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Dephasing of Cooper pairs and subgap electron transport in superconducting hybrids
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We argue that electron-electron interactions fundamentally restrict the penetration length of Cooper pairs into
a diffusive normal metal (N) from a superconductor (S). At low temperatures, this Cooper pair dephasing length
Lϕ remains finite and does not diverge at T → 0. We evaluate the subgap conductance of NS hybrids in the
presence of electron-electron interactions and demonstrate that this length Lϕ can be directly extracted from
conductance measurements in such structures.
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It is well known that a normal metal (N) attached to a su-
perconductor (S) also acquires superconducting properties.1,2

This superconducting proximity effect is directly related
to the phenomenon of Andreev reflection:3 At the NS in-
terface Cooper pairs are converted into subgap quasipar-
ticles (electrons), which can diffuse deep into the normal
metal keeping information about a macroscopic phase of
the superconducting condensate. Such macroscopic quantum
coherence of electrons in the normal metal gets destroyed
by thermal fluctuations, provided the corresponding inverse
electron diffusion time (Thouless energy) becomes smaller
than temperature T . As a result, superconducting coherence
extends into a normal metal at a typical length LT ∼ √

D/T

(where D is the electron diffusion coefficient), implying that
the whole normal metal can demonstrate superconducting
properties at sufficiently low T .

This proximity-induced superconductivity manifests itself
in a number of well-known phenomena, such as Meissner
and Josephson effects in normal-superconducting hybrids4,5

as well as dissipative transport of subgap electrons across
NS interfaces.6 Provided the NS interface transmission is low,
its corresponding subgap (Andreev) conductance G remains
rather small, being proportional to the second order in the
barrier transmission. On the other hand, G can be strongly
enhanced at low energies due to nontrivial interplay between
disorder and quantum interference of electrons in the normal
metal,7–11 which leads to the so-called zero-bias anomaly
(ZBA) G ∝ 1/

√
V and G ∝ 1/

√
T in the limit of low voltages

and temperatures.
In this paper we will demonstrate that in the low-

temperature limit both superconducting proximity effect and
ZBA in Andreev conductance are limited by dephasing of
Cooper pairs due to electron-electron interactions in the
normal metal. Note that Coulomb effects in subgap electron
transport across NS interfaces have been studied in several
works;11–14 however, the decoherence effect of Coulomb
interaction has not yet been addressed in a proper and complete
manner. Below we will argue that fluctuating electromagnetic
field produced by fluctuating electrons in a disordered normal
metal destroys macroscopic coherence of electrons penetrating
from a superconductor at a typical length scale Lϕ . The
existence of this length scale imposes fundamental limitations

on the proximity effect in NS hybrids at low temperatures
T � D/L2

ϕ . In this temperature range, the penetration depth of
superconducting correlations into the normal metal is not given
by the thermal length LT but is limited by the dephasing length
Lϕ , which—in contrast to LT —does not grow at T → 0. We
will evaluate Andreev conductance G for NS structures in
the presence of electron-electron interactions and demonstrate
that in the low-temperature limit, G essentially depends on
Lϕ . This dependence allows to directly measure the dephasing
length Lϕ in transport experiments with NS hybrids.

It is also interesting to point out that the dephasing
length Lϕ derived here for NS systems up to a numerical
prefactor coincides with zero-temperature decoherence length
obtained within totally different theoretical framework15–19 for
a different physical quantity—the so-called weak localization
(WL) correction to the normal metal conductance. This agree-
ment demonstrates fundamental nature of low-temperature
dephasing by electron-electron interactions, which universally
occurs in different types of disordered conductors, including
normal-superconducting hybrids. On the other hand, as will
be explained further below, dephasing of Cooper pairs by
electron-electron interactions is in several important aspects
different from that for single electrons in a normal metal
encountered, e.g., in the WL problem.

The model and formalism. Below we will analyze a hybrid
SN structure, which consists of a normal metallic wire of cross-
section a2 and length L � a attached to bulk superconducting
and normal electrodes, as shown in Fig. 1. The contact
between the wire and the S electrode is achieved via a small
tunnel barrier with cross-section � and resistance RI strongly
exceeding the wire resistance RI � R = L/(σa2), where
σ = 2e2νD is the wire Drude conductivity, e is the electron
charge and ν is the density of states per spin direction.

In order to proceed, we will employ the Keldysh version
of the nonlinear σ -model20,21 adapted to SN structures.13 The
effective action for our system defined on the Keldysh contour
with forward (F) and backward (B) parts consists of two
terms S = Sw + S� describing, respectively, diffusive motion
of electrons in the wire,

Sw[Q̌,A,�] = iπν

4
Tr[D(∂̌Q̌)2 − 4	̌∂t Q̌ + 4i�̌Q̌], (1)
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FIG. 1. (Color online) Hybrid SN structure under consideration
and the diagram describing conversion of a Cooper pair into a pair of
electrons propagating inside the N metal.

and tunneling between the wire and the superconductor,

S�[Q̌,A,�] = − iπ

4e2RI�
Tr�[Q̌sc,Q̌], (2)

where Q̌sc and Q̌ are taken at superconducting and normal
sides of the insulating barrier, [x,y] denotes the commutator
and “Tr” implies the trace over the matrix indices as well
as the integration over times and coordinates. The covariant
derivative is defined as

∂̌Q̌ = ∂rQ̌ − i[	̌Ǎ,Q̌], 	̌ =
(

σ̂z 0
0 σ̂z

)
. (3)

Here and below, σ̂x,y,z denotes the set of Pauli matrices.
Both parts of the action Eqs. (1) and (2) depend on the
4 × 4 dynamical matrix field Q̌ satisfying the normalization
condition Q̌2 = 1̌δ(t − t ′) as well as on the fluctuating scalar
and vector potentials �(r,t) and A(r,t), which are defined
on the Keldysh contour and which account for the effect of
electron-electron interactions. We define �± = 1√

2
(�F ± �B)

and A± = 1√
2
(AF ± AB) and introduce the matrices

�̌ =
(

�+1̂ �−1̂
�−1̂ �+1̂

)
, Ǎ =

(
A+1̂ A−1̂
A−1̂ A+1̂

)
. (4)

Perturbation theory and Gaussian integration. In what
follows, we will restrict our consideration to energies well
below the superconducting gap and set

Q̌sc(t,t ′) =
(

σ̂y 0
0 σ̂y

)
δ(t − t ′). (5)

We will employ the so-called K-gauge trick,20,21 which
amounts to performing the gauge transformation Q̌(r,t,t ′) →
ei	̌Ǩ(r,t)Q̌(r,t,t ′)e−i	̌Ǩ(r,t ′) in order to eliminate linear terms
in both electromagnetic potentials and deviations from the
N-metal saddle point

Q̌N = Ǔ ◦
(

σ̂z 0
0 −σ̂z

)
Ǔ, (6)

Ǔ(t − t ′) =
[
δ(t − t ′ − 0)1̂ − iT

sinh(πT (t−t ′)) 1̂
0 −δ(t − t ′ + 0)1̂

]
. (7)

This goal is accomplished with the choice of the K field
obeying the following equations:

�+
K(r,t) = D∂rA+

K(r,t)

−2iDT

∫
dt ′ coth(πT (t − t ′))∂rA−

K(r,t ′), (8)

�−
K(r,t) = −D∂rA−

K(r,t), (9)

with �K(r,t) = �(r,t) − ∂tK(r,t) and AK(r,t) = A(r,t) −
∂rK(r,t). After this transformation, the action retains its initial
form if one substitutes Q̌sc(t,t ′) → e−i	̌Ǩ(r,t)Q̌sc(t,t ′)ei	̌Ǩ(r,t ′),
� → �K, and A → AK.

Treating the tunneling term Eq. (2) perturbatively and
performing the integration over the Q̌ field, similar to Ref. 13,
we arrive at the Andreev contribution to our action:

SA = − i

32

(
π

e2RI�

)2

〈Tr�[Q̌sc,Q̌] Tr�[Q̌sc,Q̌]〉Q. (10)

The dependence of this term on the electromagnetic potentials
is encoded both in Q̌sc and in the average of the Q̌ fields.
Evaluating SA within the Gaussian approximation we will
employ the parametrization20,21 Q̌ ≈ Q̌0 + iQ̌0 ◦ U ◦ W̌ ◦ U
− 1

2Q̌0 ◦ Ǔ ◦ W̌ ◦ W̌ ◦ Ǔ with

W̌ =

⎛
⎜⎜⎜⎝

0 c1(r,t,t ′) d1(r,t,t ′) 0

c̄1(r,t ′,t) 0 0 d2(r,t,t ′)
d̄1(r,t ′,t) 0 0 c2(r,t,t ′)

0 d̄2(r,t ′,t) c̄2(r,t ′,t) 0

⎞
⎟⎟⎟⎠ .

Here, di and ci are, respectively, the diffuson and the Cooperon
fields. Expanding the action Sw up to the second order in
these fields, one recovers four different contributions Sw =
S(0,2)

w + S(1,2)
w + S(2,1)

w + S(2,2)
w , where S(i,j ) contains ith power

of the electromagnetic potentials and j th power of W̌ . By
direct calculation, one can verify that the term S(2,1) depends
only on the diffuson fields, which are irrelevant for the
problem considered here. Hence, our action does not contain
the first power of the Cooperon fields, and the corresponding
propagator—the Cooperon C—can be obtained as a solution
of a linear inhomogeneous equation containing the first and
the second powers of electromagnetic potentials.

At this stage we would like to remark that the spin
structure of the Cooperon analyzed here differs from that
of the Cooperon encountered, e.g., in the WL problem in
disordered normal metals. Indeed, representing the Cooperon
as a sum of impurity ladder diagrams involving retarded (GR)
and advanced (GA) Green functions one observes that the spin
structure of the Cooperon responsible for the WL correction to
the N-metal conductance is either (↑↑) or (↓↓), implying that
both GR and GA correspond to either spin-up or spin-down
states. In contrast, the spin structure of the Cooperon relevant
for the proximity-induced superconductivity is either (↑↓)
or (↓↑) simply because Cooper pairs are spin-singlets. It
is straightforward to verify that only the Cooperon formed
by antisymmetric combination (↑↓ − ↓↑)/

√
2 contributes

to the subgap Andreev conductance of NS structures. In
the presence of electron-electron interactions, this Cooperon
differs from that corresponding to other possible spin con-
figurations already on the level of the first-order perturbation
theory.

For illustration, let us consider the first-order diagrams
depicted in Fig. 2. While in each of the cases (↑↑), (↓↓), and
(↑↓ + ↓↑)/

√
2, these diagrams cancel each other exactly at

T = 0, and in the limit of zero frequencies and momentum, no
such cancellation occurs for the antisymmetric combination
(↑↓ − ↓↑)/

√
2 because of extra minus sign encountered in

this case. Thus, for the latter spin combination (which is
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FIG. 2. First-order interaction corrections for the Cooperon. The
dashed lines represent scattering on impurities and the wavy line
accounts for electron-electron interactions.

only relevant here) nonvanishing zero-temperature dephasing
is observed already within the first-order perturbation theory
in the interaction.

Andreev conductance. Below we will proceed nonperturba-
tively and evaluate the subgap Andreev current I to all orders

in the interaction. Defining this current as

I = e

2

∫
�

d2r〈δSA/δK−(r)〉� (11)

and calculating SA along the lines with the analysis,13 which
now includes �+

K and A+
K, from Eq. (11), we obtain

I = πT

2νe3(RI�)2

∫
�

d2rd2r′
∫

dτ Im
〈P(r,r′,τ ; t)eieV τ 〉�

sinh(πT τ )
,

(12)

where P = C(r,τ ; r′,0; t − τ/2)e−2iK+(r,t)+2iK+(r′,t−τ/2) with
the Cooperon C obeying the equation

(2∂τ − i�+
K(r,T − τ/2) + i�+

K(r,T + τ/2) − D(∂r + iA+
K(r,T − τ/2) + iA+

K(r,T + τ/2))2)C(r,τ ; r′,τ ′; T ) = δ(r − r′)δ(τ − τ ′),
(13)

and V is an external voltage bias. Note that here and below we keep only the fields �+ and K+ neglecting �− and K−, which
are irrelevant for dephasing of Cooper pairs.22

Resolving Eq. (13), we get

P(r,r′,τ ; t) = θ (τ )eiK+(r,t−τ )−iK+(r,t)

2

∫ x(τ )=r

x(0)=r′
Dxe− ∫ τ

0 dt ′( (ẋ(t ′))2
2D

− i
2 {�+[x(t ′),t−(t ′+τ )/2]−�+[x(t ′),t+(t ′−τ )/2]}). (14)

What remains is to perform a straightforward Gaussian average over �+ fields as well as an average over diffusive trajectories.
The latter average is handled approximately with the aid of the formula 〈eF 〉diff � e〈F 〉diff . As a result, we find

〈P(r,r′,τ ; t)〉� = D(r,r′; τ )e−f (r,r′,τ ), (15)

with f (r,r′,τ ) = ft (r,τ ) + fb(r,r′,τ ) + ftb(r,r′,τ ),

ft (r,τ ) = i

2
[V++

KK (r,r,0) − V++
KK (r,r,τ )], (16)

fb(r,r′,τ ) = i

∫ τ

0
dt

∫ t

0
dt ′

∫
ddxddx′{V++

�� [x,x′,(t − t ′)/2] − V++
�� [x,x′,(t + t ′)/2]}D(r,x; τ − t)D(x,x′; t − t ′)D(x′,r′; t ′)

D(r,r′; τ )
,

(17)

whereD(x,x′,t) is the diffusive propagator,V++
�� (r,r′,t − t ′) =

−2i〈�+(r,t)�+(r′,t ′)〉�, and V++
K� , V++

KK is defined anal-
ogously. The function ftb is expressed via the correlator
〈K+�+〉. We chose to omit it here since ftb remains much
smaller than both ft and fb.

Equations (12) and (15)–(17) define the central re-
sult of our work, which describes the effect of electron-
electron interactions on the subgap current in diffusive NS
structures.

Quasi-1D structures. Below we will concentrate on quasi-
1D N -metal wires (Fig. 1) and set � = a2. In this case the
differential Andreev conductance G(V ) = dI/dV takes the
form

G = πT

4νe2R2
I

∫ ∞

0
dτ 2 D(0,0; τ ) cos(eV τ )

sinh(πT τ )
e−f (0,0,τ ), (18)

withD(0,0; τ ) = ϑ2(0,e−τ/τD )/(2La2), where ϑ2 is the second
Jacobi theta function and τD = 2L2/(π2D) is the Thouless
time. The function f accounts for dephasing of Cooper pairs.

For πT τ � 1, Eqs. (16) and (17) yield

f (0,0,τ ) � 8

g
ln

(
τ

τRC

)
+ τ

τϕ

+
√

πττc

4τ 2
ϕ

ln

(
τc

τ

)
. (19)

In the first term in Eq. (19) we defined dimensionless
conductance g = 4πνDa2/L � 1 and τRC = RC, where C

is an effective capacitance. This term is caused by spatially
uniform fluctuations of the scalar potential and matches with
the results of Refs. 12 and 13. The remaining terms in
Eq. (19) originate from nonuniform in space fluctuations in
the N metal and define the scales in our problem—Cooper
pair decoherence time τϕ = 2πνa2

√
2Dτc and decoherence

length Lϕ = √
Dτϕ , where τc ∼ l/vF sets a short time

cutoff15–17 and also τϕ � τRC . Note that up to an unimportant
prefactor of order one, τϕ coincides with zero-temperature
electron decoherence time evaluated, e.g., for the WL
problem.15–17

At this point we emphasize that the agreement between
the low-temperature dephasing length scales Lϕ found here
for Cooper pairs and previously15–19 for single electrons is
by no means a pure coincidence. Rather, this agreement

144529-3



SEMENOV, ZAIKIN, AND KUZMIN PHYSICAL REVIEW B 86, 144529 (2012)

reflects fundamental and universal nature of low-temperature
quantum decoherence caused by electron-electron interactions
in various types of disordered conductors. At the same time,
the Cooperon encountered in the WL problem is in many re-
spects different—both qualitatively and quantitatively—from
that studied here. As we already indicated above, the most
important difference is that the spin structure of our Cooperon
(antisymmetric combination of spin-singlets) corresponds to
that of a Cooper pair and is entirely different from that for
the Cooperon in the WL problem. In addition, the Cooperon
describing propagating Cooper pairs in the normal metal is
naturally bound to the NS interface, which is obviously not
the case in the WL problem. As a result, these two Cooperons
are defined by formally different diagrammatic series and,
hence, no a priori conclusions could possibly be drawn for
our present problem from the Cooperon analysis developed
for single electrons in disordered metals.

These differences have several important implications. For
clarity, let us summarize the most important ones again: (i)
Unlike single electrons in normal metals, Cooper pairs in NS
structures get dephased already by uniform fluctuations of the
scalar potential, as described by the first term in Eq. (19); (ii)
unlike in the case of the WL problem, nonvanishing dephasing
of Cooper pairs at T = 0 occurs already within the first-order
perturbation theory in the electron-electron interactions (see
Fig. 2 and the corresponding discussion above); (iii) already
at T = 0 the Cooperon studied here decays differently as
compared to the Cooperon in the WL problem, cf., e.g., our
Eq. (19) and Eq. (28) in Ref. 17; and (iv) at not very low
T , the temperature-dependent decay time for the Cooperon
in NS systems is entirely different from that in the WL
problem.23

Turning to concrete results, we first consider the low-
voltage limit eV � T . At high temperatures, T � 1/τϕ , the
penetration length of Cooper pairs into the N metal is defined
by LT , while Lϕ is irrelevant and dephasing is only due to
spatially uniform fluctuations described by the first term in
Eq. (19). In this case, the results of Ref. 13 are reproduced and
one finds G(0) ∝ T 8/g−1/2. At low temperatures, T � 1/τϕ ,
on the contrary, LT becomes irrelevant and the penetration
length of superconducting correlations into the N metal is
set by Lϕ . Then, for the linear subgap conductance we
obtain

G(0) �
⎧⎨
⎩

1
σR2

I a
2

( 4τRC

τD

)8/g 2Lζ

(
2− 16

g

)
(22−16/g−1)

π2 , L � Lϕ,

1
σR2

I a
2

Lϕ√
2π

( 4τRC

τϕ

)8/g
�

(
1
2 − 8

g

)
, L � Lϕ,

(20)

where �(x) is Euler gamma function and ζ (x) is Riemann
zeta function. The dependence of G(0) on L at different
temperatures is displayed in Fig. 3. At low T it shows a
pronounced maximum at L ∼ Lϕ , which can be conveniently
used for experimental analysis of low-temperature dephasing
of Cooper pairs in NS systems.

The same information can also be extracted from the
nonlinear subgap conductance G(V ), which shows the ZBA
peak at low voltages.7–11 At T → 0 and L � Lϕ , the width of
this peak is roughly determined by ∼1/τϕ .
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L Μm
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T 1.9K
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T 19K

FIG. 3. (Color online) G(0) as a function of L for a = 10 nm,
D = 21 cm2/s. For these parameter values, one finds 1/τϕ ∼ 0.6 K
and Lϕ ∼ 0.2 μm.

In particular, for L � Lϕ and T = 0 we get

G(V ) � 1

σR2
I a

2

Lϕ√
2π

(
4τRC

τϕ

)8/g

Re
�

(
1
2 − 8

g

)
(1 + ieV τϕ)1/2−8/g

.

(21)

The nonlinear subgap conductance G(V ) is depicted in Fig. 4
at different values of L.

Finally, we note that our analysis also allows us to determine
the subgap conductance for other geometries. For example, in
the 3D case the decoherence effect from spatially uniform
fluctuations is negligible,13 and at T � 1/τϕ the dephasing of
Cooper pairs in the N metal is controlled by the second term
in Eq. (19), with τϕ ∼ σD1/2τ

3/2
c ∝ D3.

In conclusion, we have demonstrated that electron-electron
interactions yield dephasing of Cooper pairs penetrating from
a superconductor into a diffusive normal metal. At low T

this phenomenon imposes fundamental limitations on the
proximity effect in NS hybrids, restricting the penetration
length of superconducting correlations into the N metal to
a temperature-independent value Lϕ . This length scale can be
probed by measuring the subgap conductance in NS systems.

50 100 150 200 250 300

V ΜV

20
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60

80

Σ
R
I2 a
2 G
V

nm L 1.6Μm
L 500nm
L 160nm
L 50nm
L 16nm

FIG. 4. (Color online) G(V ) at T = 0 and different values of L.
The parameters are the same as described in the caption of Fig. 3.
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We note that our results are qualitatively consistent with
the experimental observations of Ref. 24, demonstrating that
the low-temperature magnetoconductance of NS structures is
determined by phase-coherent electron paths with a typical size
restricted by the temperature-independent dephasing length

Lϕ rather than by the thermal length LT diverging in the low-
temperature limit.
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