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Phase transition of square-lattice antiferromagnets at finite temperature
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The magnetic properties of the two-dimensional J1-J2 model with both exchanges J1 and J2 being
antiferromagnetic and a single-ion anisotropy at nonzero temperature are investigated. As J2/J1 < 1/2 (>1/2),
only the Néel (collinear) state exists. When J2/J1 = 1/2, both the Néel and collinear states can exist and have
the same Néel temperature. The calculated free energies show that there can occur a phase transition between
the two states below the Néel point when the single-ion anisotropy is strong enough. It is a first-order transition
at nonzero temperature. It is possible that the doping in real materials can modify the ratio of J2/J1 to reach 1/2
so as to implement the phase transition.
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I. INTRODUCTION

A square lattice antiferromagnet can be described by
the well-known two-dimensional (2D) J1-J2 model. In this
model both the nearest neighbor (nn) and next nearest
neighbor (nnn) exchanges are antiferromagnetic (AF), so
that it was believed to be a frustrated system. This model
could be used to describe the structures in real materials.
It was first related to the copper oxide monolayers in the
Cu-based high-temperature oxide superconductors,1 and then
to magnetic planes in some other materials.2–6 The most
representative structure that could be well described by
this model might be the Fe monolayers in the Fe-based
superconductors La-O-Fe-As7–13 and BaFe2As2.14 Because of
its importance, the J1-J2 model has been carefully studied by
various methods. However, the study has been mainly focused
on its properties, especially its possible phase transition at
0 K.15–17 Investigations concerning nonzero temperature18–24

have been comparatively much fewer, although the real
materials are at finite temperature. Despite the already
given physical results of the system by these investigations,
there may be some interesting features still hidden at finite
temperature.

In this paper, we study the J1-J2 model as a representative
of such a Fe plane, focusing our attention on the properties at
nonzero temperature. The physical quantities of the quantum
model at finite temperature are calculated. A remarkable
result is that when J2/J1 = 1/2, there may occur a phase
transformation below the Néel point TN .

II. THE HAMILTONIAN AND METHOD

The AF Hamiltonian of a square lattice is H =
1
2

∑
i,j Jij Si · Sj − D

∑
i(S

z
i )2. The first term is Heisenberg

exchanges. Only the nn and nnn exchanges J1 and J2 are
considered, both being positive. The second term presents
a single-ion anisotropy. If a 2D AFM system has no any
anisotropy, there will be no spontaneous sublattice magne-
tizations in it.24,25 It was indeed possible for the single-ion
anisotropy to appear in real materials.26 We term the exchanges
J1 and J2 and anisotropy D as Hamiltonian parameters. We let
Boltzman constant kB = 1 so that all the quantities, including
Hamiltonian parameters, temperature T , and sublattice mag-
netization 〈Sz〉, become dimensionless. 〈Sz〉 is the assembly

thermostatistical average of spin operator Sz. We fix J1 = 1
and change the J2 value in computation. D is assumed to be
two or three orders of magnitude less than J1. In the real
La-O-Fe-As materials the spin quantum number might be
larger than 1/2.27 Therefore, the cases of some of the lowest
spin quantum numbers are considered.

It was proposed that there might be four possible spin
configurations,28,29 among which the two named as AF1 and
AF230 had lower energies. They are depicted in Fig. 1, and were
called Néel state and collinear state, respectively. In either of
the configurations, the lattice is divided into two sublattices.
The spins within each sublattice are parallel to each other,
and the spins of the two sublattices are antiparallel to each
other. The spin averages of the two sublattices are denoted as
〈Sz

1〉 and 〈Sz
2〉, respectively. Since there is no external field,

〈Sz
1〉 = −〈Sz

2〉 = 〈Sz〉. We calculate the stable configurations
by the many-body Green’s function method under random
phase approximation.31 According to our calculation results,
when J2/J1 < 1/2, the stable state is AF1 configuration where
the nn spins are antiparallel to each other, showing that the nn
exchange is dominant. While for J2/J1 > 1/2, the stable state
is AF2 where the nnn spins are antiparallel to each other. This
conclusion holds at any temperature, for any S and nonzero D

values. We also tested other possible ordered states including
the two suggested in Refs. 28 and 29, and none of them was
stable at nonzero temperature.

III. MAGNETIC PROPERTIES

In Fig. 2 we plot the curves of spin average 〈Sz〉 versus T at
various J2 values. In this and following figures, we always use
the solid and dashed lines to represent the results of AF1 and
AF2 configurations, respectively. The temperature at which
〈Sz〉 becomes zero is the Néel point, denoted as TN . Because
we merely research the case of nonzero temperature, when
we mention zero temperature, we actually mean the tempera-
ture very close to zero, which is denoted by 0+. To describe
the dependence of the curves on the J2 value, we concentrate
our attention to two physical quantities: Néel temperature TN

and the spin average 〈Sz〉 at 0+ K, the latter hereafter denoted
as 〈Sz(0+)〉. As J2 increases from zero to 0.5, both TN and
〈Sz(0+)〉 decrease. At J2 = 0, it is an ordinary nn AF exchange
system, and there is no competition to cause frustration. As J2
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FIG. 1. (a) AF1 and (b) AF2 configurations.

increases from 0, the competition between J2 and J1 emerges
and becomes stronger. This results in the drop of both TN and
〈Sz(0+)〉.

When J2 = 0.5, the competition between J1 and J2 is the
strongest. As J2 rises from 0.5, the role of J2 becomes more
important and the competition becomes comparatively weaker.
As a consequence, both TN and 〈Sz(0+)〉 increase.

Figure 3 plots the results of TN as a function of J2 at different
S and D values. This figure is in fact a phase diagram that
contains three phases: AF1, AF2, and paramagnetic (P) phases.
A solid line is the border line between phases AF1 and P, and
a dashed one is the border between AF2 and P. As J2/J1

approaches 1/2 from either side, the competition between J1

and J2 becomes stronger and makes TN lower. At J2/J1 = 1/2,
TN is the lowest. Calculations show that when J2 > 1, TN is
linearly proportional to J2.

Figure 4 plots curves of 〈Sz(0+)〉 versus the J2 value.
As temperature approaches to 0+ K, the thermodynamic
fluctuation goes to zero but quantum fluctuation still exists in
an AF system. A smaller 〈Sz(0+)〉 value represents a stronger
quantum fluctuation. As J2/J1 approaches 1/2 from either
side, the competition between J1 and J2 lowers the 〈Sz(0+)〉
value.

As J2 > 1, the curves of 〈Sz(0+)〉 versus the J2 value are
almost flat. This means that when J2 is sufficiently large, it is
predominant compared to the J1 value, so that the quantum
fluctuation at 0+ K caused by the competition between J1 and
J2 is almost unchanged with the variation of the J2 value.
Nevertheless, no matter how large the J2 value is, 〈Sz〉 of
AF2 is always smaller than that of AF1 when J2 = 0. This is

FIG. 2. 〈Sz〉 vs T curves for S = 1 and D = 0.01. The numbers
labeling the curves are the J2 values. When J2 < 0.5(>0.5), the state
is AF1 (AF2). When J2 = 0.5, both states exist.

FIG. 3. (a) Néel temperature vs J2 value. (b) Enlargement of the
region around J2 = 0.5. The lines are guides to the eyes.

because when J2 > 0, there is always a competition between
J1 and J2. While in the case of J2 = 0, there is no such a
competition, and only the nn AF exchange plays a role.

The effect of the anisotropy D value and spin quantum
number S is embodied in Figs. 3 and 4. As the D or S value is
smaller, the 〈Sz〉 value at any temperature is smaller, and the
Néel point TN is as well.

FIG. 4. (a) 〈Sz(0+)〉 vs J2 value. (b) Enlargement of the region
around J2 = 0.5. The lines are guides to the eyes.
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IV. POSSIBLE PHASE TRANSITION

Now let us discuss the case of J2/J1 = 1/2. At first thought,
in this case the competition between J1 and J2 is strongest so
that the AF configurations may be totally frustrated and either
AF configuration is difficult to hold. However, our calculation
shows that for any nonzero D value, both AF1 and AF2 states
can exist as displayed by Figs. 2 to 4. In Fig. 2, the solid
and dashed lines marked by “0.5” show that both the states
can exist and have the same TN point under the parameter
J2/J1 = 1/2. In Fig. 3 it is shown that both AF1 and AF2
reach the same Néel temperature when J2/J1 reaches 1/2 for
various S and D values. Figure 4(b) reveals that both AF1 and
AF2 have nonzero 〈Sz(0+)〉 as J2/J1 reaches 1/2.

Since as J2/J1 goes to 1/2 from either side, TN reaches
the same value [see Fig. 3(b)], it is understood that the Néel
point is uniquely determined by the Hamiltonian parameters,
although there may be more than one state.

Figure 4(b) shows that when J2/J1 = 1/2, 〈Sz(0+)〉 values
of the two states are not the same, and that of AF2 is higher.
This can be explained from the pictures in Fig. 1. In the AF2
configuration, every spin is parallel to a half of its nn spins and
antiparallel to another half, respectively, while in AF1, every
spin is antiparallel to all of its nn spins. Thus the quantum
fluctuation of AF1 at 0+ K is stronger than AF2. The nnn spins
may also play a role in causing frustration, but, intuitively,
should not be so important as the nn ones.

Since both configurations can exist, one may ask which
one is stabler. At fixed temperature and volume, the state with
lower free energy is stabler. The free energy can be evaluated
numerically by means of the internal energy via F (T ) =
E(0+) − T

∫ T

0+
E(T ′)−E(0+)

T ′2 dT ′. Before calculating the free en-
ergy, one has to compute the internal energy, which is defined
as the thermostatistical average of Hamiltonian, E = 〈H 〉/N ,
where N is the site number in the 2D plane. The correlation
functions 1

2

∑
i,j Jij S

+
i S−

j involved in the energy are carefully
calculated by use of the spectral theorem.32 Figure 5 plots
E(T ) for S = 3/2 and D = 0.01 and 0.05. E(T ) increases with
temperature monotonically as it should be. In Fig. 5, E2(T ) >

E1(T ), but the internal energy cannot be used to determine
which state is stabler, since the entropies of the two states are
different. The corresponding free energies are plotted in Fig. 5.

FIG. 5. The internal energies E(T ) (ascending curves) and free
energies F (T ) (descending curves) at J2 = 0.5 and S = 3/2. (a) D =
0.01 and (b) D = 0.05.

F (T ) decreases monotonically with temperature. It is seen
that F1(0+) < F2(0+), which means that near zero temperature
the AF1 configuration is stabler. However, F2(T ) drops faster
than F1(T ), and the two curves cross at a temperature, which
means that above this temperature AF2 is stabler. Thus it is
concluded that below TN an AF1-AF2 phase transformation
may occur. By comparison of Figs. 5(a) and 5(b), it is seen that
as the anisotropy D is raised from 0.01 to 0.05, both F1(0+)
and F2(0+) drop, the former decreasing more, and thus the
AF1-AF2 phase transformation temperature rises.

In Fig. 6 we plot the free energy curves for S = 1,2,5/2,
each with two D values. The common features in this figure
and Fig. 5 are that F2(T ) always decreases faster than F1(T ),
and as D rises, both F1(0+) and F2(0+) drop, the former
dropping more. In Fig. 6(a), where S = 1, for either D value,
F1(0+) is much lower than F2(0+), and up to TN , the two
curves do not cross. Therefore, in this case, there is no phase
transformation below the Néel point. As for S = 3/2, the
AF1-AF2 transformation may occur, as having been revealed
by Fig. 5. In Fig. 6(b), as D = 0.01, F1(0+) is higher than
F2(0+), and up to TN , the two curves do not cross, indicating
AF2 being always stabler and lack of the phase transformation.
While when D is raised to 0.05, F1(0+) drops to such a position
that F1(0+) < F2(0+), and the two curves F1(T ) and F2(T )
cross below TN . Therefore, a phase transformation may occur.
The analysis of Fig. 6(c) is similar to that of Fig. 6(b).

It is deduced from Figs. 5 and 6 that the condition for the
AF1-AF2 phase transformation to occur is that the D value
should be large enough so that F1(0+) < F2(0+). Otherwise,
F1(0+) > F2(0+) and there is no phase transformation, be-
cause F2(T ) always decreases with temperature faster than
F1(T ). In the case of S = 1, when the D value continues to
increase, then both the solid and dashed lines are lower, and
if D is strong enough, it is expected that the two free energy
lines will cross and the phase transition will occur.

It should be noted that both AF1 and AF2 are stable
states but with different energies, so that it is a first-order
transition. There is certainly an energy barrier between the
two states. Unlike a classical system, the energy barrier in the
present quantum system is difficult to reckon since it involves
nonequilibrium states.

A question arises from the barrier how to actualize the
AF1-AF2 phase transformation. For instance, in the case of

FIG. 6. The free energies at J2 = 0.5 and several S and D values.
(a) S = 1, (b) S = 2 and (c) S = 5/2.
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Fig. 5(b), suppose that the system is initially under room
temperature. When temperature is decreased to below the
Néel point, the state becomes AF2. As temperature reaches the
AF1-AF2 transformation point, how can the AF2 configuration
overcome the barrier to get to AF1 configuration? We suggest
that applying a strong impulsive magnetic field along the
direction that is perpendicular to the spin direction can make
the system reach the stabler state.

Finally, we would like to briefly discuss the possibility
of adjusting the ratio J2/J1 to become 1/2 in real materials.
The results from the band structure calculation of LaFeAsO
were that J2/J1 > 1/2,27,29,30,33 thus the Fe planes in this
crystal were in the AF2 state. In this kind of material both
the nn and nnn exchanges between Fe atoms were mediated
by As atoms.27 Because the Fe 2D plane was sandwiched
by As atom monolayers, As atoms played a key bridge role
in the indirect exchanges. Since in AFeAsO (A = La, Ce,
Pr, Nd, Sm)10,34 and BFe2As2 (B = Ca, Sr, Ba)35 the Fe-As
sandwich structures were the same, the Fe planes in all these

crystals were in AF2 states, while LaFePO, which had the same
crystal structure as LaFeAsO except that As was replaced by
P, exhibited paramagnetism in the normal conducting state.36

This prompted us to see that the ability of the P atoms in the
Fe-P sandwich structure to mediate the exchange interaction
was rather weak. Based on this fact, we conjecture that the
appropriate doping in As monolayers could modify the ratio
J2/J1 value and possibly to reach 1/2. It therefore deserves
efforts to explore the new material to observe the expected
phase transition.

In summary, we find that in a 2D AF system described
by the J1-J2 model, the phase transformation can occur
between the collinear and Néel states under the condition
that J2/J1 = 1/2.
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