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Microwave response of anisotropic magnetorheological elastomers: Model and experiments
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We present ferromagnetic resonance measurements of Fe3O4 nanoparticles which have been dispersed in an
elastomeric polymer [polydimethylsiloxane (PDMS)] at two different concentrations (5% and 15% w/w), and
then cured in the presence of a uniform magnetic field. With this procedure it is possible to align the particles
forming unidimensional needlelike cylindrical agglomerates with a relatively high length/diameter ratio. The
dynamical response of this nanostructured composite has been characterized using ferromagnetic resonance
at K band (24 GHz) and Q band (34 GHz). In both cases we have observed an anisotropic behavior in the
resonance field when the external magnetic field is rotated from the direction of the needles to the perpendicular
plane. However, the measured variation is considerably lower than the values expected for an array of perfectly
homogeneous long cylinders in which the elongated shape causes a uniaxial anisotropy. Results have been
analyzed using the standard Smit and Beljers formalism, considering a phenomenological shape factor, P , that
accounts for the reduced anisotropy. Also an ellipticity factor in the cross section of the needles, r , and Gaussian
fluctuations of the shape factor, σP , are needed to explain the observed angular variation of the linewidth. The
values of these parameters are consistent with data obtained at K and Q bands, supporting the proposed model,
although some differences have been found for the two studied concentrations.
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I. INTRODUCTION

Iron oxides, and particularly magnetite (Fe3O4), have
been extensively studied since research in magnetic materials
started. Magnetite crystallizes in a spinel structure and orders
ferrimagnetically below 840 K with a saturation magnetization
Ms ∼ 480 emu/cm3 when in bulk form.1 This material was
also studied in systems with reduced dimensions, particularly
nanoparticles,2–4 thin films,5 and structured multilayers6 in
order to induce new magnetic characteristics, absent in bulk
samples. These engineered materials, with novel magnetic
properties, open a broad spectrum of new potential applica-
tions. One of these engineered systems consists in the prepa-
ration of magnetorheological elastomers (MRE), in which
magnetic nanoparticles are dispersed in an organic elastic
matrix and then cured in the presence of an external applied
field in order to induce anisotropic transport and magnetic
properties. These elastomeric polymers are very attractive due
to their potential use in flexible electronics, including pressure
and magnetic field sensors. For these applications oxide
nanoparticles (typically Fe3O4 or CoFe2O4) are agglomerated
and then covered with a metallic shell, such as Ag, forming a
core/shell structure of micrometer size.7,8 When the particles
are introduced in a polymer matrix and then cured in the
presence of a magnetic field, they tend to align in the
shape of needlelike elongated cylinders with a morphological
length/diameter aspect ratio in the range of 100, which is
responsible for the observed anisotropic magnetic response.

We have performed a detailed study using ferromagnetic
resonance (FMR) techniques in order to get a deeper un-

derstanding of the observed magnetic behavior and correlate
these results with the microstructure of the composite. This
technique is specially suitable for the determination of mag-
netic anisotropies and the distribution of magnetic parameters,
through the analysis of the resonance field, the linewidth, and
the line shape.

II. EXPERIMENTAL DETAILS

The synthesis of the magnetic particles and the preparation
of the MRE was explained in detail in Ref. 7. Briefly, Fe3O4

nanoparticles were obtained by chemical coprecipitation of
a solution of hydrated FeCl3 and FeCl2 in HCl mixed with
NaOH. After several steps of washing and centrifugation, it
was possible to obtain magnetite nanoparticles of the correct
crystalline phase with an average diameter of 13 nm and a
relatively narrow size distribution. The particles were then
dispersed in a polydimethylsiloxane (PDMS) matrix and cured
at 75 ◦C for 4 h in the presence of a uniform dc magnetic field
of 3000 Oe. As already mentioned, the magnetite nanoparti-
cles tend to agglomerate forming needlelike cylinders. Two
different dispersions, 5% and 15% w/w Fe3O4 in PDMS, were
prepared to account for possible effects of interactions among
needles. The average diameter, length, and separation among
cylinders is 51 μm, 3 mm, 100 μm for Fe3O4:PDMS 15%, and
20 μm, 3 mm, 120 μm for Fe3O4:PDMS 5%. As can be seen in
Fig. 1 (and in more detail in Fig. 4 of Ref. 7) the cylinders have
a granular texture and their cross section is generally elliptical
with a transverse aspect ratio that can be higher than 2.
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FIG. 1. Scanning electron microscopy images of the structured
PDMS-Fe3O4 composites. The upper panel (a) shows a lateral view
of the needles formed by magnetite nanoparticles in a 15% w/w
composite, after alignment in an external magnetic field. The bottom
panel (b) is a top view of one the inorganic needles in which a
noncircular cross section (with aspect ratio r = b/c) can be observed.

This fact will be important when describing the angular varia-
tion of the FMR spectra for different directions of the applied
magnetic field. Due to their very small volume, individual mag-
netite particles are superparamagnetic at room temperature,
and consequently they cannot reach saturation. Magnetization
vs field loops give magnetization values M ∼ 50 emu/gr
and M ∼ 55 emu/gr at 8 kOe and 12 kOe, respectively,
which are approximately one-half of the room temperature
saturation magnetization of bulk magnetite,1 Ms ∼ 92 emu/gr.
Considering δ = 5.2 gr/cm3 the magnetization values at the
given fields are then Ms ∼ 260 emu/cm3 and ∼ 286 emu/cm3.

These values are similar to the magnetization reported3 in
nanoparticles of comparable size at the same fields.

Ferromagnetic resonance spectra have been acquired at
room temperature with a commercial Bruker ESP 300 spec-
trometer at frequencies of 24 GHz (K band) and 34 GHz
(Q band). The samples were cut in slabs of approximately
2 mm × 2 mm and a thickness of a fraction of a millimeter.
Two different cuts were made from the original sample, trying
to maintain the needles laying within or perpendicular to the
surface of the slab. The samples were placed at the center of
a resonant cavity where the derivative of the absorbed power
was measured using a standard field modulation and lock-in
detection technique with amplitudes in the range 5–20 Oe.
The slab plane could be either parallel or perpendicular to the
excitation microwave field, according to the desired angular

FIG. 2. (Color online) Schematics of the different vectors and
angles involved in the description on the free energy. Cylinders
(formed by the agglomeration of nanoparticles) are assumed to be on
average aligned with the x axis, so that both θc and φc are almost zero,
but ψc can vary randomly in the range [0 − 2π ]. Slabs containing the
cylinders can be in the xy plane (in-plane geometry) or in the yz

plane (out-of-plane configuration). The cross section of the cylinder
may have an ellipticity given by r = b/c.

variation. Angular variations with respect to the external dc
field were made around the slab normal or within the slab
plane. The maximum available dc field was 19 kOe.

III. EXPERIMENTAL RESULTS AND MODEL

Room temperature FMR measurements were made in 5%
and 15% Fe3O4:PDMS samples at both K band and Q band
frequencies. The external applied field was rotated from the
direction of alignment of the needles to a perpendicular axis
in order to study the magnetic anisotropy of the composite.
We show schematically in Fig. 2 the vectors and angles that
will be used in the expression of the free energy for a single
cylinder. As we will see later, interactions among needles do
not seem to be significant, so that the measured spectra can
be described as the superposition of individually resonating
entities. The average orientation of the cylinders formed by
the magnetite nanoparticles is always assumed to be parallel
to the x axis, the direction where the curing field was applied.
The magnetic field H̃ for the FMR experiment is rotated in the
xy plane and characterized by the angle ϕH and the vector M̃ is
given by the polar and azimuthal angles θ and ϕ, respectively.

In one of the used geometries (which we will call in-plane),
the slab is placed in the xy plane so that the field variation tests
the anisotropy within the slab. In the other geometry (called
out-of-plane) we placed the sample in the xz plane to consider
the anisotropy perpendicular to the slab. These experiments
were made in order to account for possible dipolar interactions
among cylinders which can give an effective demagnetization
factor related to the shape of the slab. Cylinders are not
necessarily aligned parallel to a single axis as determined
in the observation of scanning electron microscopy (SEM)
micrographs (see Fig. 1). It is then necessary to use the angles
ψc, θc, and φc to account for possible misalignments of the
needles and different orientations of the cylinder elliptical
cross section with respect to the applied magnetic field. The
angles θc and φc are assumed to be close to zero, while ψc can,
in principle, vary randomly in the range [0, 2π ].

We show in Fig. 3 the K band FMR spectra of 5%
Fe3O4:PDMS samples measured for different angles between
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FIG. 3. (Color online) FMR spectra of 5% Fe3O4:PDMS as a
function of the angle between the external field and the direction of
alignment of the cylinders. Data have been measured at 300 K at K

band. Spectra at Q band are similar, but with a center field around
11.8 kOe.

the external field and the direction of alignment of the cylinders
in the elastomer. We defined ϕH = 0 as the angle when H is
parallel to the needles. Spectra for other samples or frequencies
are relatively similar, so we show only these data as an example
of the overall observed behavior. The following main features
can be seen in the spectra.

(i) The resonance field, Hr , is minimum when H is applied
parallel to the long axis of the cylinders and maximum in the
perpendicular direction, giving a 180◦ symmetry. This fact is a
strong indication that curing the composite in the presence of
an external field produces an easy magnetization axis parallel
to the cylinders.

(ii) The difference between these two fields is almost
independent of frequency and varies slightly with the geometry
(in-plane or out-of-plane), indicating that interactions among
cylinders are relatively low and affect only marginally the
FMR response. We have observed a small dependence with
the filler concentration, with the difference Hr⊥(ϕH = 90◦) −
Hr‖(ϕH = 0◦) being larger for the 5% sample. It is then
possible to use a model of individual resonating entities to
explain the observed spectra. However, changes in Hr are
considerably lower than those expected from a simple model
of a perfectly aligned group of cylinders, for which an upper
limit9 of Hr⊥ − Hr‖ due to the shape anisotropy is given
by (3/2)2πMs . This estimation can be obtained from the
appropriate expressions for Hr in uniaxial systems in the
limit of low anisotropy compared to the resonance field,
Hr⊥ = ω/γ + πMs and Hr‖ = ω/γ − 2πMs. In our case this
yields Hr⊥ − Hr‖ ∼ 2500 Oe, using an average reduced value
for Ms = 265 emu/cm3. The observed experimental value of
Hr⊥ − Hr‖ ∼ 600 Oe is considerable lower than that expected
from the mentioned simple model, indicating that the effective
shape anisotropy of the composite could not be described as
that of a perfect homogeneous cylinder.

(iii) The linewidth is also anisotropic, the maximum value
of �H is found for ϕH = 90◦ and the minimum may occur
at ϕH = 0 or at an intermediate angle, depending on the
magnetite concentration in the composite. Frequency does not
influence this behavior. To explain this variation it is necessary
to take into account the ellipticity in the cross section of the
needles and possible fluctuations in the shape anisotropy.
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FIG. 4. (Color online) Resonance field (a) and peak to peak
linewidth (b) taken from the experimental data of 5% and 15%
Fe3O4:PDMS samples as a function of the angle between the external
field and the direction of alignment of the cylinders. In this case
the direction of alignment of the cylinders is within the PDMS
slab (in-plane geometry). The corresponding spectra were measured
at 300 K and at K band (24 GHz). The continuous line are best
fits obtained from the proposed model and the parameters given in
Table I.

(iv) The line shape is almost symmetrical, but the low field
part is somewhat higher and narrower than the high field
part. This observation suggests that additional effects, such
as magnetocrystalline anisotropy, should be accounted for in
order to fully describe the observed experimental behavior.
These effects will be further discussed and explained when the
cubic anisotropy term is considered in the model.

Figures 4 and 5 show the angular variation of the resonance
field and the linewidth extracted from the measured spectra
for the two filler concentrations at 24 GHz and 34 GHz.
As already stated differences between the two samples are
relatively small but, as we will show later, can be understood
within a mean field model that includes fluctuations in the
anisotropy parameters. The almost sinusoidal dependence of
the angular variation of the resonance field at K and Q bands
is consistent with an effective anisotropy field considerable
lower than the working frequency in units of field. In uniaxial
systems the anisotropy is HA ∼ 2/3 (Hr⊥ − Hr‖) which yields
HA ∼ 400 Oe for our samples, while the expected resonance
fields are around 8500 Oe and 12000 Oe for K and Q bands,
respectively, for g ∼ 2.

To explain the observed behavior we have used the Smit and
Beljers10 formalism to calculate the resonant modes, starting
with a free energy that considers the Zeeman effect, the cubic
magnetocrystalline anisotropy, and the cylindrical shape of the
needles,

F = −M̃ · H̃ + Kc

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

) + 1
2 M̃ · N·M̃.

(1)
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FIG. 5. (Color online) Room temperature Q-band resonance field
(a) and linewidth (b) for 5% and 15% Fe3O4:PDMS samples as a
function of the angle between the external field and the direction of
alignment of the cylinders which, in this case, was perpendicular to
the PDMS slab (out-of-plane geometry). The continuous lines are best
fits obtained from the proposed model and the parameters reported in
Table I.

In a fixed coordinate system the magnetization vector is given
by M̃ = M(cos ϕ sin θ, sin ϕ sin θ, cos θ ) and the external
field H̃ = H (cos ϕH , sin ϕH ,0) is assumed to rotate in the xy

plane. Kc is the cubic magnetocrystalline anisotropy, which
for bulk magnetite1 is Kc ∼ −1.35 × 105 emu/cm3, and αi

are the directional cosines. We will leave for the moment the
discussion of the effects of the magnetocrystalline anisotropy
of the individual grains forming the needles and discuss first the
shape effects. If long enough circular cylinders were aligned
parallel to the x axis, the demagnetization tensor N would be
diagonal with elements Nxx = 0, Nyy = Nzz = 2π. However,
the needles are composed by an agglomeration of individual
particles so that the demagnetization factors could differ
considerable from these values. To treat this situation11–14 a
shape parameter P is often used, with P = 1 for perfectly
homogeneous cylinders formed by closely packed spherical
nanoparticles, and P = 0 if the particles (assumed spherical)
are far apart so that the dipolar interaction does not contribute
to the shape. Intermediate values of P serve to quantify the
“cylindricity” of the needles. Taking into account the shape
factor, the demagnetization tensor is still diagonal, but now
it has the values Nxx = 4

3π (1 − P ), Nyy = Nzz = 4
3π (1 +

P/2). As expected, for P = 1 we recover the shape factors for
a perfect cylinder and for P = 0 we obtain the demagnetization
factors for a sphere. We mentioned that the cylinder cross
section is elliptical rather than circular, so that if r = b/c is
the ratio between the two axes, the resultant tensor elements are
Nxx = 4

3π (1 − P ), Nyy = 4
3π (1 + P/2)2/(r + 1), and Nzz =

4
3π (1 + P/2)2r/(r + 1). In a real sample the long axis of the
needles is not necessarily aligned with the x axis, so that in the

fixed reference frame the demagnetization tensor Nf will not
remain diagonal. If Nd is the diagonal demagnetization tensor,
the relationship between both is

Nf = RNdR−1, (2)

where R = RxRyRz is the rotation matrix composed of three
consecutive anticlockwise rotations by angles φc, θc, and ψc

around the axis z, y, and x, respectively, as shown in Fig. 2.
With this election the angles φc, θc can be used to localize the
long axis of the cylinder, while ψc gives the orientation of b,

the larger axis of the elliptical cross section of the cylinder. It
is possible to find complete expressions for Nf for any values
of the three angles, but we are assuming that the needles are
mostly parallel to the x axis, so that approximate expressions
may be used for φc ∼ θc ∼ 0. In this case we obtain

Nf =

⎛
⎜⎝

Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz

⎞
⎟⎠ , (3)

with

Nxx = 4

3
π (1 − P ) = 4π − Nyy − Nzz,

Nyy = 4π

3(1 + r)
[(2 + P )(r + (1 − r) cos2 ψc)

− (1 + 2P + r − rP )θcφc sin 2ψc],

Nzz = 4π

3(1 + r)
[(2 + P )(1 + (r − 1) cos2 ψc)

+ (1 + 2P + r − rP )θcφc sin 2ψc],
(4)

Nxy = Nyx = 4π

3(1 + r)
[(1 − P − r − 2rP )θc sin ψc

− (1 + 2P + r − rP )φc cos ψc],

Nxz = Nzx = 4π

3(1 + r)
[−(1 − P − r − 2rP )θc cos ψc

− (1 + 2P + r − rP )φc sin ψc],

Nyz = Nzy = 4π

3(1 + r)
[(2 + P )(1 − r) sin ψc cos ψc

+ (1 + 2P + r − rP )θcφc cos 2ψc].

The explicit form for the free energy of Eq. (1) (without the
cubic term) is then

F = −MH cos(ϕ − ϕH ) sin θ

+ 1
2M2[sin2 θ (Nxx cos2 ϕ + Nyy sin2 ϕ)

+Nzz cos2 θ + Nxy sin2 θ sin 2ϕ

+ sin 2θ (Nxz cos ϕ + Nyz sin ϕ)]. (5)

From this expression for the free energy, it is possible to
calculate the angular derivatives evaluated at the equilibrium
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angles,

∂2F

∂θ2
= M

[
H cos(ϕ − ϕH ) sin θ − 2M sin 2θ (Nxz cos ϕ + Nyz sin ϕ)
+M cos 2θ (Nxx cos2 ϕ + Nyy sin2 ϕ + Nxy sin 2ϕ − Nzz)

]
,

∂2F

∂ϕ2
= M

[
H cos(ϕ − ϕH ) sin θ − M

2 sin 2θ (Nxz cos ϕ + Nyz sin ϕ)
−M sin2 θ (2Nxy sin 2ϕ + (Nxx − Nyy) cos 2ϕ)

]
, (6)

∂2F

∂θ∂ϕ
= M

[
sin(ϕ − ϕH ) cos θ + M cos 2θ (Nyz cos ϕ − Nxz sin ϕ)

+M
2 sin 2θ (2Nxy cos 2ϕ + (Nyy − Nxx) sin 2ϕ)

]
.

Replacing Eqs. (4) and (6) in the Smit and Beljers10

formulas,(
ω

γ

)2

= 1

M2 sin2 θ

[
∂2F

∂θ2

∂2F

∂ϕ2
− ∂2F

∂θ∂ϕ

]
, (7)

�ω

γ
= α

2M

(
∂2F

∂θ2
+ 1

sin2 θ

∂2F

∂ϕ2

)
, (8)

it is possible to arrive at the dispersion relation and the damping
expression for the resonance modes. In the above expression
γ = gμB/h̄, with μB the Bohr magneton.

The parameters involved in the model are the magnetization
(M), the g value, the damping parameter (α), the shape factor
(P ), and the cross section ratio of the cylinders (r). Each of
these parameters modifies the resonance spectra (mostly) in
the following ways: the g value is related to the “center of
gravity” of the angular variation of the resonance field. The
magnetization M is proportional to the maximum difference
between the resonance field perpendicular and parallel to the
axis of the needle. As already mentioned, in systems with
relatively low anisotropy9 compared with ω/γ , which holds
in this case for both frequencies, Hr⊥ − Hr‖ ∼ 3πM. As the
measured difference is around 1/4 smaller than the expected
value, the factor P is introduced to account for the reduced
anisotropy compared to that of a perfect cylinder.

To explain the angular variation of the linewidth, �H , we
need to consider at least the following effects: one is the ellip-
tical cross section, which is assumed to be randomly oriented
with respect to the axis of the cylinder, giving a minimum
parallel to the cylinder axis and a maximum in the perpen-
dicular orientation. Another effect arises from possible fluc-
tuations in the shape parameter, P, which tends to increase
�H mainly in the direction parallel to the easy axis. The
misalignment of the cylinders with respect to the easy direction
also contributes to an enhancement the linewidth.

There are numerous reports3,6,15–18 of the FMR linewidth
in Fe3O4, spanning from �H ∼ 150 Oe17 to 1500 Oe.15,18 In
most cases the origin of a broadened line is due to extrinsic
or inhomogeneous contributions, so that the measured peak
to peak linewidth for Lorentzian-like lines is usually written
as the sum of an intrinsic term (which in a first approxi-
mation increases linearly with frequency) and a frequency
independent contribution, �H ∼ (2/

√
3)αω/γ + �H0. From

the lowest reported value17 for the linewidth at X- band
(ν ∼ 9.5 GHz) it is possible to estimate α � 0.04 for the
intrinsic damping parameter. As can be seen in Figs. 4 and 5
the linewidth is almost the same for K and Q bands indicating
that the line broadening in our samples arises mainly from the

inhomogeneous contribution. Because the needles are formed
by a collection of randomly oriented individual nanoparticles,
a contribution to the linewidth due to the sum of particles
resonating at different fields must be taken into account.
Note also that the magnitude of M and Kc can vary from
particle to particle which will also change the linewidth and
the line shape. All these variables affect the FMR spectrum in
different ways and could be taken into account with appropriate
models,9,19 but in a first approximation it is enough to consider
the random distribution of cubic magnetocrystalline axes to
account for the average linewidth and the asymmetry in the
line shape.

We have made computer simulations of the FMR spectra
of a set of randomly oriented nanoparticles for the cases of
a positive or a negative cubic magnetocrystalline anisotropy
field, Hc. The first case corresponds to materials like Fe,
in which the easy axes are parallel to the 〈100〉 directions.
Magnetite, on the other hand, has negative anisotropy indi-
cating that the directions of easy magnetization are aligned
with the 〈111〉 axes. In Fig. 6 we show the expected spectrum
for both cases. It can be seen that although the particles are
randomly oriented the line shape is not symmetric, similar to
the observed behavior in uniaxial systems20 with positive or
negative anisotropy. In particular, negative cubic anisotropy
produces an asymmetry in which the low field part of the
line is narrower and higher than the high field region. The
opposite behavior is predicted for materials with positive
cubic anisotropy. We have already shown (see Fig. 3) that
the composites have slightly asymmetric resonant lines, which
are then compatible with the predictions made for negative Hc,
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FIG. 6. Simulated spectra of materials with cubic magnetocrys-
talline anisotropy composed of randomly oriented particles. For
the simulation we have used M = 265 emu/cm3, Hc = ±540 Oe,
g = 2.055, α = 0.06, ω = 24 GHz, and averaged the spectra of
30 000 individual particles.
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as expected for Fe 3O4. The asymmetry in the experimental
spectra is lower than that of the simulated results, suggesting
that fluctuations in M, Hc or even a nonrandom distribution of
the anisotropy axes should be taken into account. However, in
the case of negative cubic anisotropy, the magnetocrystalline
effects do not predict an angular variation of the resonant field
and linewidth21 that matches the observed behavior, even if
a nonrandom distribution of crystalline axes is assumed. This
prediction indicates that the cubic axes are at random and the
most important anisotropy effects are produced by the shape
and the elliptical cross section of the cylinders.

For the above-mentioned reasons the effects of the mag-
netocrystalline anisotropy can be included in an effective
linewidth which we have chosen to match the observed value
parallel to the needle axis, �H‖ ∼ 750 Oe. At K band this
yields an effective alpha value α ∼ 0.13. As we are assuming
�H = 2/

√
3 α ω

γ
and the measured linewidth does not change

with frequency, the value of α should be frequency dependent.
From this value of α it is possible to estimate the damping
constant α = α − √

3/2�H/ω
γ

∼ α − √
3/2�H0/

ω
γ

, which
holds when �H ∼ �H0, i.e., when the major contribution
to the linewidth is due to inhomogeneous broadening.

To simulate the angular variation of Hr and �H we have
used a Lorentzian-like line shape that can be deduced from
the scalar magnetic susceptibility (which gives the microwave
response of the system to the microwave perturbation field).
Following Refs. 11 and 22, χ can be written as

χ = χ ′ + iχ ′′

= 1 + α2

(
ω
γ

)2 − (
ω0
γ

)2 + i ω0
γ

�ω
γ

[
l2

(
∂2F

∂θ2
+ iα′

)

+m2

(
1

sin2 θ

∂2F

∂ϕ2
+ iα′

)
+ 2lm

∂2F

∂θ∂ϕ

1

sin θ

]
, (9)

with ω0/2π = ν the microwave excitation frequency, α′ =
ω0
γ

M α

1+α2 , and l = 0, m = − sin θ when the microwave field is
applied in the z direction (as in the present case). The absorbed
power is proportional to χ ′′, the imaginary part of the scalar
susceptibility, and hence the line shape can be written as

χ ′′(ω) = −ω0

γ

α
[(

ω
γ

)2 − (
ω0
γ

)2]
M sin2 θ − (1 + α2)�ω

γ
∂2F
∂ϕ2[(

ω
γ

)2 − (
ω0
γ

)2]2 + (
ω0
γ

�ω
γ

)2 .

(10)

To obtain the average susceptibility it is necessary to
integrate χ ′′ in the angular variables ψc (which is chosen to
have a random distribution in the interval [0, 2π ]), θc, and φc

and other parameters which could have a variation around an
average value. For θc, φc, P , and r we have assumed a Gaussian
distribution centered at an average value with a width σθc, σφc,
σP , and σr . Other sources of line broadening are included in
the α parameter.

The FMR response was simulated by adding a minimum
of 5 × 104 spectra in which the angular variables and the
free parameters were generated with their corresponding
distribution functions. This number of spectra was found to
be enough to converge to an average spectrum in which the
addition of more spectra did not change significantly the line
shape. The initial field for each spectrum always started at

0 Oe and the maximum field was varied depending on the
values of the parameters used in the simulation. This field
was chosen large enough so that a negligible absorption was
computed for fields above this value, and 20 kOe was found
to be enough in most cases. When evaluating the spectra the
total field span was divided in 1200 steps. The value of M was
estimated from the magnetization measurements as a function
of the applied field reported in Ref. 7. We observed a small
field dependence which gives M = 265 emu/cm3 for K-band
fields (H ∼ 8500 Oe) and M = 290 emu/cm3 for Q band
(H ∼ 12000 Oe). Due to the superparamagnetic nature of
the particles at room temperature the magnetization is not
completely saturated at the fields where the absorptions are
observed. Thermal effects are usually introduced into the free
energy, Eq. (1), by replacing different powers of M by their
corresponding expressions corrected by thermal fluctuations.23

In the present case M must be replaced by MsL1(x) and M2

by M2
s L2(x), with x = μH/kBT , L1(x) = coth(x) − 1/x, and

L2(x) = 1 − 3L1(x)/x. For our samples the resonant fields are
always larger than 8 kOe and in this field region L2(x) ∼
L2

1(x). With this approximation all powers of M(H,T ) in
Eq. (1) should be replaced by the corresponding power of
MsL1(x) which, for a fixed temperature, is equivalent to using
the value of M(H ) from the hysteresis loop.

The rest of the parameters (P, g, α, and r) were varied
until a reasonable fit of the angular variations of Figs. 4 and 5
was obtained. In a first approach σθc, σφc, σP , and σr were
fixed to zero and only one of them was allowed to change
in order to analyze how fluctuations influence the angular
variations.

In Fig. 7 we present simulations for the angular variation of
�H as a function of the angle ϕH between the external field
and the x axis with the parameters indicated in the figure
caption. Angular variations of Hr (not shown) are almost
unaffected by Gaussian fluctuations in P , θc, φc, or r . This
is not unexpected because the average value of Hr does not
change if the distribution function is symmetric. In Fig. 7(a)
we show the effects of a Gaussian distribution of the shape
parameter P with a width σP . Changes in �H are strongly
dependent on the value of σP , especially when the field is
applied parallel to the easy axis of the cylinder. For σP = 0
the linewidth grows monotonically with the angle ϕH , but
for σP > 0 the width �H‖ increases considerably, and the
minimum occurs at an intermediate angle. The differences
between the easy and the hard axes are essentially due to
the nonuniformity of Eq. (7) as a function of ϕH , yielding in
general a maximum linewidth when ϕH = 0, a minimum at
an intermediate angle, and a relative maximum along the hard
axis.21 In this special case, the random orientation of ψc for a
fixed value of r = b/c gives the largest contribution to �H for
ϕH = 90◦, and hence the effect of σP is less important in this
direction. This correction seems to be enough to explain the
angular variation of Figs. 4 and 5 with values of σP ∼ 0.1–0.3,
particularly for the samples with larger Fe3O4 concentration.

In Fig. 7(b) we show the effects of changing the as-
pect ratio of the cylinders while keeping other parameters
fixed. It is observed that increasing r broadens �H⊥ and,
as expected, produces no changes in �H‖. We have also
simulated the influence of fluctuations in the parameter r

by an amount σr in the range 0 � σr � 0.6 and found that
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FIG. 7. (Color online) Angular variation of the linewidth when
fluctuations in different parameters are allowed. For the simulations
we have used ω/2π = 24 GHz, M = 265 emu/cm3, g = 2.055,
α = 0.15, P = 0.6, σP = 0, r = 2, θc = φc = 0, σθc = σφc = 0,
ψc random in [0, 2π ], and averaged the spectra of 50 000 individual
particles. Panel (a) shows the effects of a Gaussian distribution of
width σP � 0 on �H ; in panel (b) the influence of different values
of r is analyzed, and in panel (c) we present the influence of a Gaussian
distribution of width σθc = σφc on the linewidth.

the angular variations of the resonant field and the linewidth
remain almost unaffected. This implies that fluctuations in
the cross section of the cylinders (which are effectively
observed in SEM micrographs) will not reflect in the line
shape if the perpendicular axes of the needles are randomly
distributed.

The other effect that we have considered is the misalignment
of the cylinders with respect to the x axis. To account
for this correction the angles θc and φc are assumed to be
Gaussian distributed around zero with the same dispersion,
σθc = σφc. Again this contribution produces little changes on
the curves Hr vs ϕH but, as shown in Fig. 7(c), the linewidth
tends to increase at intermediate angles. This behavior is
a consequence of the dependence of the linewidth with
|∂Hr/∂θc| (and |∂Hr/∂φc|) which tends to be zero for H

parallel or perpendicular to the easy axis and maximum at
an intermediate angle.21 Note, however, that the values of σθc

and σφc should be considerably large (σθc � 20◦) in order to
produce a significant variation in �H .

To summarize the results predicted by the computational
simulations on the angular variation of the linewidth, we have
found that (i) fluctuations in the shape factor P increase
�H‖ considerably and do not modify �H⊥ appreciably.
(ii) Different values of r only change �H close to the normal
to the cylinders. (iii) The misalignment of the needles enhances
the linewidth at intermediate angles, but relatively large values
of σθc and σφc are needed to produce significant effects.

TABLE I. Parameters used to fit the angular variations of Hr

and �H in Figs. 4 and 5. The frequencies are ν = 23.95 GHz and
ν = 34.0 GHz for K and Q bands, respectively.

Sample/frequency M(emu/cm3) g P σP α r σθ

15% K band 265 2.074 0.534 0.28 0.129 2.2 0
5% K band 265 2.055 0.590 0.13 0.127 1.8 0
15% Q band 290 2.038 0.506 0.18 0.100 1.8 0
5% Q band 290 2.037 0.552 0.10 0.093 1.9 0

In Table I we present the parameters we have used to fit the
angular variations of Figs. 4 and 5. A very good agreement
is obtained for both the resonance field and the linewidth in
the two samples and frequencies. For both frequencies it is
observed that the 5% sample has P values approximately 10%
larger than the more concentrated elastomer. This probably
originates in the already mentioned higher length/diameter
aspect ratio of the diluted samples which is compatible with
a larger value of P. Values of σP also differ in the two
samples, being larger in the 15% composite by a factor of
2. This is indicating that, as the concentration increases, the
cylinders tend to form with higher variations in their aspect
ratio.

The cross section aspect ratio r has an average value
〈r〉 ∼ 1.9 very similar to what it is observed in SEM pictures.
The present measurements are not adequate to account for
possible fluctuations in this parameter, which are indeed
present in the samples. The value of α is almost the same
for both samples, but shows an appreciable variation with
frequency. If we consider that the intrinsic damping parameter
α ∼ α − √

3/2�H0/
ω
γ

, the estimated values are in the range
α ∼ 0.04–0.05, which are quite similar to the reports made
for high quality films.17 We also found that it was not
necessary to consider possible fluctuations in the alignment
of the needles with respect to the x axis. Although in a direct
view of the needles it is possible to observe that they are
not perfectly aligned in a unique direction; the variance of
the normal distribution around the curing direction is less
than 5◦ in both dilutions. As simulations show that a value
of σθc � 20◦ is needed to produce measurable effects in the
angular variations of the linewidth, this effect could hardly be
noticed in our samples. The g values are somewhat smaller that
those generally accepted in the literature which span15,16,24 in
the range g = 2.09–2.14. Although there are reports25 of g

values as low as g = 1.985, the reduction in this parameter
most probably arises in the difficulty to assure an alignment
of the average easy axis of the cylinders parallel to a given
orientation (the x axis in the fixed reference frame). In this
situation there is a reduced number of cylinders parallel to the
direction defined as “easy”and then the overall spectrum tends
to move to larger fields given a lower g value. Also, extra
care should be taken with the estimation of the g value when
the lines are not symmetric, as in the simulations of Fig. 6
for a random collection of particles with cubic anisotropy. If
one defines the resonance field as the zero crossing (or even
worse the field at half height), the estimated g value from
the spectra is g ∼ 2.09 for negative anisotropy and g ∼ 2.04
for positive Hc, while the value used for the simulations was
g ∼ 2.055.
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IV. CONCLUSIONS

We have shown that FMR is a very powerful technique to get
deeper information on the magnetic microstructure of magne-
torheological elastomers composed of aligned cylinders. Using
a model that considers a shape factor and the ellipticity in the
cross section of the needles, it was possible to fit the angular
variations of the resonance field and linewidth at different
frequencies and for samples of different filling concentrations.
In the case of r the calculated parameters are in good agreement
with direct images obtained by SEM, which show an ellipticity
in the cross section of the needles. The values of P and σP

are also compatible with the observations of a higher aspect
ratio in cylinders with a lower filling concentration.
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