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Field dependence of the superconducting basal plane anisotropy of TmNi2B2C
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The superconductor TmNi2B2C possesses a significant fourfold basal plane anisotropy, leading to a square
vortex lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors,
the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL
phase. We have used small-angle neutron scattering measurements of the VL to study the field dependence of
the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute
this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and
the resulting expansion of vortex cores near Hc2.
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I. INTRODUCTION

The vortex lattice (VL) symmetry and orientation in
clean type-II superconductors depends sensitively on the
host material anisotropy, vortex density, and temperature,
frequently leading to rich phase diagrams. As a result, VL
studies can be used as a sensitive probe of the anisotropy of
the superconducting state.

In superconductors with a sufficient fourfold basal plane
anisotropy, either due to the pairing symmetry or the Fermi
velocity, the VL undergoes a successive series of generic
symmetry and orientational transitions as the vortex density
is increased:1,2 At low fields, a distorted hexagonal VL
is observed, oriented with the unit cell diagonal along a
crystalline high-symmetry direction. As the field is increased,
the VL undergoes a first-order reorientation and symmetry
transition to a rhombic phase with the unit cell diagonal rotated
45◦ with respect to the hexagonal VL phase. Finally, upon
further increase of the field, the rhombic VL continuously
transforms into a square symmetry. The transitions are driven
by the growing importance of the fourfold anisotropy of
the vortex-vortex interaction as the vortex density increases,
explaining why further changes of the VL structure are usually
not observed once the square phase has been reached. There
exist, however, two striking exceptions to this behavior, as
seen in the superconductors TmNi2B2C and CeCoIn5.3–7

In both of these materials, the VL undergoes the normal
progression of symmetry transitions described above at low
fields. However, the square phase VL is found to be reentrant,
and the VL undergoes the same sequence of transitions but in
the reverse order as the field is further increased. This indicates
a reduction of the superconducting basal plane anisotropy in
these materials at high fields and is the main objective of this
report.

In both TmNi2B2C and CeCoIn5, the superconducting
state is strongly affected by Pauli paramagnetic effects.5,7–9

Briefly, there is a significant spin polarization of the unpaired
quasiparticles in the vortex cores, resulting in an increased
amplitude of the modulation of the magnetic field.10–13 With
increasing field, the vortex cores are also predicted to expand
and become more isotropic, leading to the reverse sequence of
VL transitions.14,15

Here we present the results of small-angle neutron scatter-
ing (SANS) experiments that directly measure the evolution
of the basal plane anisotropy in the high-field square, rhombic,
and hexagonal VL phases. This is possible by measuring
a large number of higher-order VL reflections in a manner
analogous to our previous study of nonmagnetic LuNi2B2C
(with no Pauli paramagnetic effects and no reentrance of the
square VL phase).16 Our measurements allow a quantitative
determination of the fourfold basal plane anisotropy and show
a monotonic decrease with increasing field.

II. EXPERIMENT

The sample was a single crystal of TmNi2B2C of mass
387 mg and dimensions 9.0 × 8.0 × 1.0 mm3 with the c axis
along the thin direction, grown by a high-temperature flux
method and using isotopically enriched 11B to reduce neu-
tron absorption.17 TmNi2B2C has a superconducting critical
temperature Tc = 11 K and a Néel temperature TN = 1.5 K
below which the Tm moments order antiferromagnetically
(AFM).18–21 The sample was mounted on an aluminium plate
with the crystalline a axis vertical. The c axis is horizontal and
rotated by an angle � with respect to the applied magnetic
field and the incoming neutrons, as shown in the inset to
Fig. 1(a). The rotation (�) can favor a single VL domain
orientation, thus reducing complications to the data analysis
resulting from overlapping peaks from different domains,
while measuring higher orders of Bragg reflections. The SANS
experiment was carried out using the 30 m NG7 instrument
at the National Institute of Standards and Technology (NIST)
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FIG. 1. (Color online) SANS diffraction patterns showing the square, rhombic, and hexagonal VL phases in TmNi2B2C at 1.6 K for applied
fields of (a) 0.2, (b) 0.35, and (c) 0.5 T, respectively. The images are obtained by summing measurements at multiple rotation and tilt angles
to satisfy the Bragg condition for the different reflections. The scattered intensity is shown on a logarithmic false color scale to make strong
and weak reflections simultaneously visible. The orientation of the crystalline axes and the magnetic field is shown in the inset to (a), where �

is the angle between the field and the c axis. The indexing of the VL Bragg peaks is shown for one quadrant in the schematics in (d)–(f) with
the size of the circles indicating the intensity. For the rhombic and hexagonal VL phases, two domain orientations with an opening angle β are
observed, as shown by the black and red circles in (e) and (f). With increasing field, the VL Bragg reflections move to longer scattering vectors
q and decrease in intensity, making fewer of them visible.

Center for Neutron Research using a neutron wavelength λn =
0.55 nm and a spread �λn/λn = 11% FWHM. A horizontal
field cryomagnet was used to reach the desired fields and
temperatures. Measurements were done at a temperature of
1.6 K and in a field range 0.2 � μ0H � 0.6 T. Preliminary
measurements were also carried out using the NG-2 SANS
instrument at Oak Ridge National Laboratory and the D11
SANS instrument at the Institut Laue-Langevin.

A comparison of the field dependence of the VL form factor
(see Sec. III) for the first-order reflections with our previous
measurements showed a perfect agreement,9 confirming that
T > TN as the AFM ordering of the Tm moments significantly
affects the VL form factor and suppresses the Pauli paramag-
netic effect.3 Vortex lattices were prepared by cooling through
Tc in a constant field (FC) and, in some cases, followed by
damped small-amplitude field oscillations (FCO). Background
measurements were measured at 14 K and were subtracted
from the foreground measurements. The diffracted neutrons
were detected by a two-dimensional 3He position-sensitive
proportional counter.

III. RESULTS

Examples of the square and of the high-field rhombic and
hexagonal VL phases observed in TmNi2B2C are shown in
Fig. 1. In this material, the low-field hexagonal and rhombic
lattices occur below the convenient field range for SANS
experiments. However, a hexagonal VL has been observed
at 2 mT by Bitter decoration.3,22 For all three cases shown in
Fig. 1, the measurements were extended to include as many
higher-order reflections as possible within reasonable count
times. The square VL diffraction pattern in Fig. 1(a) was ob-
tained at 0.2 T and shows Bragg reflections with scattering vec-
tors given by qhk = (h2 + k2)1/2 q0, where q0 = 2π (B/φ0)1/2,
and φ0 = h/2e = 2068 T nm2 is the flux quantum. Figure 1(d)
shows the indexing of the peaks in one quadrant, with the
remaining obtainable by symmetry. The diffraction pattern in
Fig. 1(a) was obtained with � = 10◦. Due to the very modest
ac anisotropy of the extrapolated orbital upper critical field,
� = H⊥c

c2,orb/H
‖c
c2,orb ≈ 1.2, in TmNi2B2C,23 no distortion of

the VL due to the rotation of the field away from the c axis is
detectable.
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Increasing the field to 0.35 T causes the VL to change to a
two-domain rhombic structure as shown in Fig. 1(b) with the
corresponding indexing shown in Fig. 1(e). The rhombic VL
has an opening angle β = 73.0◦ and scattering vectors qhk =
(h2 + k2 + 2hk cos β)1/2 q0, where q0 = 2π (B/φ0 sin β)1/2.
These measurements were done with � = 17◦, chosen to favor
one of the two VL domain orientations while at the same
time keeping the distortion due to the ac anisotropy small.
For this �, the minority domain (red circles) is sufficiently
suppressed to allow a reliable measurement of the intensity of
the higher-order majority domain (black circles) reflections.
No measurable difference in the VL opening angle β was
observed between the two domains.

Finally, as the field is increased to 0.5 T, a distorted
hexagonal VL was observed as shown in Fig. 1(c) with the
indexing in Fig. 1(f), and with an opening angle β = 56.1◦.
The magnitude of the scattering vector is given by the same
expression as in the rhombic phase. Note that equivalent
scattering vectors were chosen as the unit vectors, leading
to q11̄ being slightly shorter than q10 as β < 60◦. However,
this is merely a naming convention and will not affect the
analysis of the scattered intensity. The measurements were
performed at a field rotation � = 10◦. For the hexagonal
VL orientation, the two domains are orientated equivalently
with respect to the field rotation axis and are thus equally
populated. A distorted hexagonal VL was also observed at
0.6 T (not shown) with an opening angle β = 56.3◦. However,
at this field, no higher-order peaks were measurable due to the
decreasing scattered intensity with increasing scattering vector
and applied field.

The diffraction patterns in Fig. 1 were obtained following
a preparation method chosen to produce the most-ordered
VL. Depending on the level and strength of vortex pinning
in the host material relative to the vortex-vortex interaction,
the optimal preparation may either be a field cooling (FC)
procedure or a FC followed by a damped small-amplitude field
oscillation (FCO).24 While we found no difference between
VLs prepared by the two different methods at 0.2 T, the FCO
procedure provided a substantially better ordered VL at higher
fields. This is seen in Fig. 2, which compares FC and FCO VL
diffraction patterns obtained at 0.5 T. It is likely that the VL
disordering observed above 0.2 T in the FC case is due to the
crossing of VL symmetry phase transitions while cooling from
T > Tc to the measurement temperature of 1.6 K.3,22 Based
on these findings, measurements were performed following
a FC at 0.2 T and following a FCO for 0.35 T and above.
In all cases where a FCO procedure was used, the initial
amplitude of the damped field oscillation was 5% of the
final field.

We now turn to measurements of the VL form factors,
which are the main focus of this study. The form factor F (qhk)
is the Fourier transform, at scattering wave vector qhk , of the
two-dimensional magnetic field modulation due to the VL. It
is related to the integrated reflectivity R, which is obtained
by rotating and/or tilting the cryomagnet and sample such
that the VL scattering vectors cut through the Ewald sphere.
Examples of rocking curves obtained in this fashion are shown
in Fig. 3. In contrast to other members of the borocarbide
superconductors such as LuNi2B2C,16 the rocking curves in
TmNi2B2C are found to be broad and with asymmetric line
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FIG. 2. (Color online) Comparison of VLs at 0.5 T (� = 10◦)
and 1.6 K. The diffraction patterns were obtained directly following
a field-cooling procedure (FC) and after the application of a damped
field oscillation with an initial amplitude of 25 mT (FCO). No higher-
order VL reflections were observed due to shorter count times as
compared to Fig. 1(c).

shapes, necessitating multifunction fits to accurately obtain
the integrated scattered intensity as shown for the (10) peak.
For the higher-order reflections, the line shapes appear more
regular, as seen for the (03) peak, and can be fitted by a single
Lorentzian, although this may also be a result of poorer signal
to noise. Broad VL rocking curves, but with regular line shapes,
were also found in other work, using TmNi2B2C single crystals
from a different source.25 It is possible that the present sample
has more mosaicity, which can explain the asymmetric line
shape. Nonetheless, the current rocking curves are still narrow
enough to be easily measurable, as shown in Fig. 3, and thus
the total scattered intensity can be precisely determined for
each VL reflection.
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FIG. 3. Rocking curves for the square VL (10) and (03) Bragg
reflections at 0.2 T and 1.6 K corresponding to Figs. 1(a) and 1(d).
Note the different axes for the two reflections. Each angle was counted
for 9 min. For the (10) reflection, the error bars are smaller than the
symbol size. The (10) reflection is fitted with a double Lorentzian
function due to the irregular shape with a shoulder left of the main
peak. The (03) reflections are fitted by a single Lorentzian.
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With the strong scattering from the VL in TmNi2B2C, it is
necessary to consider whether multiple scattering is affecting
the measured intensities. This was discussed in detail by
Densmore et al. in the case of LuNi2B2C,16 where it was
shown that multiple scattering did not pose a problem. In the
case of TmNi2B2C, the integrated intensity is even stronger,
but since the rocking curve is also significantly broader, the
fraction of the incident neutrons scattered by the VL is �0.4%,
which is almost identical to LuNi2B2C. We thus conclude that
the error in the measured intensities due to multiple scattering
is insignificant.

The integrated intensity is divided by the incident neutron
flux to yield the integrated reflectivity

Rhk = 2πγ 2λ2
nt

16φ2
0qhk

|F (qhk)|2 , (1)

where γ = 1.913 is the magnetic moment of the neutron
in nuclear magnetons and t is the average sample thickness
(where differences in t due to the change in � are �3% and
thus insignificant). The intensity for each reflection is corrected
for the angle at which it cuts the Ewald sphere during the
measurement of the rocking curve (Lorentz factor). Figure 4
summarizes the measured VL form factors for all reflections
and fields of 0.2, 0.35, and 0.5 T. For the two higher fields, the
intensities of equivalent reflections for the two domains have
been added to obtain scattering from all of the vortices in the
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FIG. 4. (Color online) VL form factor divided by the applied field
vs scattering vector q for all measured reflections at 0.2, 0.35, and
0.5 T. For all fields and reflections, the error bars are smaller than the
symbol size. The curves are fits to the London model, as described in
the text. Full and dashed lines correspond to VL Bragg peaks along
the crystalline [100] and [110] directions, respectively.

TABLE I. Coefficients of London model fits (c = 0.5) shown in
Fig. 4 in the case where the VL Bragg peaks are along the crystalline
[100] or [110] directions.

[110] [100]

λ (nm) ξ (nm) λ (nm) ξ (nm)

0.2 T 64.1 6.28 55.3 5.49
0.35 T 59.3 6.34
0.5 T 74.5 6.73

sample in order to compare them directly to the square VL at
0.2 T.

IV. DISCUSSION

We will now discuss how the measured VL form factors can
be used to study the evolution of the superconducting basal
plane anisotropy in TmNi2B2C. Qualitatively, a reduction of
the anisotropy with increasing field is directly evident from
Fig. 4. For the square VL at 0.2 T, the form factors do not fall on
a single curve, as expected for an isotropic superconductor, but
rather lie on or between two curves going through |F (qh0)|/H
and |F (qhh)|/H , respectively. As these two limiting curves
are 45◦ apart, their separation is a measure of the fourfold
basal plane anisotropy. With increasing field, we see that the
separations between the form factors along different directions
decrease, indicating that the superconducting state becomes
more isotropic. However, the situation is complicated by the
change in the VL symmetry, which changes the position of the
reflections with respect to the crystalline axes.

The curves in Fig. 4 are fits to the London model, extended
by a Gaussian cutoff to take into account the finite vortex core
size,16,26

FL(q) = H

1 + (qλ)2
e−c(qξ )2

, (2)

where λ and ξ are, respectively, the penetration depth and the
coherence length, while c is a constant typically taken to be
between 1/4 and 2.26 Using c = 1/2, the fitted values of λ

and ξ for the curves in Fig. 4, which correspond to crystalline
high-symmetry directions, are given in Table I. It is important
to stress that the primary objective of the fitting is to obtain an
analytical expression for the VL form factor for each field and
direction, and the coefficients are not to be taken as an accurate
determination of λ and ξ . Nonetheless, Table I shows that by
increasing the field from 0.2 to 0.5 T, both the fitted values
for the penetration depth and the coherence length along the
crystalline [110] direction increase, which is consistent with
a reduction of the field modulation and an expansion of the
vortex core. The same is seen for λ and ξ along [100] as the
field is increased from 0.2 to 0.35 T.

At 0.2 T, a measure of the superconducting basal plane
anisotropy is obtained from the ratio (λ110/λ100)2 = 1.34. We
note that a very similar value is found for the coherence
length ratio (ξ110/ξ100)2 = 1.31. At the higher fields, however,
the changing VL symmetry causes the reflections to move.
Notably, at the two higher fields, there are only VL Bragg peaks
along one of the two crystalline high-symmetry directions
(that is, [100] for the rhombic VL at 0.35 T and [110] for
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the hexagonal VL at 0.5 T). As a result, it is not possible to
directly extract the superconducting basal plane anisotropy at
the higher fields. In the following, we present a more careful
analysis of the field dependence of the anisotropy.

As shown by Densmore et al.,16 a conceptually simple
and model-independent method to obtain a measure of the
basal plane anisotropy is by a real-space magnetic field
reconstruction using

B(r) =
∑
hk

F (qhk)eiqhk ·r . (3)

Since the SANS measurements only measure the absolute
magnitude of the form factors, this requires an assumption
about the relative sign of the Fourier components F (qhk). In
the case of LuNi2B2C, a comparison to muon spin-rotation
measurements showed that for fields below ∼Hc2/3, the
form factors all have the same sign,16 in agreement with
the prediction of the London model as well as numerical
results based on the Eilenberger equations.27 In the case of
TmNi2B2C, the measured Hc2 = 0.75 T at 1.6 K is severely
Pauli limited.28 Instead, we use the extrapolated orbital upper
critical field Hc2,orb = 4.3 T,23 yielding an estimated upper
limit of 1.4 T for the all-equal-sign scheme. This is thus
expected to be valid for all of the measurements in this
report. Figure 5(a) shows the real-space field reconstruction
obtained from the measured form factors in an applied field
of 0.2 T. The accuracy of the reconstruction depends on the
number of reflections included in the sum in Eq. (3). In
the present case, the magnitudes of the form factors for the
(30), (31), and (32) reflections, which were the highest-order
peaks that could be measured, are less than 1 mT and do
not change the reconstruction to any significant degree. We
note that the vortex spacing d = 2π/q10 can be determined
from the magnitude of the VL scattering vector, which allows
for a determination of the magnetic induction B = φ0/d

2 =
0.216 T, in good agreement with earlier reports.9 That B >

μ0H is due to the paramagnetism of TmNi2B2C for T > TN .
The magnitude of the field modulation, ≈130 mT or 0.6B, is
much larger than the 10% observed in nonmagnetic LuNi2B2C
in an applied field of 0.5 T. Extrapolating the LuNi2B2C form
factors to a field of 0.266 T yields a modest estimate for the
increase of the field modulation: exp[2π2(8.22 nm)2 (0.5 T −
0.266 T)/φ0] = 1.16.16 This is still much smaller than the
60% observed here for TmNi2B2C. This difference is a
manifestation of the strong Pauli paramagnetic effects, which
leads to a significant polarization of the unpaired quasiparticle
spins in the vortex cores of TmNi2B2C and creates a periodic
magnetization that adds significantly to the field modulation
from the circulating supercurrents.

From the field reconstruction, one can calculate the current
distribution by μ0 J = ∇ × B, which contains contributions
from both the supercurrents and the periodic magnetization
and which cannot be easily deconvoluted.10,12 Figure 5(b)
shows |J(r)| as a function of the distance from the vortex
core along the VL nearest-neighbor direction ([100]) and the
unit cell diagonal ([110]). The distance from the vortex center
to the peak of the current density provides a measure of the
core size ξJ ,27,29 which is seen to differ for the two directions
shown. The inset to Fig. 5(b) shows the vortex core size in
the plane perpendicular to the field, which displays a clear
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FIG. 5. (Color online) Real-space magnetic field reconstruction
from the measured VL form factors at μ0H = 0.2 T and T = 1.6 K.
(a) Contour plot of the magnetic field, showing four VL unit cells with
a vortex spacing of 98 nm, corresponding to a magnetic induction
B = 0.216 T obtained from the magnitude of the scattering vector.
Note that the image is rotated 45◦ with respect to Fig. 1 such that {110}
directions are horizontal/vertical. The lowest contour corresponds to
B = 198 mT and the contour spacing is 15 mT. (b) Current density
as a function of distance from the vortex center along the VL nearest-
neighbor direction ([110]) and the unit cell diagonal ([100]). The inset
shows the value of ξJ (distance of maximum current) in the basal
plane. To emphasize the fourfold anisotropy, a circle with radius ξ 100

J

is shown by the dashed line.

fourfold anisotropy. Specifically, we find ξ 110
J = 12.4 nm and

ξ 100
J = 11.7 nm. The ratio between these two values is 1.06,

which is slightly smaller than the 1.08 found for the square VL
in LuNi2B2C.16 Since the VL at 0.2 T is close to the onset of
the square-to-rhombic transition in TmNi2B2C, the measured
anisotropy provides an estimate of the critical value necessary
for stabilizing a square symmetry. By comparing the values
for ξJ to the London model fits at 0.2 T listed in Table I, one
finds a substantial difference, unlike our earlier measurements
on LuNi2B2C where the two were found to be in excellent
agreement.16 A theoretical analysis of the interdependence of
the superconducting and magnetic properties of TmNi2B2C by
Jensen and Hedegård gives an estimate of the orbital critical
field Hc2,orb = 4.3 T at 1.6 K,23 yielding a zero-field coherence
length of 8.75 nm. However, this ignores the contribution to
the core size from the spin-polarized quasiparticles in the
vortex core and we thus expect ξJ obtained from the field
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reconstruction to be a more accurate measure of the actual
vortex core size. It should also be noted that the anisotropy of
ξJ is smaller than the ratio from Table I, again illustrating that
while ξ and ξJ are related, they are not identical.

While a field reconstruction at higher fields would be
desirable, it is not possible to measure enough higher-order
reflections necessary to obtain this with satisfactory accuracy.
This is the case particularly in the hexagonal VL phase.
Instead, we return to the London model fits in Fig. 4 to obtain
a quantitative, symmetry-independent measure of the field
dependence of the superconducting basal plane anisotropy in
TmNi2B2C. The fits indicate that the VL form factor along any
direction in the basal plane may be parameterized by

F (φ)

H
= 1

1 + [q λ(φ)]2
e−c[q ξ (φ)]2

, (4)

where φ is the angle relative to the crystalline [110] direction.
This yields an expression for the φ dependence of λ and thus
an angle-dependent anisotropy ratio[

λ110

λ(φ)

]2

= λ2
110 q2 F (φ)

e−c[q ξ (φ)]2 − F (φ)
. (5)

This ratio is expected to exhibit a fourfold symmetry[
λ110

λ(φ)

]2

= 1 + a
1 − cos 4φ

2
, (6)

where the parameter a is the anisotropy amplitude. As noted
earlier, the fitted values for λ and ξ given in Table I show
(λ110/λ100)2 ≈ (ξ110/ξ100)2, indicating that λ(φ) and ξ (φ) have
the same anisotropy amplitude. From Eq. (6), we obtain

1

[λ,ξ ]2(φ)
= 1

[λ,ξ ]2
110

+
(

1

[λ,ξ ]2
100

− 1

[λ,ξ ]2
110

)
1 − cos 4φ

2
.

(7)

In Fig. 6, we show the anisotropy ratio obtained by Eq. (5)
using the measured VL form factors at 0.2 T and ξ (φ)
calculated using Eq. (7) and the values in Table I. The data
are well fitted by Eq. (6) yielding an anisotropy amplitude
a = 0.368 ± 0.014, in good agreement with the result based
solely on the form factors corresponding to the VL Bragg
peaks on the high-symmetry [110] and [100] directions (see
Table I).

Having demonstrated that the approach above yields con-
sistent results for the anisotropy, we now apply it to the 0.35
and 0.5 T measurements. Here we simultaneously adjust the
value of a used to calculate ξ (φ) in Eq. (5) and the fitted value
obtained by Eq. (6) to ensure a self-consistent result. This
approach allows a determination of the anisotropy amplitude
even in cases where there are only VL Bragg reflections
along a single-crystalline high-symmetry direction ([110] or
[100]). Figure 6 shows the results of this analysis, provid-
ing a quantitative measure of the monotonically decreasing
superconducting basal plane anisotropy with increasing field.
This is in stark contrast to the behavior found for nonmagnetic
LuNi2B2C, where a similar analysis on the data from Ref. 16
yields a = 0.456 ± 0.060 at 0.5 T, increasing slightly to
0.492 ± 0.008 at 1.0 T.

Our results provide a direct confirmation of theoretical
predictions that in superconductors with strong Pauli paramag-
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FIG. 6. (Color online) (a) Angle dependence of the superconduct-
ing basal plane anisotropy ratio calculated from the VL form factors
as described in the text. For each field, the curves show a fit to the
anisotropy function given in Eq. (6). (b) The same results in polar
coordinates.

netic effects, paramagnetic depairing causes the vortex cores
to expand and also become more isotropic as one approaches
Hc2.14,15 One would therefore also expect that the anisotropy of
TmNi2B2C will increase below the antiferromagnetic ordering
at TN = 1.5 K where the Pauli paramagnetic effects are known
to decrease.3

V. CONCLUSION

In summary, we have investigated the field dependence
of the superconducting fourfold basal plane anisotropy of
TmNi2B2C. We have observed and quantified the decreasing
anisotropy with increasing applied field, which provides an
explanation of the reentrant square VL phase. The decreasing
anisotropy is attributed to the strong Pauli paramagnetic effects
observed in TmNi2B2C, leading to an expansion of the vortex
cores near Hc2. We believe that a similar mechanism is
responsible for the reentrance of the square VL phase observed
in CeCoIn5.

ACKNOWLEDGMENTS

We acknowledge discussions with E. M. Forgan,
M. Ichioka, K. Machida, V. P. Michal, V. P. Mineev, and J. S.
White. This work was supported by the US National Science

144501-6



FIELD DEPENDENCE OF THE SUPERCONDUCTING BASAL . . . PHYSICAL REVIEW B 86, 144501 (2012)

Foundation through Grant No. DMR-0804887. J.M.D. was
supported in part by an appointment to the US Army Research
Laboratory Postdoctoral Fellowship Program administered by
the Oak Ridge Associated Universities through a contract
with the US Army Research Laboratory. K.J.S. recognizes
support from the Notre Dame Institute for Scholarship in the
Liberal Arts. M.L. acknowledges support from DanScatt. We
acknowledge the support of the National Institute of Standards
and Technology, US Department of Commerce, in providing

the neutron research facilities used in this work. The research
at Oak Ridge National Laboratory’s High Flux Isotope Reactor
was sponsored by the Scientific User Facilities Division, Office
of Basic Energy Sciences, US Department of Energy. The work
at Ames Laboratory was supported by the US Department of
Energy, Office of Basic Energy Science, Division of Materials
Sciences and Engineering. Ames Laboratory is operated for
the US Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358.

*Current address: Energetic Materials Center, Lawrence Livermore
National Laboratory, Livermore, California 94550, USA.

†Current address: Department of Physics, University of California,
Santa Barbara, California 93106, USA.

‡eskildsen@nd.edu
1V. G. Kogan, M. Bullock, B. Harmon, P. Miranović,
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