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Microwave spectroscopy of a Cooper-pair transistor coupled to a lumped-element resonator
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We have studied the microwave response of a single Cooper-pair transistor (CPT) coupled to a lumped-element
microwave resonator. The resonance frequency of this circuit, fr , was measured as a function of the charge ng

induced on the CPT island by the gate electrode and the phase difference across the CPT, φB , which was controlled
by the magnetic flux in the superconducting loop containing the CPT. The observed fr (ng,φB ) dependencies
reflect the variations of the CPT Josephson inductance with ng and φB as well as the CPT excitation when the
microwaves induce transitions between different quantum states of the CPT. The results are in excellent agreement
with our simulations based on the numerical diagonalization of the circuit Hamiltonian. This agreement over
the whole range of ng and φB is unexpected, because the relevant energies vary widely, from 0.1 to 3 K. The
sensitivity of the CPT as an electrometer is peaked when the CPT excitation level approaches that of the microwave
resonator.
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I. INTRODUCTION

The Cooper-pair transistor (CPT) is a three-terminal device
that consists of a mesoscopic superconducting island con-
nected to two leads by two Josephson tunnel junctions (JJs)
(see, e.g., Refs. 1 and 2 and references therein). The behavior
of this device is controlled by two energies: the charging
energy per junction, EC ≡ e2/2CJ (CJ is the capacitance of
a single tunnel junction), and the Josephson coupling energy
EJ . The energies EC and EJ could be made of the same
order of magnitude by reducing the tunnel junction in-plane
dimensions (typically, down to 100–200 nm for Al-AlOx-Al
junctions). The energies of quantum states of the CPT are
2e periodic in a continuous charge ng = CgVg/e induced on
the island by a capacitively coupled gate electrode. Here,
Cg is the capacitance of the capacitor formed by the island
and the gate electrode, Vg is the voltage applied to this
capacitor. The sensitivity of the CPT characteristics to the
induced charge makes this device a very sensitive electrometer
which, in particular, can operate in a low-dissipation dispersive
mode.3–5 The interplay between the Josephson effect and
Coulomb blockade leads to a quantum superposition of
charge states in the CPT, which forms the basis for quantum
computing with superconducting charge qubits.6–8 Since the
first demonstration of the coherent superposition of states in
the CPT more than a decade ago, the CPT has been used as a
test bed for many novel experimental techniques employed in
the research on superconducting qubits.

The microwave experiments with CPTs can be broken down
into two main categories. In the first type of measurements,
the CPT remains in its ground state because of a large mis-
match between the probe signal frequency and the excitation
frequencies of the CPT. During this adiabatic operation, the
CPT can be described by its effective microwave impedance.
This impedance, depending on the parameters of the Josephson
junctions and the coupling of the CPT to the readout circuit,
could be predominantly inductive (the Josephson inductance,
the second derivative of the CPT energy in phase9) or capac-
itive (the quantum capacitance, the second derivative of the
CPT energy in charge10–12). If the CPT is coupled to a resonator

and their levels are close in energy, the entanglement of the
CPT and resonator states affects the impedance of this circuit
even if the microwaves do not induce transitions between the
CPT states. In the latter case, the impedance-based description
of the CPT is insufficient, and the solution of the quantum
Hamiltonian of the system “CPT + read-out circuit” is re-
quired. In the second type of measurements, the microwaves
induce transitions between different quantum states of the CPT.
This, in particular, enables the preparation and manipulation
of coherent superpositions of the ground and excited states in
the quantum-computing-related applications of the CPT.

In this paper, we present the microwave spectroscopic
study of a CPT that probes both the ground state and
excited states of the CPT over wide ranges of the charge
ng and the phase difference across the CPT, φB . The phase
was controlled by the magnetic flux in the superconducting
loop containing the CPT. The CPT microwave response was
analyzed by measuring the resonance frequency fr of the
combined circuit containing a lumped-element microwave
resonator (referred below as an LC resonator) and a CPT. When
the detuning between the LC-resonator frequency and the
excitation frequencies of the CPT was large, the dependence
fr (ng,φB) mostly reflected the variations of the CPT Josephson
inductance with ng and φB . On the other hand, an avoided
crossing of the CPT and LC-resonator levels was clearly
observed when the CPT excitation frequency was tuned to the
LC-resonator frequency by varying ng and φB . The overall
dependence fr (ng,φB) is in excellent agreement with the
simulations based on the numerical diagonalization of the
circuit Hamiltonian. This agreement illustrates the accuracy
of our numerical simulations that can be applied to more
complicated, multijunction circuits in the quantum regime,
including the superconducting circuits envisioned as protected
superconducting qubits.13,14

The paper is organized as follows. In Sec. II, we describe
the samples and measurement techniques. The details of
numerical simulations of this circuit are provided in Sec. III.
The experimental results are discussed and compared with
numerical simulations in Sec. IV.
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FIG. 1. (Color online) Schematics of the “CPT + LC resonator”
circuit. (a) The on-chip circuit layout. The superconducting shunting
wire (“shunt”) serves two purposes: it reduces the coupling of the
CPT to the LC resonator (and, thus, reduces external noises), and it
forms, in combination with the CPT, a superconducting loop. The
magnetic flux in the loop controls the phase difference across the
CPT. (b) The circuit diagram used for modeling in Sec. III.

II. DEVICE FABRICATION AND MEASURING
TECHNIQUES

A. Circuit design and device fabrication

The schematics of the tested circuit is shown in Fig. 1. The
CPT is inductively coupled via a narrow Al wire (“shunt”) to
a lumped-element LC resonator. The LC resonator, which is
strongly coupled to the microstrip line, consists of a meandered
2-μm-wide Al wire with Lm = 5 nH and an interdigitated
capacitor (2-μm-wide fingers with 2 μm spacing between
them) with C = 100 fF. The typical values of the internal and
loaded quality factors for these LC resonators (not coupled
to the CPT) were 50 000 and 20 000, respectively. High Q

values enable sensitive measurements of small changes in
the microwave impedance of the tested device induced by
the variations of ng and φB . Outside of its bandwidth, the
LC resonator efficiently decouples the CPT from external
noises. An additional protection of the CPT from external
noises is provided by the shunt: the kinetic inductance of
this superconducting wire, Lsh = 0.5 nH, is more than ten
times smaller than the effective Josephson inductance of the
CPT, and this significantly reduces the phase fluctuations
across the CPT. The LC resonator is inductively coupled to
a two-port Al microstrip line with a 50-� wave impedance.
The gate electrode of the CPT is coupled to the central
island of the CPT through a capacitor Cg = 0.2 fF. A similar
circuit (a CPT inserted in a superconducting loop which is
inductively coupled to an LC resonator tank circuit) was
proposed by Zorin,15 and realized in experiments.16,17 Note
that the entanglement between the CPT and LC resonator
levels was not observed in these works due to a relatively
low resonance frequency of the tank circuit (approximately
ten times smaller than in the present experiment).

The Cooper-pair transistor, the lumped-element LC res-
onator, and the microstrip line were fabricated within the same
vacuum cycle using multiangle electron-beam deposition of
Al films through a nanoscale lift-off mask (for details, see
Ref. 14). The central island of the Cooper-pair transistor
was always deposited during the first Al deposition, and its
thickness (20 nm) was smaller than that of the leads (60 nm);
this is important for preventing quasiparticle poisoning.18 The
spread of the resistances for the nominally identical JJs with an
area of 0.15 × 0.15 μm2 did not exceed 10%. More than ten
devices with EJ /EC = 1.5–3 have been studied and the results

FIG. 2. (Color online) Simplified circuit diagram of the mea-
surement setup. The microwaves at ω2 are transmitted through
the microstrip line coupled to the “LC resonator + CPT” circuit.
This signal is amplified, mixed down to an intermediate frequency
ω1 − ω2, and digitized by a fast digitizer (ADC). The second channel
of the ADC is used to digitize the signal from an additional mixer
(M2), which provided the reference phase ϕ0 (see the text). The gate
voltage Vg is applied to the capacitor Cg using a heavily filtered DC
line.

have been successfully fitted with the numerical simulations;
below we discuss several representative samples.

B. Measurement technique

The microwave response of the coupled system
“CPT + LC resonator” was probed by measuring the ampli-
tude and phase of the microwaves traveling along a microstrip
line coupled to the LC resonator. Figure 2 shows a simplified
schematic of the microwave circuit, which is similar to the one
used in Ref. 19. The cold attenuators and low-pass filters in the
input microwave line prevented leakage of thermal radiation
into the LC resonator. On the output line, a combination of
low-pass filters and two cryogenic Pamtech isolators (approx-
imately 18 dB isolation between 3 and 12 GHz) anchored to
the mixing chamber were used to attenuate the 5-K noise tem-
perature from the cryogenic amplifier. The DC line for the gate
voltage control was heavily filtered with a combination of room
temperature LC and low-temperature RC filters, followed by
a stainless steel powder filter, and a 1:1000 voltage divider.

The probe signal at frequency ω2, generated by a microwave
synthesizer, was coupled to the cryostat input line through
a 16 dB coupler. This signal, after passing the sample,
was amplified by a cryogenic HEMT amplifier (Caltech
CITCRYO 1-12, 35 dB gain between 1 and 12 GHz)
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and two 30 dB room-temperature amplifiers. The amplified
signal was mixed by mixer M1 with the local oscillator
signal at frequency ω1, generated by another synthesizer.
The intermediate-frequency signal a(t) = a sin(�t + ϕ) +
noise(t) at � ≡ (ω1 − ω2)/2π = 30 MHz was digitized by
a 1 GS/s digitizing card (AlazarTech ATS9870). The signal
was digitally multiplied by sin(�t) and cos(�t), averaged
over many (typically, 106) periods, and its amplitude a

(proportional to the microwave amplitude S21) and phase
ϕ were extracted as a =

√
〈a2(t) sin2 �t + a2(t) cos2 �t〉

and ϕ = arctan[〈a2(t) sin2 �t〉/〈a2(t) cos2 �t〉], respectively
(here, 〈...〉 stands for the time averaging over integer number of
periods). The value of ϕ randomly changes when both ω1 and
ω2 are varied. To eliminate these random variations, we have
also measured the phase ϕ0 of the reference signal provided
by mixer M2 and digitized by the second channel of the
ADC. The phase difference ϕ − ϕ0 at fixed ng and φB depends
only on the electric length difference between the microwave
lines inside and outside of the cryostat, and is immune to the
phase jitter between the two synthesizers. The measurements
have been performed at microwave excitation level down to
−140 dBm which corresponded to sub-single-photon popula-
tion of the tank circuit.

The sample was mounted inside an rf-tight copper box
that provided the ground plane for the microstrip line and
LC resonator. This box was housed inside another rf-tight
copper box in order to attenuate stray infrared photons.20 This
nested-box construction was anchored to the mixing chamber
of a cryogen-free dilution refrigerator with a base temperature
of 20 mK.

III. MODEL HAMILTONIAN AND NUMERICAL
SIMULATIONS

We begin with the discussion of the theoretical model of
a more general circuit which contains an arbitrary Josephson
device coupled via a superconducting “shunt” to a microwave
LC resonator. The generalized circuit shown in Fig. 1(b)
includes two loops: the long meandering wire, the shunt, and
a large capacitor C form one loop (referred below as the LC-
resonator loop), and the device and the shunt form another loop
(referred as the device loop). The only limitation on the device
parameters is that all characteristic energies of the device
are much smaller than the effective inductive energies of all
superconducting wires in the device loop, ELi

= h̄2/[(2e)2Li].
The resonance frequency of the LC resonator might be of
the same order or even very close to the device excitation
energies, which would lead to the level repulsion. To simplify
the notations, we shall use below the units h̄ = 2e = 1 (e.g.,
in these units V = dφ/dt) and restore the physical units at
the end, where we apply this model to the specific case of
a device that consists of two Josephson junctions and one
superconducting island, i.e., the CPT.

The generalized circuit is characterized by the inductance
of the meander (shunt), Lm (Lsh), and the phase difference
across this element, φm (φsh). The difference between the
device phase φ0 and the shunt phase φsh is due to the time-
independent magnetic flux � in the device loop: φ0 − φsh =
φB , where φB = 2π�/�0, �0 is the flux quantum. The voltage
differences across the meander, device, and shunt are Vm, V0,

and Vsh, respectively (V0 = Vsh). The whole circuit is described
by the Lagrangian

L = Tsh(Vsh) + Tm(Vm) + C

2
(Vsh + Vm)2 − 1

2
Eshφ

2
sh

− 1

2
Emφm

2 + LD(φ0,V0). (1)

Here, Tm(Vm) [Tsh(Vsh)] is the generalized kinetic energy part
of the response of the meander (shunt), Em (Esh) is the
inductive energy of the meander (shunt), and LD(φ0,V0) is the
device Lagrangian which also depends on the internal degrees
of freedom (phases) of the device. In the BCS theory, the
energy of a superconducting wire remains practically equal to
its value at ω = 0, EL, at all frequencies ω � �, where � is
the superconducting gap. Its small frequency-dependent part
is a function of the dimensionless parameter V/�:

T = ELf (V/�) = (1/16)(V/�)2 + O[(V/�)4].

This equation implies that at low frequencies, the wire
impedance acquires, in addition to the kinetic inductance, a
small capacitive component C ′ = EL/(8�2) [these capaci-
tances are shown in Fig. 1(b) by dashed lines]. At relevant
frequencies (approximately 10 GHz), the capacitive part of
the wire impedance is 100 times greater than its inductive
part. However, we cannot ignore this capacitance because
it determines the frequency of the second mode in the LC
resonator loop (see below).

We shall assume that the device Lagrangian is given by the
sum of the Josephson and electrostatic energies:

LD(φ0,V0) = 1

2

∑
i,j

CijViVj +
∑
i,j

Jij cos(φi − φj − �ij ).

(2)

Here, phases φi and corresponding potentials Vi describe both
the internal degrees of freedom of the device and the shunt
phase, Cij and Jij are the matrices of capacitive and Josephson
couplings between superconducting wires, respectively.

Because the potential energy of the shunt is much greater
than that of the device, the effect of the device on the
LC-resonator loop can be treated as a small perturbation. In the
absence of the device, the LC-resonator loop has two modes:
the harmonic oscillation of the total phase φsh + φm with
frequency ω0 = √

1/L′C, where L′ = E−1
m + E−1

sh , Eshφsh =
Emφm, and the second mode with φm + φsh ≈ 0. Because
the large capacitance C does not participate in the second
mode, the frequency of this mode, ωp, is determined by
the superconducting gap, the only energy scale in this case:
ωp ∼ �. We shall assume that � 	 ω0 so both real and
virtual excitations of this mode can be neglected as well
as the contribution of the capacitances C ′

sh and C ′
m to the

effective capacitance C of the first mode. Note, however, that
the virtual processes involving the second mode are small only
in ω0/� and might not be completely negligible in a realistic
situation. Another important constraint on the experimental
parameters comes from the condition that the zero-point
phase fluctuations of the second mode have to be small:
〈δφ2〉 = ωp/2Esh = (ωp/�)Rsh/RQ, where Rsh is the shunt
resistance in the normal state and RQ = h/e2 is the resistance
quantum. This translates into a bound on the weakness of the
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LC resonator: device coupling. In the case of the device studied
in this work, these fluctuations were 〈δφ2〉 ≈ 0.05 
 1. If the
effects of the second mode can be neglected, there is only one
relevant degree of freedom, the phase across the device φ0.
The effective Lagrangian that describes the remaining degrees
of freedom is reduced to

Leff = CL

2
V 2

0 − 1

2
EL(φ0 − φB)2 + LD(φ0,V0) (3)

with CL = C(1 + Esh/Em)2 and

EL = Esh(1 + Esh/Em). (4)

Fluctuations of the phase φ0 in the low-energy states of the
oscillator mode are very small:

〈(φ0 − φB)2〉 = A2(2n + 1) 
 1, A2 = ω0

2EL

,

where n is the quantum number of the oscillator states. This
allows one to replace the solution of the full problem by
the solution of the simplified model in which we expand the
interaction term in small phase fluctuations.

It will be more convenient to use the Hamiltonian formalism
in which the conjugated degrees of freedom are phases and
charges (e.g., the charge q0 is conjugated to the phase φ0). The
total Hamiltonian is the sum of three parts, the Hamiltonians of
the LC resonator (HR), device (HD), and interaction between
them (Hint) :

HR = ω2
0

2EL

q2
0 + 1

2
EL(φ0 − φB)2, (5)

Hint = C−1
L

∑
i,j>0

q0C0jC
−1
ji (qi − ni)

−
∑

i

Ji0 cos(φ0 − φj − �0i), (6)

HD = 1

2

∑
ij>0

(qi − ni)C
−1
ij (qj − nj )

− 1

2

∑
ij>0

Jij cos(φi − φj − �ij ). (7)

Here, ni are the offset charges on superconducting islands,
�ij are phases induced by the magnetic flux �,

∑
�ij =

2π�/�0. The coupling to the inductor charge fluctuations
contains the inverse of the capacitance matrix (∼C−1

L ) and
thus is very small. Thus even though the charge fluctuations
across the shunt are not small,

〈
q0

2
〉 = 1

4A2
(2n + 1) 	 1,

their effect on the coupling can be treated perturbatively. In the
leading order in the interaction, we need to keep only two types
of terms. The first type is quadratic in phase φ0 and diagonal in
the basis of resonator states. The second type is linear in φ0 and
off diagonal in this basis. The quadratic terms in the inductor
charge are absent, so the charge coupling appears only due to
the off diagonal terms that are linear in q0. The Hamiltonian
equivalent to Eq. (3) becomes

Heff = (ω0 + 2A2
)(a†a + 1/2) +
(

AJ + 1

4A
Q

)
a + H.c.

(8)

Here, a† (a) is the creation (annihilation) operator for the
harmonic oscillations of the mode φ0 of the circuit, J, Q, and

 are operators acting on the device whose forms are obtained
by expanding the interaction Hamiltonian:

J = dL

dφ0

∣∣∣∣
φ0=0

= −
∑

i

Ji0 sin(φj + �0i), (9)

Q = C−1
L

∑
i,j>0

C0jC
−1
ji (qi − ni), (10)


 = 1

2

d2L

dφ2
0

∣∣∣∣
φ0=0

= 1

2

∑
i

Ji0 cos(φj + �0i). (11)

We now estimate the scale of the frequency deviations
induced by these perturbations. In the natural units of the
LC resonator frequency ω0, the scales of the perturbing
operators are AJ/ω0 ∼ EJ /

√
ω0EL, A−1Q/ω0 ∼ √

ω0/EL,
and A2
/ω0 ∼ EJ /EL. The operator 
 is diagonal in the
oscillator states, so it directly results in the frequency shift
δω
/ω0 ∼ EJ /EL. Because the nondiagonal elements affect
the level of the LC resonator only in the second order of the
perturbation theory, the effect of the J and Q operators depends
on the gap between the levels in the combined device + LC
resonator circuit. Far away from the full frustration and
charge degeneracy point (φB = π , ng = 0.5), the device is
characterized by large EJ 	 ω0 and the energy levels are
separated by large gaps, so the smallest gap is due to the LC
resonator: δE = ω0. In this case, the frequency shifts are
δωJ /ω0 ∼ E2

J /(ω0EL) and δωQ/ω0 ∼ ω0/EL respectively,
which implies δωJ 	 δω
 	 δωQ. The effect induced by
the phase and charge coupling grows when the gap between
the levels coupled by these operators becomes small, but the
phase coupling remains larger than the charge coupling for the
devices with EJ 	 ω0. This increase of the frequency shift
occurs, for instance, when the device level crosses the first LC
resonator level.

We now write down the explicit equations for the Cooper
pair box. In this case, the internal degrees of freedom are
limited to one phase φ1 and the conjugated charge q1.
Assuming equal capacitances and Josephson energies of the
CPT junctions, we have

HCPT = 4Ec(q1 − ng)2 − EJ [cos(φ1) + cos(φ1 + φB)], (12)

J = −EJ sin(φ1 + φB), (13)

Q = 2C

CL

Ec(q1 − ng), (14)


 = 1
2EJ cos(φ1 + φB). (15)

Here, we restored the physical energy units Ec = e2/2CJ .
For practical computations, it is sufficient to retain the
first few levels of the LC resonator (a†a � nmax = 3) and
some number nQ of the charging states. The Hamiltonian
(8) becomes 3nQ × 3nQ matrix. Because the wave func-
tion of the charge decreases exponentially at large charges,
�(q) ∼ exp(−√

Ec/EJ q2), it is sufficient to consider nQ ∼
10 for accurate computations. The straightforward numerical
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FIG. 3. (Color online) (a) Frequencies of three lowest-energy levels for the coupled system “CPT + LC resonator” plotted as a function
of ng at a constant phase φB = 0.97π . The model parameters are EJ = h × 17.2 GHz, EC = h × 8.6 GHz, and EL = h × 5650 GHz. In this
very frustrated regime, the lowest level of the CPT crosses the lowest level of the LC resonator with approaching the charge degeneracy point
ng = 0.5; this results in the avoided level crossing. (b) Enlargement of the theoretical curves in the region of avoided level crossing (black
curves), together with the dependence of the color-coded microwave amplitude S21 on the microwave frequency f and ng measured for one of
the tested CPTs at φB = 0.97π . The dependence of S21(f ) at the charge degeneracy point ng = 0.5 is shown in (c).

diagonalization of the Hamiltonian (8) leads to the theoretical
predictions that can be compared with the data.

Our experimental situation corresponds to Ec ∼ 2h̄ω0 and
EJ ∼ 4h̄ω0. In the absence of frustrations, the frequency of the
lowest CPT level is very high: ωp = √

8EcEJ ∼ 10ω0. The
frequency of the lowest CPT level decreases as the magnetic
field frustrates the Josephson coupling and/or with approach-
ing the charge degeneracy (ng = 0.5). Figure 3(a) shows three
low-energy levels of the system “CPT + LC resonator” with
the parameters typical for our experiment. Note that for the
studied circuits, only the combined effect of flux- and charge-
induced frustrations brings the frequency of the first device
level below that of the LC resonator, otherwise the device reso-
nance frequency significantly exceeds that of the LC resonator
even at full flux frustration (e.g., ω = 2Ec > 4ω0 at ng = 0).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Below, we present the measurements of the amplitude S21

of the transmitted microwaves (unless otherwise specified) at
the base temperature T = 20 mK. Most of the data [with the
exception of the data in Figs. 3(b), 3(c), and 6] are shown for
only one representative device. The resonant dependence of
S21 on the microwave frequency f = ω2/2π , measured for
this device at φB = 0 and ng = 0, is shown in the inset to
Fig. 4. The resonance frequency depends periodically on ng

and φB ; for example, the dependence fr (ng,φB) measured at
ng = 0 is shown in Fig. 4. The period in charge is �ng = 2e

at the base temperature (see Fig. 5); it changes from 2e to
e at higher temperatures (>300 mK) due to the presence
of thermally excited quasiparticles (data not shown). Note
that the total time of acquisition for the data shown in
Fig. 3(b) was approximately 20 minutes; over longer time
intervals, the periodicity of fr (ng,φB) might be disrupted
by the motion of nonequilibrium quasiparticles to/from the
CPT island (the so-called “quasiparticle poisoning”18) or other
types of charge fluctuations.21 The high stability of the charge
on the CPT island indicates that (a) the combination of a

larger superconducting gap of the CPT island and its relatively
large charging energy protects the CPT from quasiparticle
poisoning, and (b) the double-wall rf-tight sample box shields
the device from stray high-energy photons. The microwave
photon energy Eph ≈ h × 7 GHz is insufficiently large to
excite the CPT at ng = 0: indeed, according to our simulations,
the lowest excitation frequency for this device exceeds 30 GHz
even at full flux frustration (�/�0 = 0.5). In this case, the
variation of the resonance frequency fr with magnetic flux
reflects the φB dependence of the CPT impedance in its ground
state.

The dependencies of the resonance frequency on ng

are illustrated by Figs. 5(a)–5(e), where the color-coded
microwave amplitude S21 is plotted versus f and ng for several
values of the magnetic flux in the device loop. The black

FIG. 4. (Color online) Dependence of the resonance frequency
fr (ng = 0,φB ) on the magnetic flux �, which controls the phase
difference across the CPT, φB = 2π�/�0. The solid curve shows
the numerical simulation with the fitting parameters discussed in the
text. The inset shows the dependence of the microwave amplitude S21

on the frequency near the resonance at φB = 0 and ng = 0.
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FIG. 5. (Color online) The color-coded plots of the microwave amplitude lS21l vs the microwave frequency f and the charge ng induced
on the CPT island by the gate voltage. The phase difference across the CPT was controlled by the magnetic flux � in the device loop:
(a) �/�0 = 0.29, (b) �/�0 = 0.375, (c) �/�0 = 0.45, (d) �/�0 = 0.47, and (e) �/�0 = 0.5. The solid curves show the numerical
simulations with the fitting parameters discussed in the text.

curves in Fig. 5 show the results of fitting the experimental
data with our numerical simulations. All these curves were
generated with the same set of fitting parameters: EC =
h × 16 GHz, EJ = h × 32 GHz, and EL = h × 5720 GHz
(note that not only the amplitude of the resonance frequency
modulation, but also the absolute values of fr are predeter-
mined by these parameters). The fitting procedure is very
sensitive to the choice of these parameters: we believe that
they are determined with an accuracy better than 10%. The
extracted charging energy coincides (within 5% accuracy) with
an estimate of EC based on the junction area, the specific
geometrical capacitance for Al tunnel junctions (50 fF/μm2,
see, e.g., Ref. 22) and the electronic capacitance of Joseph-
son junctions, Ce = 3/16(RQ/R)e2/� (0.3 fF at R =
3 k�).23,24 The Josephson energy estimated on the basis of

the Ambegaokar-Baratoff relationship25 using the normal-state
resistance of a test junction fabricated on the same chip is
approximately 40% greater than the fit value of EJ .

Generally, one expects that Josephson circuits can be accu-
rately described by the Hamiltonian consisting of Josephson
and charging energies [cf. Eq. (2)] only if all energy scales
are much smaller than �. For frequencies ω ∼ �/h̄, the
Josephson coupling becomes frequency dependent, whilst at
higher frequencies ω > 2�/h̄ it is purely dissipative. This
should significantly affect the quantum processes with energies
ω ∼ �/h̄ and even more so: the virtual processes involving
higher energy excitations (such as charge fluctuations on
the CPT island by values greater than 2e). Away from full
frustration, the energy of the CPT excited state is of the order
of Josephson plasma frequency ≈3.2 K, which is comparable
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to �. Thus the excellent agreement between the experimental
data and numerical modeling, observed over the whole range
of ng and φB , is quite surprising.

It is worth noting that the circuit modeling based on the nu-
merical diagonalization of the circuit Hamiltonian is essential
for fitting the data for devices with EJ /EC ∼ 2. For example,
the analytical solution for the Josephson inductance in the CPT
ground state, calculated within the two-level approximation
[cf. Eq. (4) in Ref. 9], overestimates the amplitude of the fr (ng)
dependence at small flux frustrations by almost an order of
magnitude. The latter solution provides more accurate fitting
of the experiment at larger frustrations [φB ∼ (0.8–9)π ], but
becomes inadequate again at φB > 0.94π when the avoided
level crossing is observed.

The evolution of these dependencies reflects the modifica-
tion of the CPT spectrum with ng and φB . For a small phase
difference φB [see Figs. 5(a) and 5(b)], the lowest CPT excita-
tion frequency well exceeds the microwave frequency (which
is close to the resonance frequency of the LC resonator),
and the CPT remains in its ground state for all ng including
the charge degeneracy point (ng = 0.5). In this regime, the
dependencies S21(f,ng) mostly reflect the variations of the
CPT impedance with ng in the CPT ground state. With an
increase of frustrations, the shape of the fr (ng) curves becomes
more complicated. Our numerical simulations show that the
entanglement of the device and resonator states becomes
important when the lowest CPT level approaches the lowest
resonator level at ng = 0.5 even if it has not crossed it yet
[cf. Fig. 5(c) at φB = 0.9π ]. Two comments are in order here.
First, although the fr (ng) dependence in Fig. 5(c) qualitatively
resembles the solution within the two-level approximation, the
quantitative agreement even at this strong frustration is absent.
Second, the fr (ng) dependence similar to the one shown in
Fig. 5(c) was observed at full frustration in experiment17 for
much lower resonance frequencies of the tank circuit. The
authors of work17 interpreted their result as the evidence
for nonequilibrium quasiparticles. In contrast, we were able
to quantitatively describe the data by numerically solving
Hamiltonians (8) and (12) that do not involve quasiparticles.

Finally, with further approach to full frustration [φB �
0.94π , Figs. 5(d) and 5(e)], the CPT excitation frequency
becomes smaller than the resonance frequency of the LC
resonator, and the shape of the fr (ng) dependences abruptly
changes: they are strongly affected by the avoided level
crossing. The S21(f,ng) plots in this regime consist of two
sets of curves. The lower set of curves corresponds to the
lowest energy level of the combined system “CPT + LC
resonator” (this level coincides with the CPT lowest level
when approaching the charge degeneracy points, i.e., far away
from the resonance frequency of the LC resonator). The upper
set of curves corresponds to the first excited level of the
system “CPT + LC resonator”: when approaching the charge
degeneracy point, this level descends from higher energies to
its lowest position at ng = 0.5. The visibility of the upper set
of curves depends on the proximity between the CPT and LC
resonator levels. Indeed, if the energy of the CPT resonance
at ng = 0.5 is much lower than the first LC resonator level,
the upper-curve “cone” is very sharp, and the corresponding
microwave resonance is smeared even for small deviations of
ng from 0.5 [this case is illustrated by Figs. 5(d) and 5(e)].

On the other hand, the “cone” becomes broader when the
intersecting CPT and LC resonator levels are close to one
another; in this case, illustrated by Fig. 1(b), we were able
to follow the upper set of curves over the frequency range of
approximately15 MHz.

For both devices, whose dependencies S21(f,ng) are shown
in Figs. 3 and 5, we observed a double-resonance structure
at full frustration and charge degeneracy [see Figs. 3(b), 3(c)
and 5(e)]. The second (lower-frequency) resonance appears
as a “shadow” of the resonance observed at ng = 0. The
appearance of this resonance, much weaker than that at ng = 0,
implies that there are fluctuations of the island offset charge
±e that are fast at the measuring time scale approximately
0.1 s. These fluctuations change the effective ng from 0.5
to 0. We attribute these fluctuations to the nonequilibrium
quasiparticles moving between the CPT island and the leads.
At ng = 0.5, the energy of a quasiparticle on the island exceeds
the energy of quasiparticles in the leads by δ� − (1/2)EC .
Here, δ� is the difference between superconducting gaps in
the island and the leads due to the difference in the thicknesses
of these Al films; we estimate δ� to be approximately
kB × 0.3K . In our devices, the probability of these fluctuations
is small (the amplitude of the ng = 0 resonance is much greater
than that of its “shadow” at ng = 0.5), which suggests that
the quantity δ� − (1/2)EC in our devices is positive (albeit
small).

To evaluate the charge sensitivity δQ of the CPT we used
the method developed in Ref. 26. In addition to applying
a dc gate voltage to tune the CPT to an optimal operating
point, a sinusoidal signal at frequency 2 MHz was applied to
the gate electrode; its amplitude corresponded to the charge
variations of 0.07erms on the CPT island. Due to the amplitude
modulation of the transmitted probe signal, two satellite
peaks separated by 2 MHz from the main probe-frequency

FIG. 6. (Color online) Dependence of the signal-to-noise ratio
(blue circles) and the resonance frequency of the coupled CPT + LC
resonator fr (ng = 0) (red squares) on the magnetic flux � measured
at a microwave power of −80 dBm. A 2-MHz signal with amplitude
corresponding to 0.07erms charge variations on the CPT island was
applied to the gate of the CPT. Solid curves are guides for the eye.
The inset shows the signal-to-noise ratio (blue circles) and charge
sensitivity (red squares) as a function of microwave probe power.
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FIG. 7. (Color online) (a) Dependence of the phase ϕ of the transmitted microwaves on the microwave frequency near the resonance of the
“CPT + LC resonator” circuit. The CPT is in a strongly frustrated regime (φB = π, ng = 0.17), when an avoided crossing between the CPT
and LC resonator levels is observed. The measurement time for each experimental point is 24 ms. (b) The microwave phase measured with
the same averaging time (24 ms/point) at a fixed microwave frequency f = 6.9905 GHz over a time period of 100 s. The full range of phases
from −15◦ to +15◦ corresponds to the offset charge variation by 0.05e.

peak appeared on the transmitted microwave spectrum. The
probe signal frequency was set at or near the CPT + LC
resonance. The signal-to-noise ratio (SNR) of the satellite
peaks obtained with a resolution bandwidth of 122 Hz is
shown as a function of the magnetic flux in Fig. 6. The SNR
maximum is observed when the CPT excitation frequency
approaches the LC resonance; this regime corresponds to the
ng dependence of the CPT + LC resonance shown in Fig. 5(a).
Though the avoided crossing between the lowest CPT and LC
resonator levels results in a larger amplitude of the f r (ng)
variations near full frustration [see Figs. 5(c)–5(e)], the SNR
drops in this regime because of a significant broadening of
the resonances. We observed that, similar to the results of
Ref. 26, the SNR reaches its maximum at a probe microwave
power of –76 dBm (the inset in Fig. 6), and drops at higher
powers where the rf-amplitude exceeds the gap voltage of
the CPT. The maximum charge sensitivity in our setup is
δQ = 7 × 10−5e/

√
Hz; it is limited by the preamplifier noise

and thus can be further improved by using a quantum-limited
preamplifier.

The CPT can be used to probe charge fluctuations in its
local environment. Figure 7(b) shows the time dependence of
the phase ϕ of transmitted microwaves when the microwave
frequency is tuned to the resonance of the “CPT + LC res-
onator” circuit. The telegraph noise was measured at full flux
frustration (φB = π ) when an avoided crossing between the
CPT and LC-resonator levels was observed, but relatively far
from the charge degeneracy point (ng = 0.17). The amplitude
of the observed telegraph noise corresponds to the charge
fluctuations �q ≈ 0.05e due to coupling of the CPT island to a
single charge fluctuator in its environment. The time resolution

of these measurements is limited by the response time of the
LC resonator, approximately 1 μs.

V. CONCLUSIONS

We have performed a detailed analysis of the microwave
response of Cooper pair transistors with EJ /EC ∼ 1.5–3
coupled to an LC resonator as a function of the magnetic
flux and the gate voltage. Away from the full frustration in
flux and charge the excitation frequencies of the Cooper pair
transistor are far away from the LC resonator frequency. In
this regime, the modulation of the resonance frequency of the
coupled system induced by the CPT can be described in terms
of the modulation of the effective CPT inductance. Close to the
full frustration the excitation level of the Cooper pair transistor
approaches and eventually crosses the LC resonator excitation
level; this results in a complex dependence of resonance
frequency of the coupled system on the flux and gate voltage.
In all regimes, the dependence of the resonance frequency of
the system “CPT + LC resonator” on ng and φ is very well
described by the results of the numerical diagonalization of
the full Hamiltonian of the coupled system. High sensitivity
of the resonance frequency to ng provides a tool to measure
charge fluctuations in the environment with high accuracy and
short-time resolution.
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