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The Landau-Lifshitz equation with a scalar damping constant predicts that the damping of spin waves
propagating in an infinite homogeneous magnetic medium does not depend on the direction of propagation.
This is not the case in materials with a periodic arrangement of magnetic constituents (known as magnonic
crystals). In this paper, the plane wave method is extended to include damping in the calculation of the dispersion
and relaxation of spin waves in three-dimensional magnonic crystals. A model material system is introduced
and calculations are then presented for magnonic crystals realized in the direct and inverted structure and for
two different filling fractions. The ability of magnonic crystals to support the propagation of spin waves is
characterized in terms of a figure of merit, defined as the ratio of the spin wave frequency to the decay constant.
The calculations reveal that in magnonic crystals with a modulated value of the relaxation constant, the figure
of merit depends strongly on the frequency and wave vector of the spin waves, with the dependence determined
by the spatial distribution of the spin wave amplitude within the unit cell of the magnonic crystal. Bands and
directions of exceptionally long spin wave propagation have been identified. The results are also discussed in
terms of the use of magnonic crystals as metamaterials with designed magnetic permeability.
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I. INTRODUCTION

In photonics and phononics, periodic patterning has proven
itself as an effective way to obtain materials with custom-
made properties. Analogously, materials with a periodic
arrangement of magnetic constituents [i.e., magnonic crystals
(MCs)], can show properties not found in bulk samples. These
crystals can be used for the fabrication of new devices in
which spin waves (SWs) act as information carriers. Thus,
the investigation of properties of three-dimensional (3D) MCs
with nanoscale lattice constants is of both scientific and
practical interest. Reviews of possible applications of MCs
with modulation at different length scales can be found, for
example, in Refs. 1–5.

Loss is an unavoidable property of materials. Hence, it has
to be taken into account in the design of magnonic devices
and MCs. Studies of the damping of spin waves traveling
in thin ferrite films have already been presented.6,7 Some
of the damping effects in one-dimensional MCs have also
been discussed in the literature.8–10 In two-dimensional (2D)
MCs, the considerations to include damping effects in the
plane wave method (PWM) have been published in Ref. 11.
As a continuation of that work, we have implemented loss
calculations within the PWM in the case of 3D MCs with the
aim of exploring the options for tailoring the intrinsic spin
relaxation. It was shown that 3D MCs with lattice constants
in nanoscale should have magnonic gaps when constituent
ferromagnetic materials are chosen properly.12,13 This gap
can be obtained for many crystal structures, including cubic,
simple hexagonal, and close packed lattices.12,14,15

The possibility for tailoring damping in magnetic ma-
terials is intensively studied in the literature. This direc-
tion of research is developed not only in the context of

potential applications [e.g., within spintronics (in particular,
spin transfer torque devices) and magnonic devices] but
also to understand fundamental experimental results in the
physics of magnetism.16–21 There are two contributions to
spin relaxation usually identified, intrinsic and extrinsic. The
former is usually related to the spin-orbit coupling and is
described by the phenomenological Gilbert damping term.
In principle, the damping constant can be anisotropic but in
3D metallic ferromagnets under the conditions used in SW
calculations this anisotropy is usually averaged out.22,23 For the
extrinsic damping the main contribution is usually attributed
to two-magnon scattering processes,24,25 which can be related
to the scattering on defects26 including also their periodic
distribution.19,27 The influence of the periodic modulation on
extrinsic damping processes (i.e., two-magnon scatterings)
were studied in Ref. 27. It was shown that a periodic scattering
potential for magnons can result in a significant increase in
the spin relaxation rates and can enable the tailoring of the
anisotropy of damping.18,27 In another study, the influence of
retardation effects on the effective damping was investigated.28

It was shown that the lifetime of SWs depends on the
retardation time and long-living SWs for selected wave vectors
were found.

In this paper we show that 3D MCs offer the possibility of
tailoring the strength and anisotropy of the intrinsic damping
of SWs. We neglect the extrinsic damping as well as any
contribution from the surroundings29 as we assume that the
MCs fill the whole space. We also neglect magnetic relaxation
due solely to interfaces.30 The results of our calculations
using the above mentioned model are presented for 3D MCs
composed of ferromagnetic spheres in a ferromagnetic matrix
in a simple cubic (sc) lattice. We assume that in each of
the two constituent materials the coefficient of the Gilbert
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damping is isotropic, which is a common assumption in the
linear approximation used in our calculations.31

The layout of this work is as follows. Section II presents
the general theory of our calculation method. In Sec. III, we
report the calculations using our method for a MC consisting
of spherical scattering centers forming a sc lattice. We consider
also the effect of material and structural parameter values on
the wave damping in this section. The interpretation of the
numerical results with the effective and estimated damping
coefficients is presented in Sec. IV. Finally in Sec. V we detail
how the anisotropy in the effective damping can be used as a
tool for designing practical devices.

II. CALCULATION METHOD

The equation of motion of the space- and time-dependent
magnetization vector M(r,t), [i.e., the Landau-Lifshitz-Gilbert
equation (LLG)], is the starting point for the study of spin
waves in the classical approach. When written in international
system of units, it reads

∂M(r,t)
∂t

= γμ0M(r,t) × Heff(r,t) + α

MS

(
M × ∂M(r,t)

∂t

)
.

(1)

In this equation γ is the gyromagnetic ratio, Heff denotes
the effective magnetic field acting on the magnetization. We
assume that the effective magnetic field is composed of three
contributions: bias external magnetic field, exchange field, and
magnetostatic field.32 MS is the saturation magnetization, μ0

denotes the permeability of vacuum and the last term on the
right describes damping. The dimensionless damping factor α

in the rightmost term is Gilbert’s phenomenological damping
parameter. The LLG equation is nonlinear and to obtain the
spin wave spectrum we need to obtain a linear approximation
of this equation: we decompose the magnetization vector into
a static part (parallel to the external bias magnetic field H0

with a value equal to the MS) and a small dynamic part m(r,t)
(the m vector is perpendicular to H0). In addition, because
we are considering a periodic system, the Bloch theorem is
applied. The Fourier transform is used to obtain a frequency
domain solution [i.e., we assume m(r,t) ∝ exp(i�t)]. This
method, called the plane wave method (PWM), has already
been described in the literature, for details see, e.g., Refs. 12
and 13. The methodology for extending the method to consider
damping has been described for the 2D case in Ref. 11.
Here, we implement the calculation of damping for 3D
structures. In the traditional PWM, an eigenvalue problem
is obtained and the eigenvalues represent the frequencies,
�. In the implementation extended to consider damping
effects, a generalized eigenvalue problem is obtained and the
eigenvalues can adopt complex values (i.e., � = �′ + i �′′)
where i is the imaginary unit. The real part of these eigenvalues,
�′ is the frequency, and the imaginary part �′′ gives the inverse
of the SW lifetime (i.e., the decay rate).33 In the calculations
we used 1331 plane waves to obtain reasonable convergence
for three low-frequency magnonic bands analyzed in this
paper.

The value of the decay rate alone could be used to evaluate
the damping at a specific frequency and direction in a wave
vector space. On the other hand, considering Eq. (2), which

is a known result in the theory of ferromagnetic resonance
measurements, we can see that the Gilbert damping parameter
in the LLG equation models damping as proportional to the
frequency34

�BG = 1.16α
�′

γ
, (2)

where the BG is a half width of a ferromagnetic resonance
line. It makes sense, therefore, to define a similar quantity
that is not proportional to the frequency and therefore allows
us to compare the damping modification in the spin wave
propagation for different magnonic bands. This quantity will
depend on the profile of the magnetization distribution but
will not be proportional to the frequency. This quantity, called
figure of merit (FOM), was used already in Ref. 11 as the ratio
of the real to the imaginary part of the eigenvalues

FOM = �′

�′′ .

The FOM allows us to compare the degree of damping
variation between bands and between different directions in
space.

In the following section, Sec. III, we define the physical
system used to exemplify the use of this 3D PWM including
damping and provide representative results.

III. RESULTS OF THE PLANE WAVE METHOD
CALCULATIONS

The first system under study is a 3D MC obtained by arrang-
ing spherical ferromagnetic scattering centers (material A) in a
simple cubic (sc) lattice, as shown in Fig. 1(a). The [001] axis
of the crystal is parallel to the z axis. The assumed value of
the sc lattice constant is a = 10 nm; the magnetic parameters
of the matrix material (i.e., material B) in Fig. 1(a) are sat-
uration magnetization MS = 0.194 × 106 A/m and exchange
constant A = 3.996 × 10−12 J/m; the magnetic parameters of
the spherical scattering centers, material A, are MS = 1.752 ×
106 A/m and A = 2.1 × 10−11 J/m. The values assumed for
the Gilbert damping parameter were chosen arbitrarily as
αA = 0.0019 and αB = 0.064 for spherical scattering centers
and the matrix, respectively, unless stated otherwise. This
structure will be called direct crystal. We will study also the
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FIG. 1. (Color online) (a) The sc structure of the considered
MC (direct crystal). The MC consists of spherical scattering centers
(material A of radius R) immersed in the host matrix (material B).
The lattice constant is a and the external static magnetic field, H0 is
directed along the z axis. (b) The first BZ of the sc lattice. The dark
(orange) color shows the part of the BZ over which the calculations
of the magnonic structure are performed.
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FIG. 2. (Color online) The frequency and decay rate of the SWs are shown for the direct MC (spheres of material A in matrix B) in (a) and
(b), respectively. A filling fraction of 0.2 was assumed in the calculations. (c) The figure of merit (FOM) is shown for the same structure.

corresponding inverted crystal (i.e., a crystal with scattering
centers made of materials B and A serving as the matrix
material). A constant external magnetic field μ0H0 = 0.3 T is
applied in the z direction to saturate the crystal. The dynamic
part of the precessing magnetization has only x and y nonzero
components.

The magnonic band structure resulting from the numerical
solution of the eigenproblem for the direct MC is shown in
Fig. 2. The filling fraction, defined as a ratio of the volume of
scattering centers in the unit cell (it is a sphere in our case) to
the volume of the unit cell: f = 4πR3/3a3, was assumed to
be f = 0.2. It corresponds to a sphere radius R = 3.628 nm.
The magnonic band structure was calculated along a path in
the irreducible part of the first Brillouin zone (BZ). The points
along this path are defined in Fig. 1(b). We limit the spectra
presented in this paper to low frequencies only (i.e., to the
first three bands). We show the frequency (�′) and decay rate
(�′′) in dependence on the wave vector in Figs. 2(a) and 2(b),
respectively. We can see that there is not any magnonic band
gap in the frequency spectra. We also observe similar wave
vector dependencies for the frequencies and decay rates. This
implies that the FOM should be quite uniform in the whole BZ.
This is confirmed by Fig. 2(c) in which the FOM is shown along
the path in the first BZ. The FOM has values in the range from
15.8 to 16.4. In this case the FOM can therefore be regarded as
nearly isotropic for all of the considered low-frequency bands.

Let us now increase the filling fraction in the direct
structure. In Figs. 3(a) and 3(b) we show the corresponding
magnonic band structure (i.e., the frequency and decay rate)
respectively, for the direct MC with f = 0.5 (R = 4.92 nm).
We found the magnonic band spectrum to be quite different to
that for f = 0.2. In particular, the first band is separated from
the upper bands in most of the first BZ except for the R-X
direction, thereby forming a partial band gap. The wave vector
dependence of the decay rate for the first band follows that
of the frequency. Consequently, we obtain an almost constant
FOM [note the scale of the vertical axis in Fig. 3(c)]. For the
second band, we found that around the � point, where �′ has a
maximum, �′′ has the minimum. As a result of this, the FOM
is very large near the center of the BZ, reaching nearly 160. In
the rest of the BZ, the FOM is below 30. The FOM is strongly
dependent on the value of the wave vector but remains almost
independent on the direction of propagation.

Thus, we have found that a partial band gap in the magnonic
spectrum and significant values of the FOM coexist at some
points in the BZ. We have performed calculations for other
filling fractions from 0 up to the value corresponding to the
close-packed structure (f = 0.523) for the direct crystal and no
full gap was found. Nevertheless, a full band gap is observed
for the inverted crystal structure. In Figs. 4(a) and 4(b) we
show �′ and �′′ as a function of the wave vector along a path
in the first BZ for the inverted MC with filling fraction of 0.5.
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FIG. 3. (Color online) The frequency and decay rate of SWs in the first BZ for a direct MC (spheres of material A in a matrix of material
B) are shown in (a) and (b), respectively. A filling fraction 0.5 was assumed in calculations. (c) Figure of merit (FOM) for the same structure.
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FIG. 4. (Color online) The frequency and decay rate of SWs in the first BZ for an inverted MC (spheres of material B in a matrix of material
A) are shown in (a) and (b), respectively. A filling fraction of 0.5 was assumed in the calculations. (c) The FOM is shown for the same structure.

We found a complete magnonic band gap between the first and
second bands. We also found that, in this case, the FOM has
very small values for the first band. These values are nearly
independent on the propagation direction or the magnitude of
the wave vector. On the other hand, the second band reaches
a significantly higher value of the FOM at the � point (up
to 250). This value is much larger than that observed for the
direct structure [Fig. 3(c)]. However, the FOM is again almost
isotropic and has a sharp peak exactly at the center of the BZ
(i.e., because the dispersion curve is flat and the group velocity
of SWs goes through zero).

From the results presented so far, we can see that significant
values of the FOM are associated with the second band (i.e.,
two absolute magnonic band gaps are found). In the previously
presented spectra, the lowest band is separated from the second
one by a magnonic gap. Figure 5 shows the magnonic spectra
for the inverted crystal with a filling fraction of 0.2, with �′
and �′′ plotted as a function of the wave vector in panels (a)
and (b), respectively. Both band gaps are marked in yellow
color in the figure. These two band gaps separate the second
band from the other magnonic bands. The imaginary part
of the frequency shows features that are not present in the

other crystals investigated here. For the second band, �′ has
a maximum at the � point, and consequently, the FOM has a
minimum in the same point. The maximal values of the FOM,
larger than 400, are found at corners and edges of the first
BZ [i.e., at the points M = π/a(1,1,0), M ′ = π/a(1,0,1),
and R = π/a(1,1,1)]. At the borders of the first BZ along
the principal axis [X = (1,0,0) and X′ = (0,0,1)] we found
the FOM to reach only values that are smaller than 200. We
can conclude that in this crystal, the FOM is anisotropic and
strongly dependent on the magnitude of the wave vector.

In summary, we have found:
(i) A low value of the FOM is observed for the first

band both for direct and inverted crystals irrespectively of the
filling fraction. The FOM is almost isotropic and only weakly
dependent on the absolute value of the wave vector. This means
that this band can be described using effective parameters.

(ii) Only for the inverted crystal with f = 0.2 we found
strong anisotropy in the FOM for the second band.

(iii) There is apparently a cause-and-effect relationship
between the isolation of the second band (due to the presence
of band gaps directly above and below) and the observation of
high values of the FOM.
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FIG. 5. (Color online) The real and imaginary parts of the frequency in the first BZ for inverted MC (spheres of material B in matrix of
material A) in (a) and (b), respectively. A filling fraction of 0.2 was assumed in the calculations. (c) The FOM is shown for the same structure.
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FIG. 6. (Color online) Decay rate of SWs versus its frequency for
wave vectors randomly chosen from the first BZ. Direct crystals (A
spheres in the B matrix) are shown in (a) and (b), inverted crystals
(B spheres in the A matrix) in (c) and (d). In (a) and (c) the results
for f = 0.2 and in (b) and (d) for f = 0.5 are shown. Magnonic
gaps are colored in yellow color. In (c) the second band with the
moonlike shape is marked by blue ellipse, as it is expected to have
strong anisotropy in damping.

IV. DISCUSSION

It has already been mentioned that MCs showing a strong
dependence of loss on the direction of the wave vector can be
used to design effective magnonic waveguides.11 We would
like to focus on the anisotropy of lifetime of SWs from another
point of view and to explain the physical mechanisms that
govern the damping of SWs in MCs. To facilitate the analysis,
we propose to plot the decay rate versus frequency of the
SWs as calculated for wave vectors of random direction and
magnitude in the first BZ. Figure 6 shows such plots for the
direct and inverted MCs with filling fractions f = 0.2 and 0.5.
From these figures we find two linear dependencies: a linear
function �′′ vs. �′ for the first mode and a linear dependence
of the upper limit of �′′ ≡ �′′

max on �′ for all the considered
structures.35

The linear relation between the decay rate of SWs and the
frequency for the first band can be described by the following
relation: �′′ = FOM−1 × �′. We found the inverse of FOM to
be the slope of the straight line obtained by regression of the
data presented in Fig. 6. To explain this feature let us consider
SWs propagating in uniform materials. To have a good
model for comparison we have to choose a proper structure.
Because we are studying 3D MCs filling the whole space,
the proper choice seems to be the ferromagnetic uniformly
magnetized sphere with free boundary conditions imposed
on the dynamic component of the magnetization vector. The
sphere is considered in order to avoid shape anisotropy effects.
If the sphere is small enough to separate higher harmonics
from the uniform excitation, such results should be useful for
interpretation of the dependencies found for low-frequency
modes in 3D MCs, at least. In uniformly magnetized spheres,
FOM = 1/α, where α is a Gilbert damping constant of the
uniform sphere.33 This means that the lifetime of SWs from

the first band of 3D MCs behaves like the one from uniform
materials. This allows us to introduce the effective damping
of the low-frequency mode in 3D MCs as αeff = 1/FOM,
where the inverse of FOM is the slope of the line fitted to
the dependencies shown in Fig. 6 for the first band. From the
PWM solutions we have found αeff equal: 0.062, 0.058, 0.052,
and 0.059 for the direct crystal f = 0.2 and 0.5, and inverted
crystals with f = 0.2 and 0.5, respectively. These values are
between the values of the Gilbert damping coefficient of the
constituent materials (αA and αB) but in fact all of them are very
close to the highest value (i.e., 0.064). This behavior would be
reasonable if the SW modes from the first band in both kinds of
the investigated crystals concentrated their amplitude mainly
in the material with higher value of damping. Two-dimensional
color maps of the modulus of the dynamical components of
the magnetization vector (i.e., |m| = √

m2
x + m2

y) are shown
in Fig. 7 , confirming our hypothesis. The amplitude is shown
in two cross sections perpendicular to the z axis: one plane
crossing the centers of the spheres [plane (001)] and the
second crossing the space in the middle between the spheres
[plane (002)]. Red color marks maximum values while blue
corresponds to zeros of the amplitude.

To have a quantitative measure of the damping of SW modes
we can integrate the mode profiles in Fig. 7 weighted with
the respective damping. The derivation of the formula for an
estimated damping αest in one-dimensional periodic structures
can be found in Ref. 36. A similar procedure can be applied to
3D structures and the final expression will have a similar form
with integrals over volume of the material A or B in the unit
cell, now in 3D,

αest(k,n) =
αsph

MS,sph

∫
sph |mk,n|2dv + αmat

MS,mat

∫
mat |mk,n|2dv

1
MS,sph

∫
sph |mk,n|2dv + 1

MS,mat

∫
mat |mk,n|2dv

, (3)

where the indices “sph” and “mat” make reference to the sphere
and matrix, respectively; mk,n is the dynamical component
of the magnetization vector for the band n and wave vector
k. This formula allows us to calculate an estimated value of
damping for each band (n) and each wave vector (k). The
calculated values of the estimated damping parameters for the
first band in � and R points in the BZ are collected together
with the effective damping constants obtained from the slopes
in Fig. 6 in Table I. For the direct crystal the damping constant
from both methods match very well. For the inverted crystal,
there is significant variation of α in dependence on the wave
vector value [see also Fig. 5(c)] but the arithmetic average of
estimated values also match well with the αeff.

Now we will discuss the results obtained for the second
band, where in the case of the inverted crystals, a large FOM
was found in the R and M points in the BZ. The amplitude of
the dynamical components of the magnetization vector and the
respective estimated damping parameters are shown in Fig. 7
for the wave vector from the BZ center and BZ edge (i.e., for
the � and R points) respectively, for the direct crystal (f =
0.5) and inverted crystal (f = 0.2). The estimated damping
parameters αest from the profiles are given also in this figure.
For the direct crystal we have found that the FOM reaches a
high value at the � point (∼=160) and a very small value for the
R point (less than ∼=18), as shown in Fig. 3(c). The respective
damping values obtained from the profiles are 0.006 and 0.063,
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FIG. 7. (Color online) The amplitude of the dynamical components of the magnetization vector across the planes perpendicular to the z

axis and crossing it at 0 [plane (001)] and at a/2 [plane (002)]. The profiles from the first and the second band in � and R point are shown for
the direct crystal with f = 0.5 (left columns) and for the inverted crystal and f = 0.2 (right columns). The estimated value of the damping
constant of the related mode [calculated according to Eq. (3)] is also given for each profile.

for the � and R points, respectively. For the inverted structure
a strong change in the FOM, which is eight times lower at
the � point as compared to its value at the R point can be
seen in Fig. 5(c). This fact is also supported by the damping
coefficient values obtained from the SW profiles: αest(�,2) =
0.016 and αest(R,2) = 0.002 at � and R point in the BZ,
respectively.

TABLE I. The effective damping parameters (αeff) for the first
band obtained by assuming a linear dependence �′′(�′) and fitting
the slope from Fig. 6 are shown. The estimated damping coefficients
(αest) extracted according to Eq. (3) from the profiles of SWs at the
� and R points in the first BZ for the first band shown in Fig. 7 are
also presented.

Structure αeff αest(�,1) αest(R,1)

Direct f = 0.5 0.058 0.058 0.06
Inverted f = 0.2 0.052 0.045 0.059

We have already established the relation between the value
of the FOM, estimated values of the damping coefficients,
and the distribution of the mode profiles over the constituent
materials. It remains still unattended, however, how changes
in the damping parameters of the constituent materials (αA and
αB) influence the lifetime of the different modes. To get some
insight we propose to take a look at the frequency and decay
rate as a function of the relative loss parameter (RLP), which
takes values from 0 to 1 and we define as

αsph = 0.0659 × RLP,
(4)

αmat = 0.0659 × (1.0 − RLP),

where the coefficient 0.0659 is chosen equal to αA + αB.
According to this definition, for RLP = 0 the SWs in spheres
will be undamped while the damping will reach its maximal
value (i.e., 0.0659) in the matrix. For RLP = 1, the reverse
situation occurs (i.e., no damping is present in the matrix)
while it reaches its maximum value in the spheres. In Figs. 8(a)
and 8(b) the frequency and decay rate of SW modes from the
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FIG. 8. (Color online) (a) Frequency and (b) decay rate of the SWs are shown as a function of the RLP for the inverted crystal with filling
fraction 0.2 calculated with PWM. The frequencies from the second band for the �, R, and X points in the BZ are shown. (c) Estimated values
of the damping coefficient are shown in dependence on RLP for the �, X, and R points for the second band. αest are calculated according to
Eq. (3). (d) The product of αest and �′ is shown for the �, X, and R points from the second band. There is a close relation between αest × �′

[shown in (d)] and �′′ [shown in (b)].

second band for three points from the first BZ (i.e., for �, X,
and R) are shown in dependence on the RLP. The calculations
were performed for the inverted crystal with filling fraction
0.2. We have found that the frequency is virtually independent
on the RLP [Fig. 8(a)]. This behavior can be expected due
to the fact that in thin films the dependence of damping on
frequency is a second-order effect.33 The decay rate is a linear
function of the RLP with negative slope depending on the wave
vector: at the R point the slope reaches its highest value while
at the � point, it reaches its lowest value. We can understand
this behavior, because we already showed that the amplitude
of the SW modes for the second band is concentrated mainly in
the spheres. Consequently, it is expected to observe the lowest
values of �′′ for RLP = 1.

The RLP of the inverted crystal [the corresponding band
structure is shown in Fig. 5(a)] is 0.97. We see that for this
RLP, the imaginary part of a frequency at R and X has almost
the same value but less than half of that at � point. This
shows from another point of view the main features already
observed in Fig. 5(c) (i.e., highest FOM at R and smallest at �).
Here we see that the anisotropy of the FOM is dependent on
the distribution of damping among the constituent materials
of the MC. In particular, no anisotropy is observed for the
case when RLP = 0.5 (i.e., when the damping coefficients in
spheres and matrix are equal). This result can also be obtained
directly from the PWM [i.e., by plotting FOM(RLP) ≡ �′
(RLP)�′′(RLP)].

The linear dependencies presented in Fig. 8(b) provide
evidence that the estimated damping coefficient calculated
from the Eq. (3) should also preserve a linear dependence on
the RLP. The αest(RLP) can be calculated from the SW profiles
obtained from PWM (the profiles have to be calculated only
once for selected RLP) according to Eq. (3) with damping
coefficients defined by Eqs. (4). The results for the second
band for a few selected points in the BZ are shown in
Fig. 8(c). We see that for RLP = 0.5 the αest is the same
independently of the wave vector. To have a quantitative
comparison between αest and the numerically calculated �′′
we need to multiply αest by �′. The product αest × �′ is shown
in Fig. 8(c). A good qualitative agreement with �′′ as shown
in part (b) of this figure is clear. Quantitatively, the differ-

ences are largest near RLP = 0 and decrease when the RLP
increases.

V. APPLICATION OF THE PROPOSED
THREE-DIMENSIONAL MAGNONIC

CRYSTAL

In Fig. 6(c) a shape similar to a crescent moon can be
observed for the second band lying between two magnonic
band gaps. This is interesting because it means that, depending
on the direction, we can identify regions of low and high
damping for the same frequency and nothing in between. For
application as beam shaper, this is just what we need. The
region in which this happens is easy to identify using the
introduced style of plotting. Also, it allows us to identify
propagation directions that correspond to low and high
damping at the same frequency. We can use Fig. 5 for this
purpose, where the respective band structure is shown. We can
note that on the paths going through � point (i.e., from X′ to
� to X and from M to � to R, the decay rate is higher (and
consequently the FOM is smaller) than in the rest of the path.
We can also notice that for frequencies above approximately
200 GHz there is an allowed SW band only around the R point.
In this point also the decay rate is very low, giving high FOM.
This functionality can be combined with changes controlled
by the external magnetic field, which would have the effect of
shifting up or down the range of frequencies where the above
mentioned conditions are fulfilled.

If we want to use a mode for transmitting information, in
other words, if we want to use our infinite MC as a waveguide,
a necessary condition for usefulness is to show that the group
velocity (i.e., its magnitude) is greater than zero. The extremal
values of the FOM are found for values of the wave vectors in
the BZ border (R, X, or M points) or at the BZ center (� point).
At these points the dispersion curves reach extreme values and
the group velocity is 0. To have a qualitative measure of the
usefulness of a given mode we propose to look at the product of
the group velocity and the FOM. A large value of this product
will occur at points with low loss and high group velocity. In
Fig. 9 we show the product, vg× FOM (calculated directly from
the dispersion relation) for the second band along the path in
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FIG. 9. The absolute value of the product of a group velocity (vg)
and FOM for the second band for the inverted crystal (with f = 0.2)
along the path in the first BZ.

the first BZ for the inverted crystal with f = 0.2. We see, that on
the path along, �-R and X-R this product has maxima, which
define the optimal wave vectors for possible applications. At
these points the group velocity of SWs is around 200 m/s.
This speed is rather low, but still a lifetime around 0.5 GHz
will allow a transport of the signal for a distance around
2 μm. This application would also face the challenge that the
anisotropy of the damping in 3D MCs will depend on the
RLP as shown in Figs. 8(b) and 8(c). This means that
the properties depend on the distribution of damping among the
constituent materials. This however could also be considered
as an opportunity from the designer point of view.

In Ref. 37, Mruczkiewicz et al. showed that stacks of 2D
all-ferromagnetic magnonic crystals could be used to design
metamaterials with negative permeability at frequencies of
several tenths of GHz. In particular, negative permeability was
observed in the vicinity of high-order resonances for which
the magnonic mode amplitude was preferentially distributed
within one of the two constituent materials. The results
presented in this paper allow us to speculate that if this material
in which the magnonic amplitude is concentrated is in addition
characterized by a low damping coefficient, then the resonance
will be even stronger and the quality factor will be even
higher than that obtained in Ref. 37. A rigorous proof of this
hypothesis is however beyond the present study.

VI. CONCLUSION

Using numerical calculations based on the PWM we have
shown that magnonic crystals enable us to tailor the effective
intrinsic damping of spin waves. A proper choice of the
MC structure and its filling fraction allows us to design
a magnonic band structure with anisotropic and strongly
wave-vector-dependent effective damping. We introduced the
plots of the decay rate versus frequency for randomly chosen
wave vectors from the first BZ. With the help of these plots
we have shown that it is possible to obtain for the same
frequency two different directions of SW propagation with
low and high damping, where propagation takes place at a
finite group velocity.

We have proposed a qualitative explanation of the depen-
dencies observed in our numerical results based on the analysis
of the SW amplitude distribution among the constituent
materials. The formula for the estimated effective damping
coefficient, introduced here for 3D MCs, is wave vector and
band number dependent and describes adequately numerical
results. We have shown that the decay rate of SW in 3D MCs
is a linear function of the relative loss parameter. This is an
important result, which allows for a reduction of the time of
computations. We have shown also that large values of the
FOM in MCs coexist with magnonic gaps in the spin wave
spectra as both effects are influenced by the distribution of the
SW amplitude in the unit cell in a similar way. This model
allows us to understand the effective behavior of damping of
the first mode in the magnonic spectrum, irrespective of the
direction and magnitude of the wave vector.
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