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Effect of normal current corrections on the vortex dynamics in type-II superconductors
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Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between
the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the
current-current interactions is shown to have a transient character so that it contributes only when a system
evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that
the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic
vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions
appears near the sample edges, where the vortices reach their maximal velocity.
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I. INTRODUCTION

Although the time-dependent Ginzburg-Landau (TDGL)
theory is justified only for slowly evolving systems, it provides
qualitatively correct description of dynamic phenomena, such
as ultrafast propagation of magnetic flux dendrites," fast-
moving kinematic vortices,>* or accelerated vortex motion
present during vortex-antivortex annihilation.> Of course,
in these fast processes the quasiparticles cannot achieve a
local equilibrium distribution; nonequilibrium corrections to
TDGL theory become important. This was demonstrated by
Vodolazov and Peeters® who found a large deformation of the
gap profile at the phase-slip center in the case of a slow re-
laxation of quasiparticles. They assumed isotropic distribution
of quasiparticles (valid in the dirty limit) and carefully treated
the energy distribution using two coupled kinetic equations for
longitudinal and transverse branches. Their approach applies
for a finite value of the gap, the time derivative of which acts
as a force driving quasiparticles out of equilibrium.

Here we discuss a complementary correction, valid in the
pure limit, which takes into account a direction-dependent per-
turbation of the quasiparticle momentum distribution, which
appears when the normal current is created in the system. The
correction to the TDGL equation will be proportional to the
scalar product of the normal current and the supercurrent.’

A. Normal current in a superconductor

Superconductors with freely moving Abrikosov vortices or
propagating dendrites have a finite resistivity and an electric
field E’ thus develops in them as the current is driven through.
This electric field generates a normal current

Iy = onE, 1)

which is in addition to the supercurrent J . In the TDGL theory
these two currents interact only indirectly via the magnetic
field. The absence of any direct interaction between the normal
current and supercurrent in this theory is not disturbing,
because it is in agreement with an intuitive picture based on the
two-fluid model of a superconductor: Taking the condensate

1098-0121/2012/86(14)/144516(8)

144516-1

PACS number(s): 74.78.Na, 73.23.—b

as an autonomous fluid one expects it not to interact with the
underlying crystal including its normal electrons.

The absence of interaction between normal current and su-
percurrent is also supported by microscopic theories based on
the dirty limit.>-!! These approaches, however, cannot be used
to discuss the current-current interaction. To obtain practical
equations, authors employ the isotropic approximation®!!
in some cases making the additional assumption of local
equilibrium.® The isotropic distribution corresponds to zero
normal current, therefore any effect of the normal current
on formation of the superconducting gap is lost by this
approximation.

The effect of the normal current on the gap has been
derived in Ref. 7 from the Thouless criterion'? adapted to
nonequilibrium Green functions. This approach was applied
to far-infrared conductivity of the Abrikosov vortex lattice
by some authors of the current work,'* which resulted in
better agreement with a recent experiment'* than the standard
TDGL theory. Since the microscopic derivation is lengthy and
technically demanding, in the Appendix we provide a simple
derivation of the interaction of the condensate with the normal
current, using purely phenomenological arguments.

B. Plan of paper

The paper is organized as follows. In Sec. II we introduce
the floating-kernel approximation which enables one to include
the interaction between the normal current and supercurrent
into the TDGL theory. In Sec. III we show that this correction
is of transient nature being zero in any steady regime. To
this end in Sec. III A we perform a gauge transformation to
express the interaction of the normal current and supercurrent
in terms of time derivative of the vector and scalar potential.
Consequently, one can describe this correction in terms of
effective magnetic and electric fields as shown in Sec. III B.
In Sec. IV we apply our theory to the phase-slip regime in
thin superconducting strips with negligible magnetic feedback.
We express the TDGL formulation in terms of dimensionless
quantities, which are used in numerical simulations; results
of these simulations are used to demonstrate how the current-
current interaction influences fast kinematic vortices in the
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phase-slip regime. Our findings are summarized in Sec. V. In
the Appendix we indicate why the TDGL theory violates the
longitudinal f-sum rule and show that solving this problem
with an intuitive two-fluid correction leads directly to the
floating-kernel approximation.

II. FLOATING-KERNEL APPROXIMATION

Here we write down a closed set of equations forming the
floating-kernel approximation. This theory becomes identical
to the TDGL theory in the coordinate system floating with
normal electrons, as the normal current vanishes in this
reference frame.

A. Order parameter

In the presence of normal current the time evolution of the
order parameter is described by”:!3

*

* 2
(—ihV _&aA- m—JN> v +ay + BlY Py
[ en

2m*
- _;(i_ki * _|_C_28W|2) )
/1ty \or he¢ 2 9t v

The right-hand side has been derived by Kramer and Watts-
Tobin three decades ago.”!> The « and B terms are a standard
part of the Ginzburg-Landau theory. The kinetic energy term on
the left-hand side has been obtained only recently.” In the case
of clean superconductors, the effective mass of a Cooper pair is
m* = 2m and its charge is twice the electron charge; e* = 2e.
In the Appendix this normal current correction is deduced from
the longitudinal f-sum rule. The standard TDGL equation’
can be obtained by setting Jy = 0.

Away from the critical line, when C?|y|> ~ 1, the phase
and amplitude relax at different rates. The correction due
to inelastic electron-phonon scattering results in a different
relaxation time of order parameter v, characterized by C? =
210 Ao/ (| o|%), where Ay and v are values of the BCS
gap and GL function at given temperature in the absence
of currents. t7;, is the inelastic electron-phonon scattering
time. Since in pure superconductors i, Ao >> 7, the correction
C?|¥|? can be large under realistic conditions. We use this
relaxation rate in the numerical example. Close to the critical
line this correction vanishes and one can use a simpler theory
corresponding to the limit C?|y/|> — 0 of Eq. (2).

Our major concern will be the contribution of the normal
current through the Jy term. In Eq. (2) the kinetic energy de-
pends on the difference between the velocity of the condensate

l *
vs = —*(th - 6—A>, 3)
m C

where yx is the phase of the superconducting order parameter
Y = |¥|e'*, and the mean velocity of normal electrons

1
VN = —JN. (4)
en

The first term of Eq. (2) is thus the kinetic energy price which
must be paid by a pair of normal electrons in order to join
the condensate in the reference frame floating with normal
electrons. To distinguish the theory based on the velocity
difference from the standard TDGL theory, we refer to

PHYSICAL REVIEW B 86, 144516 (2012)

the theory described by Eq. (2) as the floating-kernel
approximation."?

B. Two-fluid picture of current

The derivative of the kinetic energy with respect to vector
potential A defines the current operator. The correction to the
normal current thus also appears in the supercurrent

Js = e—*Re|:1/_f (—ihv _ A m—h)x/x}
C en

m
= e*ns(vs — VN), (5)

with ng = |¥|> being the density of Cooper pairs or the
condensate density. This supercurrent depends on the relative
velocity of the condensate with respect to the normal back-
ground since according to Ohm’s law (1) all electrons move
with the normal velocity vy .

One can leave the picture of relative motion and instead
rearrange the total current in the spirit of the two-fluid model:

J=Js+Jy =e"ns(vs —vy) + envy

= e*ngvg + (en — e*ng)vy

* * 2
e—*Re|:15 (—ihv - e—A)w} +JN<1 _ 2Vl ) 6)
m C

n

In this rearrangement the supercurrent has the condensate
velocity vg. The correction term becomes a part of the normal
current, where it reduces the density of electrons to the fraction
of normal electrons.

The necessity to reduce the normal current to the normal
fraction follows from the longitudinal f-sum rule. In the
Appendix we show that in order to achieve a consistent theory
formulated via free energy, the reduced normal current must
be accompanied by changes in the free energy which lead to
the floating-kernel approximation.

C. Scalar and vector potential

Let us close the set of equations. Potentials A and ¢ yield
the electric field'®

E=--""_v6. )

In some applications one should keep in mind that ¢ is to
be interpreted as a local electrochemical potential, not the
electrostatic potential. The vector E’ is thus the driving force
per electron rather than the Maxwell electric field. Following
the notation of Josephson we indicate this distinction with a
prime, but as is usual in the theory of superconductivity we
simply refer to E’ as the electric field.

Although the system has nonzero scalar potential, devia-
tions from charge neutrality are so small that one may neglect
them, using the continuity equation in its stationary form
V - J = 0. Substituting Eq. (7) into the normal current from
Eq. (1), J=Js+ Jn, leads to the usual condition for the
potential

onVip =V - Js. (8

We have used V - A = 0 and assumed a homogeneous sample
Voy = 0. To evaluate the vector potential we need the
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Maxwell equation
VZA = —uolJs +Jn) 9

which is also in the stationary approximation to be consistent
with the continuity equation. Thus, the set of equations (1),
(2), (5), and (7)—(9) describe the dynamics of the system.

III. TRANSIENT NATURE OF THE CURRENT-CURRENT
INTERACTION

An overlap of the normal current and supercurrent appears
at the conversion layer at the junction of the superconductor to
anormal lead. Similarly, there is such an overlap at phase-slip
centers in superconducting wires or at phase-slip lines in films.
In this section we show that the floating-kernel correction
is purely transient and contributes only if the electric and
magnetic field change in time. The floating-kernel correction
thus does not contribute at the conversion layer and at phase
slip centers. In contrast, in the next section we will demonstrate
via numerical simulation that the floating-kernel corrections
are appreciable at the phase-slip lines which are formed by
fast-moving kinematic vortices.

A. Effective vector and scalar potentials

The floating-kernel TDGL can be converted to the form of
the normal TDGL by writing in terms of effective vector and
scalar potentials A and ¢esr. These effective potentials are
associated with superconducting electrons, while ¢ and A are
associated with normal electrons.

The normal current enters the floating-kernel approxima-
tion in two ways, appearing in the kinetic energy of Eq. (2) and
also in the supercurrent (3). In each case Jy and A appear in
the same combination, which can be replaced by a vector field

m*c
A=A+ ——Jv. (10)
2e’n

It is advantageous to describe the vector and scalar
potentials in a symmetrical way. We express the normal current
(1) via potentials

1 0A
Jy =—on———0oyVe (11
c dt
so that
0A
Afk:A—‘L’E—C'CVQS (12)
with the characteristic time
m*oN
T=—" 13
2e2n (13)
By substitution
w — e—ie*rd}/hl/”}

and for a homogeneous sample with Vt = 0, the GL equation
(2) assumes the form

. 2
) e - ~ o
(—th - ?Aeff> v+ oy + BV 1Y
r 0 i 29|02
=——<E+ﬁe*¢eff+y— 4

NEESarE 2 o

2m*

)Jf (14)

PHYSICAL REVIEW B 86, 144516 (2012)

with effective potentials

¢
Pefr =¢—T¥, (15)
0A
Aeff :A—TE (16)
The supercurrent (5) reads
e* = e* ~
Js = —Re[w (—ihV - _Aeff)lpi| a7
m* c

while other equations of the TDGL theory need not be rewritten
since they depend only on the amplitude |y |> = |/|>.

The above formulation makes it clear that the system
behaves as if the normal electrons are driven by potentials
¢ and A while the superconducting electrons experience
effective potentials ¢ and Agr.

B. Effective electric and magnetic fields

Action of the above effective potentials can be expressed
via effective magnetic and electric fields. The transverse
component of the normal current acts on the condensate via
an effective magnetic field

B
BeffZVXAeff:B—T_. (18)
ot
The time variation of the normal current acts on the condensate
via an effective electric field
190 oE
E/ffz———Aff—v ff:E/—T_. 19
e oA Pe a7 19)

In both effective fields the correction term vanishes in the
stationary limit. The corrections following from the floating-
kernel picture might thus become important in transient
regimes or in systems driven by oscillating fields. The ac
response of the Abrikosov vortex lattice has been discussed
in Ref. 13. Here we focus on vortices driven by a steady
supercurrent.

IV. NUMERICAL SIMULATIONS WITHIN THE
TDGL THEORY

Subjected to a dc transport current, superconducting vor-
tices start moving under the action of the Lorentz force, leading
to energy dissipation in the system.!” The mechanisms for the
dissipation are known to be!® the normal currents flowing
in the vortex cores,!” relaxation of the order parameter,zo
and the slow diffusion mechanism of relaxation of the order
parameter caused by the anomalous term in the time-dependent
microscopic theory.?! At larger values of the external current,
a nonequilibrium distribution of the quasiparticles takes
place due to the finite relaxation time. As a result, the
superconducting condensate is strongly reduced behind the
vortex core, whereas it is enhanced in front of the vortex core.
Such a deformation of the vortex core results in anisotropic
interactions between the vortices leading to rearrangement of
the triangular Abrikosov lattice to a set of parallel vortex rows
with suppressed order parameter, similar to phase-slip lines.??
Along these lines vortices move with velocities exceeding by
orders of magnitude typical velocities of Abrikosov vortices
in the flux flow regime.>*
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FIG. 1. (Color online) The model system: A superconducting
strip of length L, width w, and thickness d in the presence of
perpendicular applied field B and dc current I, applied through
normal-metal contacts of size a. The output voltage is measured
at a small distance away from these leads.

In this regime we expect significant contribution of floating-
kernel corrections due to the following. First, near the fast-
moving vortices time derivatives of the magnetic and electric
fields are large so that the effective fields By and E/; can
differ appreciably from the static fields. Second, there are large
normal currents across the phase-slip line due to the suppressed
superconductivity.

Since it is impossible to solve the highly nonlinear TDGL
equations in such a nonequilibrium state’> even in the one-
dimensional case (see, e.g., Ref. 24), here we demonstrate
the effect of the floating-kernel corrections due to the normal
current and supercurrent interaction via numerical simulation.
As an example we consider a superconducting strip with
length L, thickness d < &,A, and width w < A = 2A/d>
in the presence of a transport current (applied through the
normal contacts of size a) and a perpendicular magnetic field
B (see Fig. 1). Under this consideration one can neglect
the back reaction of the current on the magnetic field and
assume a constant homogenous magnetic field, so B = B.
Therefore, we neglect the floating-kernel corrections to the
vector potential, and write A, = A. The effect of the normal
current on the dynamics of the condensate will be taken into
account through the effective scalar potential @efs.

To understand the dynamical properties of the system we
use the TDGL equation in dimensionless form

(V' —iAY + (1 =T — |y Py
u d ., YA
B ,/1+y2|¢/|z<aﬂ Tty

which is coupled to the equation for the scalar potential

)W, (20)

V12¢/ -V . st’ (21)

where J. = Re[y/'/(—iV’ — A’)y/'] is the supercurrent density.
Here the order parameter v = ¥ /v is scaled with the GL
value ng = —au/ B, temperature is in units of 7, distance x’ =
x /£ is scaled to the GL coherence length £ = —h2/2m*«, and
the vector potential A" = (e*£/ch)A is in units of e*£ /ch. The
time ¢’ = tu /gL is scaled with the GL time 1, = —I'/a =
h/8kg(T, — T) and the scalar effective potential scales with
the inverse time ¢/ = (e* gL /hiu)ger. We note that the scalar
potential ¢’ in Eq. (21) is in the same units ¢y = hiu/e* gL as
@ The current density is scaled as Jiy = (m*&/e*hiyd)Js.
The amplitude-relaxation rate reads as y = Cy and the
phase-relaxation rate u is defined as u = wh/4kpT,t, which
renders Eq. (21) free of numerical factors. In these units, the
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effective potential relates to the true one as

/ / T 8 /
Bl =9 — 2<1 - E)Fﬁ . 22)
Using the normal-state resistivity 1 /oy = py = 18.7 uQ2 cm,
zero temperature coherence length £(0) = 10 nm, and
penetration depth A(0) = 200 nm, which are typical for Nb
thin films,> one can obtain fg; ~ 2.69 ps and ¢y ~ 0.12 mV
near 7.

Following the numerical approach given in Ref. 26, we
solve Eqgs. (20) and (21) on a uniform Cartesian space
grid, using the standard Euler iterative method for Eq. (20)
and the successive over-relaxation method for Eq. (21).
We use superconducting-vacuum boundary conditions (V —
iA)Y |, = 0 and V@[, = 0 at all sample boundaries, except at
the current contacts where we use ¥ =0 and V¢|, = —J,
with j being the applied current density. Assuming that
w <K A = 21/d? we neglect the demagnetization effects and
choose A = (—By/2,Bx/2). The material parameters u and
y are chosen as u = 5.79 and y = 10, which are found within
the microscopic BCS theory for superconductors with weak
depairing.'> For a given value of the external current, we have
conducted simulations for #,.x = 10 0007gL and the voltage is
averaged for the period At = tyax /2.

We study the time-averaged voltage versus current (/-V')
characteristics by applying a constant current through the
sample at a constant magnetic field. As a representative
example we consider a superconducting strip with length
L = 80&(0) and width w = 40&(0), the 7-V curves of which
are shown in Fig. 2 for different values of the applied magnetic
field B at T = 0.757, with and without the floating-kernel
corrections. At zero magnetic field (black curves) the system is
in the fully superconducting state for the current density below
Je2 = 0.35jy, which is smaller than the GL depairing current
density jgL = 0.385jy. When the critical current is reached,
the system transits into the normal state. The effect of the
floating-kernel correction is negligibly small at zero magnetic
field (see lower inset in the main panel of Fig. 2). Vortices
penetrate the sample with applying external magnetic field: For
B = 0.1B,, (red curve in Fig. 2) four vortices enter the sample
at zero applied current. These vortices are displaced by small
applied current (see panel 1). The vortices are set into motion
by increasing the applied drive leading to a monotonic increase
of output voltage (before point 2 the /-V curve). First and
second columns in panel 2 show the snapshots of those moving
Abrikosov vortices in the two regimes. As we expected, the
effect of the floating-kernel correction is not very pronounced
in this slowly moving regime—the actual positions of the
vortices are almost the same in the two approximations.

Third column of panel 2 in Fig. 2 shows a snapshot of the
actual value of the floating correction to the scalar potential § =
T % Two main features can be highlighted in this plot: First,
the contribution due to normal contacts, where the dissipative
normal current is converted into dissipation-free supercurrent
over a distance of a few times & via Andreev reflection,?’
is negligibly small. The second feature is that the floating-
kernel corrections near the vortex core far from the surface
have quadrupole symmetry. This can be understood from the
Bardeen-Stephen picture'® of the moving vortex; a vortex
moving in the vertical direction creates an electric field which
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FIG. 2. (Color online) I-V characteristics of the sample with
dimensions L = 80&(0), w = 40£(0), and a = 8£(0) at temperature
T = 0.75T, for different values of the applied magnetic field B
without (solid curves) and with (dashed curves) the floating-kernel
approximation to the electrostatic potential. Insets show the low
voltage part of the /-V curve. Panels 1-5 shows the snapshots of the
Cooper pair density without (first column) and with (second column)
the floating-kernel correction at the field and current values indicated
on the -V curves. The third columns shows the floating-kernel
correction to the electrostatic potential § = r%. The white arrow
in panel 2 shows the direction of vortex motion.

drives the normal current through its core in the horizontal di-
rection. The corresponding scalar potential is thus a dipole with
horizontal orientation. The time derivative of this potential due
to its vertical translation exhibits the quadrupole symmetry.
With further increasing the applied current the system
transits into a resistive state with a finite voltage jump (point 3
in Fig. 2) characterized by fast-moving kinematic vortices.
First and second columns in panel 3 of Fig. 2 show the
snapshots of such kinematic vortices in this regime. Although
both approximations give the same number of phase-slip lines,
the actual position of the kinematic vortices is different in
two regimes. Such kinematic vortices lead to time-periodic
voltage oscillations across the sample, the frequency of which
can range up to the sub-THz regime (see Fig. 9 in Ref. 4).
The third column in panel 3 of Fig. 2 shows a snapshot of the
correction to the electrostatic potential in the phase-slip state
8. Although & shows the same behavior as in the case of slow
moving Abrikosov vortices, the value of § is two orders of
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FIG. 3. (Color online) (a) Time evolution of the voltage of the
sample in Fig. 2 for j = 0.256, and B = 0.1B,, (indicated by point
3 on the /-V curve in Fig. 2) without (solid black curve) and with
(dashed red curve) the floating-kernel correction. (b) The Fourier
power spectrum of V (¢).

magnitude larger in the phase-slip state being still only few
percent of the steady potential due to the finite conductivity.

To see clearly the effect of the floating-kernel correction
to the voltage response of the system to the external field, we
plotted in Fig. 3(a) the time evolution of the voltage across
the sample in the phase-slip regime. The V(T') curves in both
cases show clear oscillations with maxima corresponding to
penetration or expulsion of kinematic vortices. The effect of
the floating correction to the amplitude of the oscillations
are clearly seen in this figure. To see how the period of
these oscillations are affected by the correction, we conducted
Fourier analysis of the voltage curves, which is plotted
in Fig. 3(b). The Fourier power spectrum shows that the
frequency of the oscillations increases when the correction
to the electrostatic potential is taken into account. As a result,
the critical current for the transition into this resistive state
becomes smaller when we take the floating-kernel correction
into account (see red and green curves in Fig. 2).

The effect of the floating-kernel approximation becomes
more pronounced at higher magnetic field, resulting in signifi-
cant reduction of the resistive state transition current (see solid
and dashed blue curves in the 7-V in Fig. 2). The reason is
the increased number of vortices in the system, each of them
contributing to the correction to the effective electric potential
due to the normal electrons in their core (see panel 4 in Fig. 2).
Figure 4 shows the voltage vs time curves of the sample at
B = 0.3B,, for the current j = 0.128j,. At this value of the
current the floating-kernel correction brings the system into
the resistive state [higher frequency of the V (¢) oscillations],
whereas the system is in the slow moving vortices state in the
standard TDGL approach.
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FIG. 4. (Color online) The same as in Fig. 3 but for the
applied current density j = 0.128 j, and magnetic field B = 0.3B.,
(indicated by point 4 on the /-V curve in Fig. 2).

The resistive state at higher fields is usually characterized
by the coexistence of slow moving Abrikosov and fast moving
kinematic vortices, as shown in the second column of panel
4 in Fig. 2. The formation of kinematic vortices reduces the
number of vortex channels in the system (compare first and
second columns in panel 4).>> However, the total number of
vortices inside the sample at a time remains the same. Another
feature of the floating correction to the scalar potential § is
seen from its contour plot in the latter state (third column in
panel 4): The strongest contribution to § comes from the
vortices at the sample edge. This is due to the fact that the
velocity of vortices near the edges is much larger than the
speed of vortices in the interior of sample.’* As we mentioned
above, the correction to the Abrikosov vortices is much smaller
(due to their slower motion) and it is invisible in the scale of
the figure.

The last jump in the /-V curves before the system transits
into the normal state (see point 5 in Fig. 2) is characterized by
the collapse of the superconducting condensate in the middle
of the sample and by the remnant superconductivity near the
corners (see panel 5 in Fig. 2). Since there are no kinematic
vortices in this regime and eventual floating-kernel corrections
are negligibly small, both the critical current and the value
of the voltage are the same in both the approximations. The
correction to the electrostatic potential due the conversion of
normal current into supercurrent near the normal contacts (see
third column in panel 5 of Fig. 2) turns out to be small to
influence the critical current of the sample.

V. CONCLUSIONS

Within the floating-kernel approximation we studied the
effect of the normal current on dynamics of the superconduct-
ing condensate in type-II superconductors. We showed that
this effect is of transient nature and contributes only when
the system evolves. The most pronounced effects were found
for kinematic vortices which move much faster than isolated
Abrikosov vortices. Particularly strong corrections were found
near sample edges where kinematic vortices are accelerated,
increasing their speed nearly by an order of magnitude. We
found that both the resistive state transition critical current and
voltage vs time characteristics of the sample is affected by the
floating-kernel correction to the scalar potential.
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APPENDIX: FREQUENCY SUM RULE

The conductivity must satisfy the frequency sum rule’®?’

2 [ ne’

— dwReo (w,k) = — (A1)
T Jo

where e, m, and n are charge, mass, and density of electrons.
To satisfy this sum rule, a modification of the TDGL theory
in the spirit of the two-fluid theory is necessary. Here we
show that this two-fluid correction implies the floating-kernel
approximation discussed in Sec. II.

1. Sum-rule violation in the TDGL theory

First we show that the standard TDGL theory leads to
conductivity which violates the sum rule (A1). In the standard
TDGL theory the total current is expressed as a sum of the
supercurrent and the normal current,

=JoL +Jn.

Neglecting the Hall effect, both currents are parallel to the
electric field and the conductivity is a scalar given by the ratio
o = J/E'. It thus has two corresponding parts

JTpGL (A2)

OTDGL = OGL + ON- (A3)
The sum rule (A1) is satisfied in the normal state
2 (™ ne’
— dwReoy(w,K) = — (Ad)
T Jo

The superconducting component of mean Cooperon density
iis, mass m*, and charge e* appear in an analogous sum over
frequencies

ﬁse*2

2 00
— / dwReog(w,k) = (AS)
0

T

The total sum rule (A1) for orpgL is therefore violated.

2. Two-fluid correction

Assuming that formation of condensate depletes the supply
of normal electrons ny = n — 2iig, the normal conductivity
ought to be correspondingly lowered,

< 2]’15)
o=ogL+ (1l ——)on.
n

The sum over frequencies on the left-hand side of (A1) is then

= %2 2 2
ise (1 - ﬂ)_.
m* n m

(A6)

z /oodwReo(a),k) = (A7)
T Jo
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EFFECT OF NORMAL CURRENT CORRECTIONS ON THE ...

The sum rule (A7) corresponds to the sum rule valid
in the Meissner state, when a part of the weight due to
superconducting electrons is covered by the singular term in
form of the Dirac § function.?*! Avoiding the § function one
arrives at the sum rule®

2 [ 2iig\ ne?
— dwReoc(w,k)=(1— — | —.
T Jor n ) m

(A8)

Here we assume similar structure for the mixed state. The only
difference is that in the presence of vortices the conductivity
ogL of superconducting electrons is finite even at zero
frequency. Its frequency dependence is not a § function but
has a Drude form.

In the pure limit, m* = 2m, the sumrule (A1) is satisfied. As
one can see, the sumrule (A1) is violated in the dirty limit when
m* £ 2m. This corresponds to limitations of the theory used
to derive the floating-kernel approximation. The derivation of
Ref. 7 is based on the Kadanoff-Baym ansatz with the spectral
function approximated by the Dirac § function, therefore the
renormalization of the Cooper-pair mass due to finite mean
free path is not included in this approach. Briefly, the floating-
kernel approximation is justified only in the pure limit.

3. Interaction of normal current with condensate

We note that the floating-kernel approximation discussed in
Sec. IT leads to the conductivity (A6); see the current (6). Here
we approach the problem from the opposite direction; starting
from the conductivity (A6) we arrive at the floating-kernel
approximation.

Let us require that the set of TDGL equations must follow
from the effective free energy:>?

b reg)y = O
1(5+w@¢_ A (A9)
SF

Since our focus is on the spatial gradients, we neglect the
nonlinear relaxation of Kramer and Watts-Tobin. Indeed, the
relaxation on the left-hand side of Eq. (A9) results from
sending C — 0in Eq. (2)

In Egs. (A9) and (A10) the GL function ¢ is normalized
to the Cooperon density as ng = |1/|> and the sum rule
uses the value averaged over space iis = (|¥|>). We assume
that the free energy can be additively decomposed into
superconducting and normal parts, 7 = Fy + Fg, where the
normal part is the same as in the normal state and therefore

_w

= . All
In SA (A11)
The GL function thus enters the superconducting part only,
8F
2N . (A12)
sy
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In the TDGL theory the supercurrent reads

JoL = e—Re[lp <—ihv — e—A)w}. (A13)
m* c

Since the vector potential A appears exclusively via the

covariant spatial gradient seen here, this expression implies

that in the TDGL free energy the kinetic energy takes the

familiar form (1/2m*)|[—ihV — (e*/c)Aly|%.

We have seen that the current (A13) with the normal current
added violates the frequency sum rule. Now we derive the
kinetic energy assuming that current includes the two-fluid
correction. According to the two-fluid conductivity (A6), the
total current reads

2
J = ogE + <1 - £>0NE/
n

2n
=JoL — TSJN +Jy

e*

= Rey (—ihv _faA- m—JN>w +Iv. (Ald)
m C éen

We have in the supercurrent included the correction term
because it is proportional to the condensate density. According
to Egs. (A10) and (A12) it thus cannot result from the variation
of the normal free energy Fy.
From Egs. (A10), (Al1), and (A14)

8Fs

SA
Integrating relation (A15) over the vector potential one finds
the superconducting free energy

1
2m*

= —Z Rey (—ihV _ A m—JN>w. (A15)
m C en

2

Fs =
C

(—ihV _ A m—JN>1/f
en

1
+a|w|2+§ﬁ|w|“.

Of course, the integration provides only the kinetic energy
which has to be rearranged with integration by parts into the
square of covariant gradients. The terms independent of A
represent an initial condition of the integral and are taken from
the standard GL theory.

With free energy (A16), Eq. (A9) is identical to the floating-
kernel approximation (2) in the C — 0limit. It should be noted
that derivation of Eq. (2) from microscopic theory was also
extended to the linear terms in Jy, therefore additional terms
quadratic in the normal current might appear.

To summarize this Appendix, we have shown that the
TDGL theory violates the longitudinal f-sum rule. To restore
the sum rule the normal current must be reduced, correspond-
ing to an interaction term between the normal current and
the condensate. In this way one recovers the floating-kernel
approximation from phenomenological arguments.
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