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We present a new theoretical framework to analyze microwave amplifiers based on the dc SQUID. Our analysis
applies input-output theory generalized for Josephson junction devices biased in the running state. Using this
approach, we express the high-frequency dynamics of the SQUID as a scattering between the participating modes.
This enables us to elucidate the inherently nonreciprocal nature of gain as a function of bias current and input
frequency. This method can, in principle, accommodate an arbitrary number of Josephson harmonics generated
in the running state of the junction. We report detailed calculations taking into account the first few harmonics
that provide simple semiquantitative results showing a degradation of gain, directionality, and noise of the device
as a function of increasing signal frequency. We also discuss the fundamental limits on device performance and

applications of this formalism to real devices.
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I. INTRODUCTION

For almost half a century, the dc SQUID (superconducting
quantum interference device) has enabled a broad range of
devices, including magnetometers, gradiometers, voltmeters,
susceptometers, and amplifiers."> Most of these devices are
used at relatively low frequencies, and all have the common
feature of offering extremely low noise.> The fact that the
dc SQUID is potentially a quantum-limited amplifier in
the microwave regime was recognized long ago,* but not
exploited in practice until the axion dark matter experiment
(ADMX), provided a powerful motivation.’ This need led to
the development of the microstrip SQUID amplifier (MSA)
in which the input coil deposited on (but insulated from)
the washer of a SQUID acts as a resonant microstrip.® Such
amplifiers have achieved a noise temperature within a factor
of two of the standard quantum limit.” More recently, new
designs have appeared intended to extend the frequency of
operation to frequencies as high as 10 GHz, aimed at the
readout of superconducting qubits'” and the detection of
micromechanical motion.!! These include incorporation of a
gradiometric SQUID at the end of a quarter wave resonator!?
and the direct injection of the microwave signal from a quarter
wave resonator into one arm of the SQUID ring.'>!4

Besides having desirable properties such as high gain, wide
bandwidth and near quantum-limited operation, microwave
SQUID amplifiers (MWS As)—unlike conventional Josephson
parametric amplifiers'>~'"—also offer an intrinsic separation
of input and output channels of the signal that makes them
unique among amplifiers based on Josephson tunnel junctions.
This property makes them especially well suited as a pream-
plifier in the measurement chain for superconducting devices
by eliminating the need for channel separation devices, such
as circulators and isolators, between the sample under test and
the first amplification stage. Although microwave SQUID am-
plifiers have been successfully used experimentally, questions
pertaining to their nonlinear dynamics and ultimate sensitivity
as amplifiers have continued to remain challenging problems.
Previous theories include quantum Langevin simulations™!®
and treatment of the SQUID as an interacting quantum
point contact.'” The ultimate exploitation of the amplifier,
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however, requires a precise quantum treatment of its behavior
at the Josephson frequency and its harmonics. Besides being
valuable for practical considerations, such understanding may
help discern the cause of intrinsically nonreciprocal operation
of the MWSA that has hitherto remained an open question.
This concern is especially relevant to applications such as qubit
readout where the amplifier backaction may prove to be the
Achilles’ heel. In this work, we develop an ab initio theoretical
framework to understand the high-frequency dynamics of the
SQUID in detail. In addition to giving us crucial insights into
the amplifying mechanism of the MWSA and its nonreciprocal
response between the input and output signal channels, this
approach enables us to calculate the experimentally relevant
quantities such as available gain, added noise and directionality
at operating frequencies of interest.

We perform our analysis in the paradigm of input-output
theory and employ the method of harmonic balance to study the
driven dynamics of the device. The dc SQUID is biased in the
voltage regime—in contrast to the usual Josephson parametric
amplifiers operated in the zero voltage state with the phase
excursions of the Josephson junction confined to a single
cosine well—and has the dynamics of a particle sampling
various wells of a two-dimensional tilted washboard.! The
input-output analysis thus needs to be generalized to take into
account phase running evolution in this two-dimensional po-
tential. Our approach involves a self-consistent determination
of the working point of the device established by static bias
parameters (the static bias current /5 and external flux @y
shown in Fig. 1) followed by a study of the 1f dynamics using
a perturbative series expansion around this working point.
In Sec. II, we introduce our input-output model for the dc
SQUID. Using this in Sec. III, we first derive the response at
zero frequency and at the Josephson oscillation frequency w,
in a self consistent manner. Following this, we evaluate the
perturbative response at finite frequency around zero and w;
as a scattering matrix in the basis of relevant modes of the
circuit, which clearly elucidates the nonreciprocal dynamics
of the device. In Secs. IV and V, we calculate the figures of
merit such as power gain, directionality and noise temperature,
and identify the fundamental limits on the performance of the
device. Section VI contains our concluding remarks.
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FIG. 1. Circuit schematic of a conventional MWSA. The SQUID
consists of two Josephson junctions, arranged in a superconducting
loop, with inductance L. The loop is biased using a static current
source /p and an external flux ®.,. An input voltage V; generates an
oscillating current in an input coil inductively coupled to the SQUID
thus inducing a small flux modulation §® of the flux enclosed by the
loop. For optimal flux bias [®ey, = (2n + 1)P(/4] that maximizes the
flux-to-voltage transfer coefficient Vo = (0V,/0Pexi)i,, this causes
an output voltage V, = V40P to develop across the ring. Thus the
device behaves as a low impedance voltage amplifier.

II. ANALYTICAL MODEL
A. SQUID circuit basics

The SQUID circuit considered in our analysis is shown in
Fig. 2(a). The dynamics of the system is modeled as a particle
moving in a two-dimensional potential of the form'

Usqump Pext | 2
SR (P €)= — (pr - —m>
2Ej ﬂﬂL 2
1
D c B ¢
— Cos cos - —@ . 1
@ @ 210¢ (D)

Here, Ip is the bias current, Iy is the critical current of
each junction, @ex = 27 Peyi/ Do represents the externally
imposed flux in the loop, B =2LIy/ Py denotes a di-
mensionless parametrization of the SQUID loop inductance,
Ej; = Iy®y/2m is the Josephson energy, and &y = h/2e is
the flux quantum. We have introduced the common, ¢ =
(o1 + @r)/2, and differential, o = (¢, — @g)/2, mode com-
binations of the phases of the two junctions that form the axes
of the two-dimensional orthogonal coordinate system.

To facilitate an input-output analysis of the circuit, we re-
place the resistive shunts across the junction with semi-infinite
transmission lines [cf. Fig. 2(b)] of characteristic impedance
Z¢ = R, following the Nyquist model of dissipation. Thus the
shunts play the dual role of dissipation and ports (or channels)
used to address the device. This allows us to switch from
a standing mode representation in terms of lumped element
quantities such as voltages and currents to a propagating
wave description in terms of signal waves traveling on the
transmission lines. The amplitude of these waves is given by
the well-known input-output relation,?

Vi JZer

W7o T 2
where Vi and I’ denote the voltage across the shunt resistance
and current flowing in the shunt resistance respectively. From
Eq. (1), we obtain the common mode current, 1€ = (I* +

A1) = . ie{L,R), )
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I®)/2, and differential mode current, I” = (I* — I%)/2, flow-
ing in the shunts by identifying ¢©-? as the relevant position
variables. The current in each mode can thus be interpreted as
the “force”?! that follows directly from Hamilton’s equation
of motion as

1cP 0 Usquip
= (Bam) 3)
IQ a(ﬂ ’ ZE]
which yields
~C __ wp . C D
w _T—a)osmgo cos g, (4a)
o” = 2 (=20” + go)) — wycos o€ sing®.  (4b)

B

Here, we have expressed the currents in equivalent fre-
quency units:

N I°R - IPR
o =" and ®” = ——, (currents) )
Yo 2
IzR IoR .
wg = —— and wy = —, (characteristic currents) (6)

%o [20]

with ¢y = ®(/(2). Including a capacitance across the junc-
tion gives an additional term, involving a second-order deriva-
tive of the common and differential mode fluxes, of the form
—05'Q.¢CP with Q. = 2w I3R*C/dy, on the right-hand
side of Eq. (4). This parametrization of capacitance, motivated
by calculational simplicity, leads to a different parametrization
of the plasma frequency, w, = (Io/@oC)"/?[1 — (Ip/1y)*]"/*.
The more conventional parametrization with a fixed value of
capacitance for all bias values can be implemented in a more
comprehensive calculation aided by numerical techniques.

Equation (4) represents a subtle current-phase relationship
for the two-junction system, analogous to the first Josephson
relation. We note that Eq. (4) can alternatively be derived
using a first-principles Kirchoff law analysis of the circuit in
Fig. 2(a). Similar to the currents, we can define the common
and differential mode voltages as

143 yb
W= —, o =—. (7
%o %o
Further, by the second Josephson relation, we have
(@) = Vae/9o =y, (®)

where V. is the static voltage developed across the SQUID
biased in the running state.

We note that the usual mode of operation of a dc SQUID
involves an input flux inductively coupled using an input trans-
former of which the loop inductance forms the secondary coil
(see Fig. 1). The input transformer, however, is an experimental
artifact required to ensure the impedance matching with the
input impedance of the SQUID at a desired frequency. It is
not crucial from the point of view of device characteristics,
however, as it is the SQUID which provides amplification and
all the relevant nonlinear dynamics of the device. In the ensuing
analysis, we do not employ a separate input port, but rather
consider a direct input coupling through the differential mode
of the ring which couples to the flux in an analogous manner
[see Fig. 2(b)]. Such a scheme may also prove beneficial for
a practical device to overcome the problem of low coupling
at high signal frequencies, as recently shown experimentally
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FIG. 2. (Color online) Equivalent input-output model of the SQUID. (a) The bare SQUID loop without the input coupling circuit. As noted
in Fig. 1, the circuit has two static biases—a common mode bias current /5 and a differential mode external flux ®.. There is also a capacitance
C across each junction, not shown here for simplicity. (b) Equivalent SQUID circuit under Nyquist representation of shunt resistances and
separate static current biases /5 and I for the left and right junction respectively. The common mode bias current I/ now corresponds to
the even combination of two external bias currents —(I% + 15)/2, while the external flux ®.,, corresponds to the differential combination
of the two current sources L(I} — IX)/2. The oscillating signals are modelled as incoming and outgoing waves traveling on semi-infinite
transmission lines, representing the shunt resistances across the two junctions. (c) Effective junction representation for evaluating the signal
response of the device. Here, we have replaced the junctions biased with a static current with effective junctions pumped by the Josephson
harmonics (represented by a “glowing” cross with a pumping wave) generated by phase running evolution in the voltage state of the junction.

using a SLUG (superconducting low-inductance undulatory
galvanometer) microwave amplifier.'3!#

B. Harmonic balance treatment

Using the input-output relation of Eq. (2) with Eqgs. (4) and
(7), we obtain the equations

oS P(1) = BP@1) + 20 P (1) 9)

for common and differential mode circuit quantities. Here,
w™(t) = A™(1)v/R /¢y represents the input signal drive ex-
pressed in terms of an equivalent frequency. Furthermore, it is
useful to note that Eq. (9) for the common mode quantities,
in conjunction with Eq. (4a) with ¢? = 0, reduces to the
equation of motion of a single resistively-shunted junction
(RS)), VE€/R + Iysin € = Iz + I'™(1).

We employ the technique of harmonic balance and solve
Eq. (9) in the frequency domain, at all frequencies of interest
(see Fig. 3). This is achieved by assuming two parts to the
solution for each variable of interest (¢¢ and ¢?):

9¢ = wst +8¢C (1), (10)

9P = ¢o + 80P (1), (11)

where w;t and ¢, represent the average static values of the
common and differential mode phases [cf. Eq. (8)]. The time
varying components are of the form

8¢ P(1) =P @)+ =P @), (12)

where TI(¢) refers to the components at the Josephson
frequency w; and its harmonics. The term X(¢) includes
the components oscillating at the signal frequency w,, and
its resultant sidebands w, = nw; + w,, generated by wave
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FIG. 3. (Color online) Spectral density landscape of common
and differential modes of the SQUID. The tall solid arrows show
the Josephson harmonics generated internally in the running state
of the device. The small input signal frequency w,, and different
sidebands generated by mixing with Josephson harmonics are shown
with dashed arrows.
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mixing via the nonlinearity of the SQUID:

K
ne? = Z p,S;D coskw,t + p,f_&D sinkw,;t,  (13)

=1
Y
6D — Z an,’XD cos(nwy + wy)t
n=—N
+ 557 sin(nw; + op)t. (14)

We note that the number of Josephson harmonics included
in the analysis [i.e., K in Eq. (13)] is determined by the order of
expansion of the junction nonlinearity in §¢. This in turn is de-
termined by the bias voltage of the device set by the bias current
Ip. As Ip is reduced towards the critical current of the junction
Iy, higher Josephson harmonics become more significant as the
characteristics of the device become increasingly nonlinear.
We can, therefore, calculate the response perturbatively by
expanding each of the coefficients p and s in Egs. (13) and
(14) as a truncated power series in the reduced bias parameter:

fo_ o (15)

Ip  wp
The degree of the resultant polynomial evaluation of p, s
coefficients is set by the desired order of expansion in §¢. As
& < 0.5 (orequivalently Iz > 21) for the SQUID to operate in
the running state at any value of flux bias,' which is the regime
of interest for the SQUID to be operated as a voltage amplifier,
it provides a convenient small parameter of choice. Equivalent
expansions in previous works'>>? have confirmed convergence
of such perturbation series methods for experimentally relevant
parameters. Furthermore, this parameter serves as the effective
strength of the different Josephson harmonics, which play
a role analogous to the strong “pump” tone of conventional
parametric amplifiers.

The scalar input-output relations of Eq. (9), decomposed
into relevant temporal modes (frequency components) by
performing a harmonic series expansion of Eqgs. (4) and (7),
lead to complex matrix equations that reveal the various mixing
processes performed by the nonlinear terms in Eq. (4). This
decomposition enables us to study independently the steady
state and the dynamic responses of the system by setting V" =
0 and V" = Vgg(t) respectively, where Vgg(t) is an rf input
drive at the relevant frequency. We use the former to evaluate
the system response I1¢-?(¢) at the Josephson frequency and
its harmonics and the latter to evaluate the system response
Y CP(t) at the signal and sideband frequencies. In both
cases, the dimensionality of the resultant matrix equations
in the frequency domain is strictly dictated by the number of
temporal modes included in the analysis and hence by the order
of expansion, as explained earlier. Throughout our calculations
we assume B; = 1, the value found previously® to optimize
the noise performance of the dc SQUID.

III. CALCULATION OF SQUID DYNAMICS

A. Steady state response: I-V characteristics

We first determine the working point of the SQUID by
solving for the steady state characteristics. As the zero-
frequency response of the system is intrinsically related to
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FIG. 4. (Color online) Static transfer function of the SQUID
calculated as a function of two bias parameters ¢ = wy/wp at Pexy =
/2 for (a) strongly overdamped (2¢ = 0) and (b) intermediately
damped junctions (2¢ = 1). Both plots were calculated with 8, =
1. The (black) triangles represent the transfer function calculated
from the exact numerical integration of the SQUID equations. The
(green) circles correspond to the K = 1 evaluation including only the
Josephson frequency [see Eq. (13)]. This first-order evaluation does
not show any voltage modulation with flux as there is no coupling
between the common and differential modes at this order. The (blue)
squares and (red) diamonds correspond to an evaluation including
the second (K = 2) and third Josephson (K = 3) harmonics, respec-
tively. The corresponding curves represent interpolating polynomials.
In both plots, the agreement of the perturbative series with the exact
numerical solution improves on including higher order corrections
corresponding to contributions of higher Josephson harmonics.

the response at the Josephson frequency through Eq. (8), we
calculate it self-consistently along with the strength of the
various Josephson harmonics in the steady state by considering
only the static source terms with no oscillating input drive at
the Josephson frequency and its harmonics. This yields a set
of boundary conditions of the form

olkw,] — Olkwy]1 =0, ke [0,K]. (16)

We solve this set of simultaneous equations to calculate
the strength of the various Josephson harmonics generated
internally from the static bias due to the junction nonlinearity
along with the zero-frequency characteristics. Figure 4 shows
a plot of the static transfer function vy = 3(C) /d¢ex; Ob-
tained using the perturbative series method to determine the
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coefficients ka’D [see Eq. (13)] described in the last section.
The agreement between the exact numerical calculation
and the perturbative analytical calculation improves on in-
creasing the order of the perturbation series expansion by
including mixing processes mediated by higher Josephson
harmonics. Further, from the steady state calculation for the
differential mode, we obtain a relation for the phase angle
between the two junctions in the ring as

K
(pex .
do =0+ L) e’ sin g, (17
k=2

where the coefficients a; are of order unity. Thus, we see that
the average values of both the explicit static bias parameters
namely € (common) and gy (differential) participate in estab-
lishing each of the implicit static biases V. (or equivalently
wy) for the common mode and ¢y for the differential mode.
The contributions arising from the bias current, as shown
in Eq. (17), lead to a rolling of the static phase difference
around the SQUID loop that manifests itself as the change in
curvature of the transfer function curves shown in Fig. (4).
Furthermore, we note that, as indicated by the steady state
calculation, the flux dynamics of vg¢ evaluated using the
truncated harmonic series calculation are “slower,” that is, they
shift to higher values of bias with respect to the exact numerical
results. Nonetheless, the predicted magnitudes are comparable
and hence the theory is capable of making semiquantitative
predictions in an analytically tractable manner. The major
merit of this approach over conventional methods lies in the
natural extension offered for the study of higher frequency
dynamics as discussed in the following sections.

B. RF response: scattering matrix

Once we have determined the static working point for the
SQUID, we can solve for its rf dynamics in the small signal
regime. The aim is to calculate signal amplitudes by including
the £¢P(¢) term in our analysis and considering all the mixing
processes mediated by the pumps IT¢P(¢) evaluated in the
last section, permissible by the harmonic balance of Egs. (4),
(7), and (9). This is equivalent to the representation shown in
Fig. 2(c), where we model the mixing of the input signal by the
SQUID as a parametric interaction with different Josephson
harmonics playing the role of an effective “colored” pump. In
the limit of a small amplitude input signal, which is the relevant
limit for most practical situations, we can then introduce a
linear response description of the dynamics as an admittance
matrix seen from the ports. This can be obtained from the
current-phase and voltage-phase relationship [see Egs. (4) and
(1] as

B =Mz (18)
and
> =M%, (19)
yielding
Y = MM L. (20)

The vectors in the equations above are defined in the basis
of all signal and sideband frequencies of interest, (X [nw; +
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onl,2P[nw; + w,]), n € [N, + N] leading to a 42N +
1) x 42N + 1) admittance matrix. We further note that the
matrix is block diagonal since harmonic balance leads to two
disjoint manifolds, each of which forms a closed subspace of
dimension 2(2N + 1).

From the admittance matrix of Eq. (20), we can evaluate
the scattering matrix of the SQUID using the identity

S=WU+Y)(U-Y), 1)

where U represents an identity matrix of appropriate dimen-
sions. Figure 5 shows the calculation for different orders
in junction nonlinearity and the relevant forward (|s¢?|?)
and backward scattering gain (IsP€ ). 1t immediately shows
the emergence of the nonreciprocal gain of the device that,
unlike conventional paramps, enables a two-port operation.
As the nonlinearity of the device characteristics is increased
by reducing Ig towards [, (thus increasing the expansion
parameter ¢), we need to include the higher Josephson
harmonics in the calculation which become significant due
to rapid running evolution of the phase of the junctions in the
two-dimensional tilted washboard. This leads to a situation
analogous to pumping of the SQUID by an effective multitone
pump of the form I1(z) = Zle pr cos(wyt + ¢) in both C
and D modes [see I1(¢) panels in Fig. 5]. The dynamics of such
a system include multi-path interference involving different
Josephson harmonics. This effect, analogous to symmetry
breaking in ratchet physics,”> implements an asymmetric
frequency conversion scheme guided by relative phases ¢
of different Josephson harmonics driving the junctions.?* The
signal in the differential mode is preferentially upconverted,
coupled through higher order mixing processes into the
common mode and then preferentially downconverted into
the common mode, yielding a net forward gain from the
differential mode to the common mode. The reverse gain
process from C to D is disfavored by the same reasoning,
leading to the nonreciprocal operation of the SQUID amplifier.

IV. POWER GAIN OF THE SQUID

The dc SQUID operated as a two-port voltage amplifier
resembles the configuration of a semiconductor, operational
amplifier (op-amp) as opposed to that of a conventional
parametric amplifier, which is a matched device (that is, the
input and output impedances are identical to the impedances
of the transmission lines or coaxial cables). In this sense,
the MWSA is the magnetic dual of the rf SET (single
electron transistor).”> The dc SQUID amplifies an input current
(directly coupled as in this analysis or coupled as a flux via an
input transformer), and has a much lower impedance than
the electromagnetic environment in which it is embedded.
Conversely, the rf SET amplifies an input voltage, and has a
much higher impedance than the electromagnetic environment
in which it is embedded. The true power gain of either device,
as seen from the ports, thus involves a de-embedding of the
device characteristics.?® In the case of the SQUID, this requires
a translation from the matched (or scattering) description
based on the input-output theory considered in this paper to
the op-amp or hybrid representation that is well suited for
describing an unmatched amplifier.

144510-5



ARCHANA KAMAL, JOHN CLARKE, AND MICHEL H. DEVORET PHYSICAL REVIEW B 86, 144510 (2012)

(@ Kk=1,N=1

0.2

0.0

1P (7)

-0.2

A

t 5 - ——
0 Op 4,‘ ).7 4.‘ ‘.7
O O

>
RN

FIG. 5. (Color) Josephson harmonics and small signal scattering gain of the SQUID calculated using harmonic balance with expansion
of the sin ¢ nonlinearity to (a) first, (b) third, and (c) fifth order, respectively. The parameters used were @y = ®o/4, B = 1, and Q¢ = 1.
Each panel shows the relevant modes of the frequency spectrum included in the calculation at that order [see Egs. (13) and (14)]. The
dispersive mixing between various temporal modes of the system is denoted using grey arcs with the relevant Josephson harmonic acting as
the pump indicated next to them. The relative strength of the different mixing processes is indicated by the respective widths of the arcs, with the
strongest being denoted by the thickest arcs. Also shown are plots of I1(z), the effective pumps in common (blue) and differential (red) modes
at each order of the calculation. The box panels show the respective forward (|s¢”|?) and backward (|s”€|?) scattering gains as a function of
reduced input frequency w,, /@y and bias parameter € = w,/wg. The surface plot in (a), calculated using only the Josephson frequency, shows
no asymmetry between the forward and backward gains (blue and red surface plots, respectively). The asymmetry develops on inclusion of
higher harmonics that implement a multitone pump which is not symmetric about # = 0, as seen from the plots of I1(¢) in (b) and (c). As we
increase the order of calculation and include higher harmonics, the asymmetry increases and finally peaks at an optimal value of bias parameter
e = 0.455.

The hybrid matrix describing a two-port amplifier is of the ~ represents the gain of an effective “matched” device account-
form?’ ing for the impedance mismatch at the input and output ports.

In principle, although the calculation of quantities in
V2 )‘V Zoul Vl
= , : (22)
I Yin A, I

Eq. (22) can be performed using the scattering matrix evaluated
where (V1,1;) and (V,,1) denote the voltage and current

in Eq. (21),%” nonetheless, it is advantageous to transform to a
description that is more natural in describing the relationship

associated with the input and output ports, respectively. The

power gain for such an amplifier is given by

P V7/Re[Z 22
Gp = _ = 22/ e[Zoutl — % , (23)
P Vi/Re[Zin]  Re[Yin]Re[Zou]

where Ay is the voltage gain of the amplifier, Y;, is the input
admittance, and Z,, is the output impedance. Equation (23)

between standing mode current and voltage variables. We find
that an impedance matrix (Z) representation is well suited for
such a purpose due to its rather straightforward mapping to
the standing mode quantities of Eq. (22). Using the Y matrix,
derived in Eq. (20), we can write the impedance matrix Z of
the dc SQUID as

Z=U+Y)" (24)
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with
Y\ (zCC zCD> at 5
d’? ZDC ZDD a\?

Here, as before, 8 and & are vectors defined in the space of
all signal and sideband frequencies of interest. Also U is an
identity matrix of appropriate dimensions and corresponds to
the admittance contribution of the resistive shunts across the
junctions.

The next step is to make the translation from the impedance
matrix derived in the common and differential mode basis
to the two-port description of Eq. (22). This requires an
identification of the correct “input” and “output” voltages and
currents for the circuit in Fig. 2(a). As the SQUID readout
involves measurement of the voltage developed across it, the
relevant output quantities are related to the common mode
quantities as Vo = VC and I, = 2I€. The translation to the
input variables of the hybrid representation is more subtle.
For this purpose we first note that, in conventional SQUID
operation, the input flux coupled into the ring modulates the
circulating current J, which is, thus, the relevant input current
of the device. The equivalent input voltage that causes the
flux modulation of the circulating current can be represented
by a voltage source V; in series with the inductance of the
loop. Figure 6 summarizes the different possible two-port
representations of the SQUID used in this paper.

On interpreting the loop variables (V;,J) described above
in terms of the differential mode voltage V? and current

@

e

1€

uuuuu V('

% e
—

V2 v

FIG. 6. Different representations of a two-port network and
analog configurations for the dc SQUID. (a) Y-matrix representation
defined for closed boundary conditions Y;; = dI;/dV;ly,;=0 for
the junctions and inductance, omitting the shunts [see Eq. (20)].
(b) Z-matrix representation defined for open boundary conditions
Z;j = dV;/dl;li,;=o including the shunts [see Eq. (24)]. (c) (Hybrid)
H-matrix or op-amp representation defined with mixed boundary
conditions [see Eq. (22)]. In effective matrices for the SQUID, the
common mode (C) and differential mode (D) excitations of the ring
play the role of ports 1 and 2, if the SQUID is addressed using hybrids.
In each panel, the quantities shown with solid arrows represent
the stimulus, while those shown with dashed arrows represent the
corresponding response of the network.
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IP (see Appendix A for details), we obtain the following
equivalence between the coefficients of the hybrid matrix in
Eq. (22) and the Z matrix of Eq. (25):

Ay = ( u )z”[wm], 26)
iw,L
A= ( R )zDC[wm], @7)
iwy,L
Zow = <§> 2“lonl, (28)
. _ 2R
Yin = (iwn L)™' + (m> PP wp). (29)

Using the above translation in Eq. (23), we find an expression
for the power gain purely in terms of Z matrix coefficients:

2P [wn]]?
[2€C[wm]Re[zPP[wy]]

Figure 7 shows the power gain of the device as a function
of bias and input frequency, calculated using Eq. (30). It
shows that power gain of the MWSA increases quadrat-
ically with decreasing input signal frequency, a result

Grlon] = o= (30)

(a)

Gp (dB)

o Harmonic Balance Calculation

3o -~ Fit

20f %

Gp (dB)

o

10f .

-~
e
“oy
% oo,
*eeeeccccsocscacssae

0 [ 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10
wm/mO

FIG. 7. Power gain of the MWSA calculated with K =3, N =
2, taking into account the modification of the input and output
impedances of the device by matched loads. The parameters are
Doy = Dy/4, B =1, and Q¢ = 1. (a) Power gain versus bias
parameter ¢ = wy/wp calculated for a fixed input frequency w,, =
0.01 wp. The solid curve is an interpolating polynomial of degree
two. (b) Power gain versus input frequency w,,/w, calculated with
bias parameter fixed at ¢ = 0.455, the optimum value for attaining
minimum noise temperature [see Fig. 9(a)] at low frequencies (v <
wy). The fit is of the form G p = [0.006/(w,,/wo)*] + 2.0 measured
in linear units.
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0.00
('Om/o‘)O

Directionality

0.30

FIG. 8. (Color) Directionality (in dB) of the MWSA as a function
of bias parameter ¢ = wy/wp and reduced input frequency w,,/wy.
The red dots represent high directionality and blue dots represent
low directionality. The parameters used were the same as those
in Fig. 7.

corroborated by a simple quasistatic treatment presented in
Appendix B. This result agrees well with that derived for
generic quantum-limited linear detectors in Ref. 27 where it
was shown that power gain scales as (kg Toir /i, )>. Here, Teg
is the effective temperature of the detector. The characteristic
Josephson frequency, wy = 2elyR /h = kg Te /T, thus sets the
effective temperature of the MWSA and the scale of power
gain.

The reverse power gain of the device is calculated in a
similar manner as

I’Re[Z; 12
v — 2‘ elZin] = U [see Eq. (22)]
IgRe[Zout] Re[Yin]Re[Zou]
|ZDC[wm]|2

~ Re[zC[wy Re[2PP[w,]]” ©h)

The directionality (G p — G'5¥)—which is a measure of the
asymmetry between forward and reverse power gains—
follows directly from the asymmetric scattering gain discussed
in the previous section. Our calculation shows that it is a strong
function of the bias ¢ (see Fig. 8); furthermore, the optimal bias
for maximum power gain is not the same as that for maximal
directionality. We note that the results presented here have
been obtained with a truncated harmonic series excluding all
Josephson harmonics above 3w; . In the real device, the achiev-
able isolation between forward (differential-to-common) and
backward (common-to-differential) gain channels may be
quantitatively different due to the presence of the neglected
higher order interferences.

V. NOISE TEMPERATURE

In this section, we evaluate the noise added by the dc SQUID
operated as a voltage amplifier. The noise added by a system
can be quantified by its noise temperature, Ty, defined as

Ty =A—, (32)
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where A is the Caves added noise number.” This noise
temperature corresponds to the effective input temperature of
the amplifier obtained by referring the added noise measured
at the output to the input, and is quantified in terms of
energy quanta per photon at the signal frequency. For a
phase preserving amplifier, such as the MWSA, the minimum
possible noise temperature corresponds to half a photon of
added noise, that is, Apin = 0.5 in the large gain limit (in
general, Apyin = 1/2 — 1/2G).

Using the hybrid representation developed in the previous
section and Appendix A, we write the noise inequality for the
MWSA as

SycyeS;; —Re[Syc; ]2 — Im[S
kpTy > VSyeyeS;, e}E verl m[ VCJ], 33)
%

where Syy represents the spectral density of the voltage
fluctuations at the output, S, represents the spectral density
of the circulating current fluctuations, and Sy is the cross-
correlation between the voltage and current fluctuations.?’

As in the case of power gain, we can evaluate the spectral
densities in Eq. (33) from the Z matrix of the SQUID derived
in Sec. I'V. This exercise is enabled by the fact that the input-
output theory treats the deterministic signal input and noise
of the system on an equal footing. Thus the linear response
description developed to calculate the signal gain provides a
straightforward way of generalizing the theory to understand
the noise properties of the system, simply by replacing the
input current signal with a noise signal described by a spectral
density of the form

5,/ [w] = 2hwRe[Y[w]] coth (%) . (34)
Such a small-signal linear approach is valid both in the thermal
and quantum regimes of noise for the SQUID as the typical
photon energy at the frequencies of interest, the Josephson
frequency and its first few harmonics, is much smaller than
the energy dissipated per turn of the SQUID running phase
because of the low Q of the Josephson oscillations.
Using the Z matrix, we can write the voltage noise spectral
density in the common mode as

N
Sveve = 3 R6CSerelnes +ou
n=—N

N
+ 3 |52 Somlne, + wnl. (35
n=—N

Here, the first sum accounts for the contribution to the noise
arising from the common mode signal (n = 0) and sidebands
about the Josephson harmonics (n = 1, &£ 2) included in the
calculation; the second sum accounts for the noise generated
in the common mode output signal by the differential mode
signal and sidebands, arising from coupling between C and D
modes. Similarly, we can calculate S;; as

_ 4 _
Sy = wz—LszDvD, (36)

m
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by making the identification J = 2V ? /(iwL). Here, as before,
we calculate Sy»yp from the Z matrix:

N

— DC 2_
Sypyp = Z |ZOn | Srcrc[nwy + ]
n=—N

N
+ 3 [P PS i olnews + 0l (37
n=—N

Finally, for Sy ;, we have

) N

G - CC_DCx g

Sycy = - E Zon 2o Sicrc[nwy + wnl
iwy L —

N
+ Z zgnngf’*S,n,n[nw,erm]). (38)
n=—N

Figure 9 shows plots of the Caves noise number of the
device, calculated in both the thermal regime [kgT > hw,,,
where all terms in Egs. (35)-(38) contribute equal noise

50

20

Added noise number

G0 .

o} — AN

£ s =7

=] e

[SE13 .

by .

@ _ kgTn

e 3 4 oy ...

8 2 e

= A

i T S

< T e
ob ‘ ‘ ‘ ‘ ‘
0.00 0.02 0.04 0.06 0.08 0.10

(Dm/mO

FIG. 9. (Color online) Caves added noise number for the MWSA,
calculated using the harmonic balance analysis with K =3, N =2
as a function of (a) ¢ = wy/wp for w,, = 0.01 wy and (b) reduced
input frequency w,, /wy with ¢ = 0.455. In both plots, (round) black
markers show the noise number A’ = Ty /T obtained in the thermal
regime kzT > hw,,, while (square) green markers show the noise
number A = kgTy/hw, calculated in the quantum regime kg7 <K
hw,,. The solid curves in (a) represent interpolating polynomials. The
quantum calculation gives a minimum value for A = kgTy /hw,, ~
0.5, attained at ¢ = 0.455, corresponding to one-half photon of added
noise [horizontal black dashed line in (a)]. The optimal value of bias
current for minimum added noise does not coincide with that for
achieving the maximum power gain [see Fig. 7(a)] or directionality
(Fig. 8).
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powers] and the quantum regime [kpT < hw,,, where each
term in Eqs. (35)—(38) contributes a noise power proportional
to its frequency in accordance with Eq. (34)].

There are a number of points to be highlighted. Our calcu-
lation shows that, at the optimal current bias of ¢ = 0.455, the
MWSA attains the quantum limit of added noise corresponding
to half-photon at signal frequency. Moreover, the optimum bias
point for minimum noise corresponds to the bias for maximum
scattering gain [see Fig. 5(c)] rather than for the maximum
power gain [see Fig. 7(a)]. This result, previously found both
theoretically and experimentally,?® follows from the fact that
the added noise is a property of the bare SQUID without any
matching to input and output loads. In the case of conventional
parametric amplifiers, the minimum noise indeed occurs at
the maximum scattering gain. Furthermore, the partial cross
correlation between the output voltage noise across the SQUID
and the supercurrent noise circulating in the loop is crucial to
minimizing the noise in both thermal and quantum regimes.
We also note that, for sufficiently low signal frequencies, the
calculated added noise number is found to saturate at a value
slightly below the quantum limit of one half-photon at the
signal frequency. This result, we suspect, is due to the fact that
at the bias for minimum noise, the reverse gain is substantial
and hence the isolation is not perfect (see Fig. 8). The quantum
limit of one half-photon is a limiting value calculated for ideal
detectors with zero reverse gain and high forward gain,?’ a
condition which is not satisfied at the optimal noise bias in our
calculation. Finally, our calculation shows that the minimum
noise number is achieved only when the signal frequency
is much lower than the characteristic Josephson frequency
wy = 2w [hR /Py, and increases significantly with increasing
signal frequency.

VI. CONCLUDING REMARKS

In summary, we have developed a new method based on
input-output theory to provide a first-principles analysis of the
microwave SQUID amplifier (MWSA). In this paradigm, we
treat the SQUID biased in its running state as a parametric
amplifier pumped by a combination of Josephson harmonics
generated internally by the motion of the phase of the junctions.
This approach leads to a fully self-consistent description of
both the static and rf dynamics of the device. The scattering
matrix calculation shows that the nonreciprocal gain of the am-
plifier arises from mixing processes involving higher Joseph-
son harmonics which implement an asymmetric frequency
conversion scheme involving upconversion to and subsequent
downconversion from the Josephson frequency. We find that
the power gain of the matched SQUID amplifier decreases
quadratically with signal frequency w,,; by comparison, the
gain in the usual SQUID operation with a matched input coil
scales as 1/w,,.”® However, a recently reported dc SQUID
amplifier'* using the direct coupling method considered in
this paper demonstrated that the power gain scaled as 1/w?, at
a frequency of a few GHz and a bandwidth of several hundred
MHz.

Our analysis shows that the MWSA achieves quantum-
limited noise performance for optimal flux and current
biases, and for signal frequencies significantly lower than
the characteristic Josephson frequency wy = 2w Iy R/ ®Py. The
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added noise increases significantly with increasing frequency.
This problem can be alleviated by using junctions with
higher values of critical currents. With the present technology
for niobium junctions, critical current densities of tens of
microamperes per square micron are readily achievable. This
translates into characteristic frequencies of about 100 GHz,
which should be sufficient to achieve lower noise at GHz
frequencies provided hot electron effects due to dissipation
in the shunts are mitigated.” Furthermore, our analysis shows
that simultaneous optimization of gain, directionality and noise
is a delicate operation since the optimal biases for these three
properties do not coincide. Based on our calculation, at the
working point for minimum added noise, A ~ 0.5, power gains
of 15-18 dB and directionality of around 5-8 dB are obtained.
However, higher power gains of 20-30 dB and directionality
of 10-12 dB can be realized by permitting a higher noise
number A & 5-10. Though the predicted directionality is still
modest, it suffices to reduce the number of nonreciprocal
elements (circulators, isolators) in the measurement chain
typically employed for the readout of superconducting qubits.
Moreover, the noise penalty incurred with MWSAs compares
very well to standard cryogenic amplifiers such as HEMTs
whose typical noise numbers lie in the range 40-50 for
microwave frequencies.

Although the results presented in this paper are semiquan-
titative, we believe that extension of the analysis to higher
orders, in conjunction with numerical optimization techniques,
can be a useful tool to analyze SQUID-based devices due
to rapid convergence offered by the harmonic series method.
This approach would allow one to evaluate the appropriate
parameters, depending on the intended application, that yield
the best compromise between gain and noise properties.
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APPENDIX A: LOOP VARIABLES FOR THE DC SQUID

In this appendix, we establish the correspondence between
the differential mode variables that serve as the input in the
analysis of Secs. II and IIT and the input variables required
for the hybrid representation discussed in Sec. IV. The output
variables in the two representations have a simple relationship
as explained in Sec. IV.

Figure 10 shows the two representations [see Figs. 6(b)
and (c)], one in terms of differential mode quantities (V 2, 17)
suitable for a scattering or matched representation (since the
input and output impedances are just the transmission line
impedance) and the other in terms of a circulating current J and
a loop voltage V,, which are the relevant input quantities for
the device in an unmatched hybrid description. In Fig. 10(a),
Kirchoff’s current law gives

J=1°—-1,, (AD)
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FIG. 10. (Color online) Equivalence between the SQUID differ-
ential mode and the op-amp input variables. Here, for simplicity,
we have used the symmetric version of the SQUID to divide the
ring along the equipotential. The circuit in (a) models the device as
an impedance response function to an imposed current source 12,
as a result of which a voltage drop +V?(—V?) develops across
the left (right) junction. (b) Hybrid representation for the SQUID,
which models the input response by introducing a differential voltage
source in the SQUID loop and recording the current that flows through
the junction. The junction at this point is replaced with an effective
junction pumped using the various Josephson harmonics generated
by the static bias current [also see Fig. 2(c)].

while in Fig. 10(b), from Kirchoff’s voltage law, we have

_&:VD_FEJ’

> > (A2)

with J = IL.

To establish the equivalence of the two representations from
the point of view of the junction, we require the voltage across
the junction V? and current through the junction J to be
conserved (see Fig. 10). Thus, using Eq. (A1) in Eq. (A2), we
obtain

V; = —iwLIP. (A3)
Similarly, it is easily seen that the circulating current J is
given as

_oyP
" oL’

(A4)

APPENDIX B: STATIC ANALOG CIRCUIT FOR THE SQUID

The SQUID can be thought of as a current amplifier with
a current transferred from a low-impedance input port to a
high-impedance output port. This description is analogous to
the FET dual model with the gain given by a transimpedance
instead of a transconductance. The equivalent “current gain”
of such a device (see Fig. 11) for frequencies sufficiently
close to zero [w,, K pmnR/L = wo/(PL) to be precise] can

144510-10



GAIN, DIRECTIONALITY, AND NOISE IN MICROWAVE ...

Vo

in /_\ Lout
—_— —_—

Rp=p, (&R

PR L

Common

Differential

FIG. 11. Equivalent low-frequency circuit for a SQUID for
calculation of unilateral power gain. The input circuit is modelled as
an effective impedance viewed by a low frequency differential mode
current. The output circuit impedance comprises a bias-dependent
resistor, denoting the dynamic impedance of the junction, that
converts the output voltage to a corresponding output current. The
net “transimpedance” is given by the static flux-to-voltage transfer
function of the device. The symbols pi, on denote bias-dependent
constants of order unity.

be modeled as

Ty VoL
UL (B1)
Im RD
This leads to a power gain
Iw\” R
Gl = (= D (B2)
I Re[Zin]

For frequencies of interest, Re[Zi,] &~ @2 L*/(pinR). Using
this result in Eq. (B2), we obtain the power gain

2
Pin [ Vo
G =2 (22 (B3)
Pout \ Wm
which can be rewritten as
(O) 2
G¥ ~ pg (w—) : (B4)
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Gp (dB)

FIG. 12. (Color online) Comparison of the power gain as a
function of bias parameter ¢ = wy/wp calculated using a K =
3, N =2 calculation (solid black line) and a purely quasistatic
calculation (dashed red line) of Eq. (B3). For the quasistatic gain
calculation, Vg and pj, o Were obtained from the /-V characteristics
evaluated in Sec. [IT A.

where p, is a bias-dependent and frequency-independent
constant of order unity. Here, we have used the relation
chpt = R/L = wy/n? for B, = 1. Equation (B4) shows that
the gain drops quadratically with increasing signal frequency,
and that no power gain is obtained for signal frequencies close
to the plasma frequency of each junction in the SQUID. This
frequency dependence of the power gain is borne out by the rf
analysis employing the harmonic balance treatment, shown in
Fig. 7(b).

Figure 12 shows a comparison of gain as a function of bias
parameter ¢, calculated using quasistatic response functions
as shown in Eq. (B3) and a rf calculation at low frequencies
involving the third Josephson harmonic [same as that shown
in Fig 7(a)]. The agreement is better for lower values of
¢ where high frequency components of the device are less
significant. The impedance matrix calculation generates extra
terms due to self-summation caused by the inversion operation
[cf. Eq. (24)], which leads to higher-order corrections absent
from the purely quasistatic calculation.
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