, the eigenstates (3) at k = k0 are

|ϕ±
N (k0)〉 = 1√

2
[|±,N〉 + i |∓,N ± 1〉] , (9)

and their energies (5) are ε±(k0) ± �ε/2, respectively. It
is seen that the bound electron-photon states (9) describe
the one-photon mixing of the electron subbands ε−(k) and
ε+(k), which corresponds physically to the Rabi oscillations
of the electron subsystem between these two subbands. As
to the gap (6), it can be treated as a total binding energy
of the two coherent electron-photon states (9) with the two

different signs “±”. Thus, the existence of the photon-induced
coherent states (9) with the binding energy (6) is microscopical
reason of the discussed effect.

It should be noted that an electron, performing periodical
Rabi oscillations between the subbands ε−(k) and ε+(k), does
not absorb the energy of electromagnetic field inducing these
Rabi oscillations. In other words, the energy of the dressing
field averaged over the period of Rabi oscillations is constant.
As a consequence, the condition of Rabi oscillations (8) is
physically equal to the forbidding of all processes accom-
panied with the absorption of the field energy by electrons.
Therefore, the inequality (8) can be considered as a condition
of a purely dressing (nonabsorbable) electromagnetic field.
As a result, the existence of a persistent current under the
condition (8) does not contradict the energy conservation law
since the nondissipative flow of photon-dressed electrons is not
accompanied with the absorbing of energy of the dressing field.

It follows from the aforesaid that the light-induced per-
sistent current (7) differs conceptually from light-induced
currents which arise from a photovoltaic effect. Indeed, any
photovoltaic effect must be accompanied with absorbing light
energy by electrons (see, e.g., Ref. 24) and, therefore, it
is absent under the condition (8). On the contrary, if the
condition (8) is broken, the intersubband absorption of light—
and, correspondingly, the photovoltaic effect—appears. In
other words, there are two different regimes of electron-photon
interaction in systems with broken time-reversal symmetry:
(I) The regime of weak electron-photon coupling (
Rτ � 1),
where an usual ohmic current appears from the photovoltaic
effect and (II) the regime of strong electron-photon coupling
(
Rτ � 1), where the persistent current (7) exists. The first
regime has been studied in QWs both theoretically and
experimentally,25–29 whereas the second one escaped attention
before. It should be stressed that the light-induced ohmic
current and the light-induced persistent current, which arise
from the two different physical mechanisms, flow in mutually
opposite directions. Therefore, they can be easily differentiated
in experiments.

Since the synthesis of semiconductor QWs with such
characteristic parameters as an energy interval between elec-
tron subbands [ε+(k0) − ε−(k0)] ∼ 10−1 eV, electron lifetime
τ ∼ 10−10 s, intersubband dipole moment d ∼ 102 D, and
Fermi energy μ ∼ 10−2 eV is routine procedure for modern
nanotechnology, the appropriate source of a dressing field
for the experimental observation of the declared effect seems
an infrared laser—for instance, an ordinary CO2-laser with
the wavelength λ = 10.6 μm and the output power P �
10 W/cm2. It should be noted that infrared lasers have
been discussed as prospective sources of a dressing field
for observing dressed electron states in semiconductors.30

In our case, such a laser satisfies both the condition of the
resonant electron-photon interaction h̄ω0 = ε+(k0) − ε−(k0)
and the condition (8). The current (7) induced by this laser
field can be estimated for the above-mentioned parameters as
jx0/Ly � 10−2 A/m. Thus, the persistent current (7) is large
enough to be observed experimentally in actual semiconductor
nanostructures.

Though we calculated the persistent current (7) for the
electron distribution corresponding to zero temperature, the
discussed effect can also exist at nonzero temperatures.
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Indeed, the asymmetrically gapped energy spectrum pictured
in Fig. 2(a) leads always to a nonzero current if an electron
distribution function depends only on electron energy. The
particular case of such a distribution function is the Fermi-
Dirac function describing an electron distribution on dressed
states (5) in the thermodynamic equilibrium at any tem-
perature. Since there is no dissipation processes in the
thermodynamic equilibrium, the discussed persistent current
takes place at nonzero temperatures as well. In other words, the
discussed superconductivity can be high temperature: It exists
unless the increasing of electron scattering—which always
takes place with increasing temperature—washes the gap (6).

Generally, the light-induced persistent current needs broken
time-reversal symmetry. In the current paper we have con-
sidered an electron system which is devoid of time-reversal
symmetry due to a magnetic field. However, the similar effect
can also take place for a time-reversally symmetric electron
system interacting with a dressing field without time-reversal
symmetry. For instance, a circularly polarized field is devoid of
time-reversal symmetry since the time reversal turns clockwise
polarized photons into counterclockwise polarized ones and
vice versa. Therefore, the electron coupling to a circularly
polarized field can result in the persistent current in various
time-reversally symmetric electron systems—particularly, in
curvilinear quantum wires.31 However, a fabrication of the
quantum wires is not a trivial technological problem that
impedes an experimental observation of the discussed effect in
one-dimensional conductors. On the contrary, semiconductor
QWs with high-mobility two-dimensional electron gas can be
easily synthesized in a modern laboratory. As a result, the
significant new area of experimental research in QWs—where
the physics of superconductivity, the physics of nanostructures,
and quantum optics meet—can be opened.

It should be noted that there is another kind of persistent
current associated with the ground state of an electron system
without time-reversal symmetry. This known persistent current
arises from the Aharonov-Bohm effect32 and takes place in
quantum rings exposed to a magnetic field.33,34 However, the
Aharonov-Bohm persistent current cannot be identified with
superconductivity since this current is closed. Indeed, it flows
in a microscopical ring and is devoid of such a characteristic

property of superconductivity as a dissipationless carrying of
electrons over a macroscopically long distance. In contrast
to the Aharonov-Bohm persistent current, the light-induced
persistent current (7) flows in a QW with macroscopically
large in-plane dimensions Lx,y [see Fig. 2(b)]. Therefore, the
persistent current (7) leads to the dissipationless carrying of
an electric charge over the macroscopically long distance Lx .
This allows to consider the discussed effect as a conceptually
novel mechanism of superconductivity.

Finalizing the discussion, it should be noted that the
appearance of unusual effects of strong electron-photon
coupling is a common feature of quantum systems with broken
fundamental symmetries, including both the broken time-
reversal symmetry31 and the broken inversion symmetry.35 In
the current paper we have solved the spinless problem, where
the considered effect arises from a diamagnetic transformation
of the electron energy spectrum (1) by a magnetic field
Hy . However, the similar effect can also appear in photon-
dressed spin systems without time-reversal symmetry. Since
an analysis of spin-originated effects goes beyond the scope
of the current paper, it will be done elsewhere.

In summary, we have declared the nondissipative flowing of
photon-dressed electron gas (the light-induced superconduc-
tivity), which differs conceptually from both the superfluidity
of quantum liquids and conventional superconductivity in
solids. This macroscopic quantum phenomenon lies in the
scientific area where condensed-matter physics and quantum
optics meet. It is of universal character and can take place in
various strongly coupled electron-photon systems with broken
time-reversal symmetry. Particularly, the phenomenon can be
observed in asymmetric quantum wells exposed to an in-plane
magnetic field. Since the fabrication of such quantum wells
is routine procedure for modern nanotechnology, the declared
phenomenon can take place in actual nanostructures.
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