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Mass ratio of elementary excitations in frustrated antiferromagnetic chains with dimerization
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Excitation spectra of S = 1/2 and 1 frustrated Heisenberg antiferromagnetic chains with bond alternation
(explicit dimerization) are studied using a combination of analytical and numerical methods. The system
undergoes a dimerization transition at a critical bond alternation parameter δ = δc, where δc = 0 for the S = 1/2
chain. The SU(2)-symmetric sine-Gordon theory is known to be an effective field theory of the system except at the
transition point. The sine-Gordon theory has a SU(2)-triplet and a SU(2)-singlet of elementary excitation, and the
mass ratio r of the singlet to the triplet is

√
3. However, our numerical calculation with the infinite time-evolving

block decimation method shows that r depends on the frustration (next-nearest-neighbor coupling) and is generally
different from

√
3. This can be understood as an effect of marginal perturbation to the sine-Gordon theory. In

fact, at the critical frustration separating the second-order and first-order dimerization transitions, the marginal
operator vanishes and r = √

3 holds. We derive the mass ratio r analytically using form-factor perturbation
theory combined with a renormalization-group analysis. Our formula agrees well with the numerical results,
confirming the theoretical picture. The present theory also implies that, even in the presence of a marginally
irrelevant operator, the mass ratio approaches

√
3 in the very vicinity of the second-order dimerization critical

point δ ∼ δc. However, such a region is extremely small and would be difficult to observe numerically.
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I. INTRODUCTION

Techniques of field theory have achieved growing success in
interpreting physical properties in low dimensional magnets.
The achievement stems from the close connection between
one-dimensional quantum spin models and their effective
theories. In particular, S = 1/2 Heisenberg antiferromagnetic
(HAF) chains with various perturbations are important and
also relevant for experimental studies of one-dimensional
magnets. The bosonization scheme1 is useful for analyzing
these systems. A HAF chain with bond alternation, or under
a staggered field, is described effectively by the sine-Gordon
(SG) field theory. Elementary excitations in these systems are
a soliton, an antisoliton, and breathers (bound states of the
soliton and antisoliton). Materials such as Cu benzoate2,3 and
KCuGaF6 (Ref. 4) are described by HAF in a staggered field,
and the soliton gap calculated from SG theory explains well the
experimental results. For dimerized chains, the gap formula
as a function of dimerization δ with logarithmic correction
is obtained:5 δ2/3/| log δ|1/2, or it can also be represented as
an effective power-law form with a renormalized exponent
which deviates from 2/3.6 Refined logarithmic correction is
given in Ref. 7. Dimerized spin chains are an appropriate
model for spin-Peierls materials such as CuGeO3 (Ref. 8) or
Ni compounds.9

There are also a number of numerical studies on the
frustrated HAF chain with next-nearest-neighbor coupling. We
consider the Hamiltonian

H = J
∑

j

[{1 + (−1)j δ}Sj · Sj+1 + αSj · Sj+2], (1)

where J > 0. The next-nearest-neighbor coupling α � 0
introduces frustration.

This model exhibits a dimerization transition at δ = δc.
For S = 1/2, the transition point is always δc = 0, since the
Lieb-Schultz-Mattis theorem implies either gapless excitations
or twofold degeneracy of the ground states at δ = 0. In

fact, on the undimerized line δ = 0, there exists a critical
frustration parameter αc ∼ 0.2411.10,11 For α < αc, the system
is a gapless Tomonaga-Luttinger liquid (TLL); that is, the
dimerization transition at δ = δc = 0 is of second order. In
contrast, for α > αc, the ground state is doubly degenerate,
exhibiting a spontaneous dimerization. This implies a first-
order dimerization transition at δ = δc = 0.

For S = 1, on the other hand, δ = 0 (for a small α) belongs
to the Haldane phase and does not represent a transition
line. Instead, a dimerization transition between the Haldane
phase and the dimerized phase occurs12–15 at a finite δc, which
depends on the frustration α. Although the shape of the phase
diagram is thus different, the topology of the phase diagram
is rather similar to that for S = 1/2. In fact, also for S = 1,
there is a critical frustration αc; the transition is second order
with the critical point described by a TLL for α < αc, and first
order for α > αc.

In the neighborhood of the gapless TLL line, the system
acquires a small excitation gap, and would be described by
the SG theory. Since our model (1) is SU(2)-invariant, the SG
theory should also have SU(2)-symmetry. As a consequence,
the mass ratio r of the second lowest breather to the soliton
should be

√
3.

However, numerical results for S = 1/2 chains16 show that
r generally does not agree with the SG theory prediction

√
3.

While r depends only weakly on δ, it does vary as a function
of α. Only near the critical frustration α = αc does r agree
with the SG prediction

√
3. In Ref. 16, it was pointed out that

a marginal operator exists as a perturbation to the SG theory,
and it would shift r from

√
3. However, how exactly the mass

ratio r is affected by the marginal operator was not clarified.
The effect of the marginal perturbation to the SG theory

on the mass ratio was discussed in terms of form-factor
perturbation theory (FFPT) in Ref. 17. However, the theoretical
prediction has not been tested. The mass ratio in the S = 1 case
has also never been studied numerically.
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In this paper, we study numerically the mass ratio of
elementary excitations and the ground phase diagram of
the frustrated HAF with bond alternation (1) for both S =
1/2 and S = 1. We employ the recently developed infinite
time-evolving block decimation (iTEBD) method,18 which
allows high-precision calculation of infinitely long chains.
The masses of elementary excitations are obtained from
the asymptotic behavior of equal-time correlation functions
instead of extrapolation of the finite-size energy spectrum. We
confirm previous results when they are available, and we obtain
the mass ratio for S = 1 as a new result. Furthermore, we derive
an explicit formula for the mass ratio r as a function of δ and
α by combining FFPT and renormalization-group analysis.
This agrees well with the numerical results for both S = 1/2
and 1. Thus both cases are understood in terms of the unified
framework of the SG theory with a marginal perturbation.

This paper is organized as follows. In Secs. II and III,
respectively, we review direct bosonization of the S = 1/2
chain and derivation of the SG theory for the general S case
via the O(3) nonlinear sigma model (NLSM). In Secs. IV and
V, we present numerical study on the mass ratio and phase
diagram for S = 1/2 and 1, respectively. We then discuss
the mass ratio analytically based on FFPT and compare the
theoretical formula with the numerical results in Sec. VI.
Section VII is devoted to conclusions.

II. BOSONIZATION

We first review the bosonization of a spin-1/2 chain. Spin
operators are represented as

Sz
j = a

π
∂xφ + a1(−1)j cos(2φ) + · · · ,

S+
j = eiθ [b0(−1)j + b1 cos(2φ) + · · · ],

where dual boson fields φ,θ satisfy the commutation relation
[φ(x),θ (x ′)] = −iπϑ(x − x ′) [ϑ(x − x ′) is the step function]
with x = ja (a is lattice spacing). φ and θ have periodicity φ ∼
φ + π, θ ∼ θ + 2π . The effective Hamiltonian of the XXZ

chain with dimerization is written with φ and θ as1

Heff = u

2π

∫
dx[K−1(∂xφ)2 + K(∂xθ )2]

+ 2g1

(2πa)2

∫
dx cos(2φ) + 2g2

(2πa)2

∫
dx cos(4φ).

(2)

Irrelevant terms are omitted here. u and K denote spinon
velocity and the Luttinger parameter, respectively. At the
SU(2)-symmetric Heisenberg point, u = πa/2 and K = 1/2.
Since the operator eiqφ(x) has scaling dimension Kq2/4, the
cos(2φ) term is relevant while the cos(4φ) term becomes
marginal. The g1 term arises from the bond alternation (i.e.
dimerization). g2 is known to decrease with increasing α

and vanish at α = αc where the transition from TLL to the
self-dimerized phase happens. Thus, coupling constants g1 and
g2 are proportional to δ and α − αc, respectively. When g1 �= 0
and g2 = 0, (2) is equivalent to the SG model. It is an exactly
solved model, and the excitation spectrum is obtained.19,20

There appear three types of elementary particles: a soliton,
a corresponding antisoliton, and breathers. The number of

breathers is [2/K − 1], where [A] stands for the integer part
of A. The mass of soliton MS and the nth lightest breather MBn

are related through the formula

MBn
= 2MS sin

(
nπ

4/K − 2

)
, n = 1, . . . ,[2/K − 1]. (3)

According to (3), in HAF chain with dimerization (K = 1/2),
the soliton, the antisoliton and the first breather form triplet
while the second breather is a singlet which has

√
3 times

as large mass as the triplet. Although the degeneracy of the
triplet is protected thanks to SU(2)-symmetry, the mass ratio
of singlet to triplet r ≡ MB2/MS is subject to correction caused
by the marginal term g2.

III. SG THEORY VIA THE NONLINEAR SIGMA MODEL

S > 1/2 chains may be bosonized by introducing Hund
coupling to 2S chains of spin-1/2. Each chain is bosonized
separately, resulting in a theory of interacting 2S boson
fields.21 In the low-energy limit, however, one of the linear
combinations of the boson fields becomes important. The SG
theory (or TLL) would emerge as an effective theory of this
linear combination.

However, it is rather cumbersome to pursue this explicitly.
As an alternative, the SG theory can also be derived from the
O(3) nonlinear sigma model (NLSM). The O(3) NLSM was
derived in the semiclassical, large-S limit of the HAF chain.
Nevertheless, it proved to be a useful effective theory even for
S = 1.

Let us define fields n(x) and l(x) by Sj /S ∼ (−1)j n(x) +
l(x). Then the spin-S HAF chain with bond alternation (1) can
be generally mapped to the O(3) NLSM,

Aθ = 1

2g

∫
dτ dx

{
v(∂xn)2 + 1

v
(∂τ n)2

}
+ iθT ,

where g = 2/S is some coupling constant and v = 2JS is the
spin-wave velocity. T = 1

4π

∫
dτ dxn · ∂xn × ∂τ n represents

the integer-valued topological charge and θ = 2πS(1 + δ). For
the moment, let us assume that there is no frustration, α = 0.

O(3) NLSM is known to be integrable22,23 at θ = 0 and
π . At θ ≡ 0 mod 2π , the excitation consists of a triplet of
massive particles. In contrast, the theory is massless at θ ≡
π mod 2π and the infrared fixed point is a SU(2)1 Wess-
Zumino-Witten model, a conformal field theory (CFT) with
central charge c = 1. This is merely the TLL at the SU(2)-
symmetric point K = 1/2.

When bond alternation is absent (δ = 0), the system is
massless (θ = π ) if S is a half-odd-integer, while it is massive
(θ = 0) if S is an integer. This is the celebrated Haldane
conjecture,24 which is now established by intensive analytical,
numerical, and experimental studies.

It is also interesting to consider the effect of bond alternation
δ. By changing δ from −1 to 1, namely from the completely
dimerized limit to the opposite completely dimerized limit,
θ passes the critical point, π mod 2π , 2S times. Thus,
on −1 < δ < 1, there are 2S successive phase transitions.14

This could be understood as successive spontaneous breaking
and restoration of hidden symmetry,25 or more generally,
symmetry-protected topological phase transitions.26,27
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For S = 1/2, the transition occurs only at δ = 0, consistent
with the direct bosonization analysis. For S = 1, there are two
transitions which separate the Haldane phase around δ = 0
from the dimerized phases. The critical points are, according
to the above argument, given by δ = ±δc = ±1/2. However,
in reality, the location of the critical points is renormalized. It
was shown15 numerically that δc ∼ 0.25J .

As discussed above, the critical point is described by the
SU(2)-symmetric TLL with K = 1/2. By considering the
possible perturbations to the TLL, the effective theory near
the critical point δ = δc is determined17 to be the SG theory
with marginal perturbation (2), which was derived previously
for S = 1/2 by direct bosonization. Thus, the same theory (2)
should describe the neighborhood of dimerization transitions
for any S. In the following, we shall investigate the systems
with S = 1/2 and 1 numerically and verify this universality.

IV. MASS RATIO AND PHASE DIAGRAM FOR S = 1/2

We study the excitation spectrum of the system numerically,
and we focus in particular on the change of r due to the
marginal term. We adopt a new strategy to extract the excitation
spectrum from the equal-time correlation function obtained by
iTEBD, shown as follows.

A single-particle excitation in the SG model can be
parametrized by the rapidity θ , which defines its energy
and wave number as M0 cosh θ and (M0/u) sinh θ , respec-
tively (M0 is the mass of the particle). The one-particle
form factor of operator O is specified by θ and the
kind of particle a as FO(θ,a) ≡ 〈0|O|θ,a〉. O represents
an operator which creates the single soliton, the antisoli-
ton, or the breather. We can calculate the equal-time cor-
relation function 〈O(r)O(0)〉 − 〈O(r)〉〈O(0)〉 by inserting
the resolution of the identity 1̂ = ∑∞

n=0 Pn, where Pn is
the projection operator defined as P0 = |0〉〈0| and Pn =
1
n!

∑
a1,...,an

∫ ∏
j dθj

(4π)n |θ1,a1; . . . ; θn,an〉〈θ1,a1; . . . ; θn,an| (n �
1). Then, the leading order of the correlation function28 is

〈O(r)O(0)〉 − 〈O(r)〉〈O(0)〉
≈

∫
dθ

4π
eiM0r sinh θ/u|FO(θ,a)|2.

In the limit of l → ∞, it is calculated to be29

〈O(l)O(0)〉 − 〈O(l)〉〈O(0)〉 = [A(−1)l + B]
e−l/ξ

√
l

(4)

consisting of a staggered and uniform part. We suppose that
the effect of the marginal cos(4φ) term is renormalized into
mass M0 and constants A,B.

In this way, the mass can be extracted from the correlation
function, which we calculate with the iTEBD method. The
truncation dimension, the number of conserved states in
evolution, is fixed to be 200, large enough for the iTEBD
calculation in gapped systems. 〈Sx

0 Sx
l 〉, 〈Sy

0 S
y

l 〉, 〈Sz
0S

z
l 〉, and

〈(S0 · S1)(Sl · Sl+1)〉 are fitted with Ce−l/ξ /
√

l for sufficiently
large and even l. C(=A + B) and ξ are fitting parameters. Then
we can obtain the mass of the soliton, the antisoliton, and the
first and second breathers, respectively, through the relation
M = u/ξ . Note that M is a renormalized mass. While the
value u for α = 0 is obtained exactly from the Bethe ansatz,
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FIG. 1. (Color online) Correlation functions 〈Sx
0 Sx

l 〉 and 〈Sz
0S

z
l 〉

calculated with the iTEBD method. The solid line represents the
fitting with the function Ce−l/ξ /

√
l.

it cannot be for α �= 0. Yet the value of u is not needed to
calculate a mass ratio.

Since Sz
tot ≡ ∑

j Sz
j commutes with the Hamiltonian, Sz

tot

is a good quantum number. The ground state is in Sz
tot = 0

Hilbert space, and the soliton (antisoliton) is an excitation
to the lowest energy level in Sz

tot = 1(−1) Hilbert space.
Hence, their mass corresponds to the inverse correlation
length of the operator changing Sz

tot by ±1,30 i.e., 〈Sx
0 Sx

l 〉 =
〈Sy

0 S
y

l 〉. On the other hand, the first breather is the lowest
excitation in Sz

tot = 0 Hilbert space; it corresponds to 〈Sz
0S

z
l 〉.

In the case of the antiferromagnetic XXZ model, the mass
of the soliton/antisoliton and the first breather is different.
For a Heisenberg chain, however, SU(2)-symmetry requires
〈Sx

0 Sx
l 〉 = 〈Sy

0 S
y

l 〉 = 〈Sz
0S

z
l 〉, which indicates that the mass of

the soliton, the antisoliton, and the first breather is all the
same, and these three particles constitute a triplet. The second
breather has to be a singlet, and the operator corresponding to
it does not change Sz

tot. The most relevant operator with such
properties is Sj · Sj+1, and we expect that the second breather
corresponds to 〈(S0 · S1)(Sl · Sl+1)〉.

An example of fitting for correlation functions is shown in
Fig. 1. 〈Sx

0 Sx
l 〉 and 〈Sz

0S
z
l 〉 calculated with the iTEBD method

are equal up to eight digits, which is consistent with the SU(2)-
symmetry. The solid line represents the fitting with the function
Ce−l/ξ /

√
l. The correlation functions are well fitted with the

function.
We show numerically the calculated mass ratio r as a

function of α and δ in Fig. 2(a). r is larger than 2 for α = 0
(nonfrustrated HAF chain with bond alternation) and decreases
with increasing α. r becomes

√
3 at α ∼ 0.25. It is very

close to α = 0.2411, where the transition from TLL to the
self-dimerized phase happens without bond alternation, and
the marginal cos(4φ) term vanishes.11 This result indicates
that the deviation of r from

√
3 is attributed to the effect of

the marginal term. While r is subject to correction as α moves
away from this point, its δ dependence is quite small.

A similar result was obtained through a gap evaluation
by exact diagonalization.16 However, the mechanism of the
variation of r has not been made clear. We will theoretically
analyze the dependence of r on the frustration α later in
Sec. VI. The α-δ phase diagram is shown in Fig. 2(b). Note
that the universality class of the transition from positive to
negative δ is of c = 1 CFT for α < 0.25 and of first order for
α > 0.25.31
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δ
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α

(b)
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FIG. 2. (Color online) (a) Triplet-singlet mass ratio r as a function
of α and δ in the S = 1/2 bond-alternating chain with frustration.
(b) Phase diagram of the S = 1/2 bond-alternating chain with
frustration. Solid and dashed lines represent second order (TLL,
c = 1 CFT) and first order transition, respectively. Universality class
of transition changes at α ∼ 0.25, where r becomes

√
3.

V. MASS RATIO AND PHASE DIAGRAM FOR S = 1

Next, we numerically investigate the excitation spectrum
and the phase diagram of the S = 1 HAF chain with dimer-
ization and frustration. The method for evaluating particle
mass is the same as for the S = 1/2 chain. As can be seen
in Fig. 3, when α is small enough, r is always larger than 2,

δ δ

α

δ

α

FIG. 3. (Color online) (a) Triplet-singlet mass ratio r as a function
of α and δ in the S = 1 bond-alternating chain with frustration. The
transition point δc corresponds to circles in (b). (b) Phase diagram
of the S = 1 bond-alternating chain with frustration. The solid and
dashed lines, which represent the second-order (TLL, c = 1 CFT)
and first-order transition, respectively, are guides for the eye. The
circles show transition points determined from Fig. 4. The universality
class of the transition changes approximately at α = 0.3, where r

becomes
√

3.
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FIG. 4. (Color online) (a) Correlation length ξ as a function
of δ − δc and α. ξ diverges when the transition is second order.
(b) Dimerization order parameter |〈(−1)j Sj · Sj+1〉| as a function of
δ − δc and α. |〈(−1)j Sj · Sj+1〉| jumps when the transition is first
order. Therefore, δc can be determined from the divergence of ξ or
the jump of |〈(−1)j Sj · Sj+1〉|.

at least in |δ − δc| � 0.005 [δc can be determined from the
divergence of ξ or the jump of |〈(−1)j Sj · Sj+1〉| as explained
in the following part; see Fig. 4], and does not depend much
on δ. Since particles heavier than 2MS become resonance,
the second breather cannot be a stable particle even in the
vicinity of δc. The above result again seems inconsistent with
the prediction in Ref. 17.

The deviation of r from
√

3 would be attributed to the
existence of the marginal term as in the spin-1/2 chain. We
introduce the next-nearest-neighbor coupling α in order to
confirm it. As shown in Fig. 3(a), r decreases with increasing α

and becomes
√

3 around α = 0.3. The transition point δc from
the Haldane phase to the dimerized phase also decreases, which
is natural because next-nearest-neighbor coupling favors the
dimerized phase. Figure 4 shows the behavior of correlation
length ξ and dimerization order parameter |〈(−1)j Sj · Sj+1〉|
near δc. ξ diverges at δc for α � 0.3, which is not the case
for α > 0.3. In addition, |〈(−1)j Sj · Sj+1〉| jumps at δc for
α > 0.3 while the variation is continuous for α � 0.3. These
results indicate that the universality class of transition at δc

changes from c = 1 CFT to first order when α goes beyond 0.3.
From the viewpoint of field theory, the cos(4φ) term changes
from a marginally irrelevant to a marginally relevant operator
at this point. The situation is very analogous to the spin-1/2
case. The α-δ phase diagram is summarized in Fig. 4(b). It is
consistent with Ref. 13. The transitions along the lines δ = 0
and α = 0 are studied in Refs. 12 and 15, respectively.

VI. MASS RATIO FROM THE FORM-FACTOR
PERTURBATION THEORY

Now let us discuss the variation of the mass ratio r

theoretically. In Ref. 17, the δ dependence of r was discussed as

144408-4



MASS RATIO OF ELEMENTARY EXCITATIONS IN . . . PHYSICAL REVIEW B 86, 144408 (2012)

follows. The excitation structure at the very vicinity of δ = δc

would be described by the pure SG theory without the marginal
perturbation; r is then equal to

√
3. On the other hand, O(3)

NLSM with θ = 0 also has triplet lowest excitation, which
is smoothly connected to the triplet in the SG model thanks
to SU(2)-symmetry, but does not have the second breather.
Therefore, r increases as δ decreases from δc to 0, and it
exceeds 2 at some point. This argument was further augmented
by a FFPT calculation in terms of the marginal perturbation.

However, their predictions17 do not seem to be consistent
with numerical results. In the absence of frustration α, r is
substantially larger than

√
3 even when δ is closest to δc

within the precision of the numerical calculations. This already
contradicts the picture presented in Ref. 17. Moreover, the
effect of the frustration α was not discussed.

Here, we will improve the FFPT by supplementing it with a
RG analysis. Let us define a dimensionless coupling constant
y2 ≡ g2/(πu). With the FFPT of the marginal operator in the
SG theory, mass corrections arising from the marginal term y2

to the triplet and the singlet, which we denote, respectively, as
�Mt and �Ms , were found17 to be

�Mt = 4
√

3y2,
(5)

�Ms = 12
√

3y2.

Here, we argue that the renormalized coupling constant should
be used for y2. In the following, we derive the renormalized
form of y2. Since the system has SU(2)-symmetry, y2 is renor-
malized according to the Kosterlitz-Thouless renormalization
equation,5,32

dy2

ds
= y2

2 . (6)

The solution of (6) is y2 = −1/(s + const). y2 becomes a
function of energy scale by the parametrization s = ln(E/�)
(� is the infrared cutoff) as follows:

y2(E) = 1

ln(�′/E)
.

Constant �′ can be fixed from the condition that bare y2

corresponds to the original spin chain, where the energy scale
is of order of J , i.e., y2(E ∼ J ) = C1(αc − α), where C1 is
a nonuniversal positive constant. Therefore, the renormalized
form of y2 is

y2(E) = 1

ln(J/E) + 1
C1(αc−α)

.

When the system is renormalized until the energy scale is
equal to the soliton mass, y2 becomes y2(MS). From Eq. (5),
the mass ratio r is

r =
√

3 + 12
√

3
ln(J/MS)+1/(C1[αc−α)]

1 + 4
√

3
ln(J/MS)+1/[C1(αc−α)]

. (7)

A fitting of the numerical results with the function (7) is
shown in Fig. 5. The only fitting parameter is the nonuniversal
constant C1. For the S = 1/2 chain, we use an excitation gap
with α = 0 as the value of MS since the value of MS can be
estimated through M = u/ξ , where u = πJa/2. The solid,
dashed, and dashed-dotted lines in Fig. 5(a) are Eq. (7) with

δ δδ

α α

(a) (b)

FIG. 5. (Color online) Triplet-singlet mass ratio r as a function
of δ and α. (a) The case of S = 1/2. The circle, triangle, and down-
pointing triangle represent numerically obtained r for δ = 0.005,
0.01, and 0.015, respectively. The solid, dashed, and dashed-dotted
lines are Eq. (7) with C1 = 0.3. MS is a function of δ and α, and MS

for α = 0 is used here. (b) The case of S = 1. The circle, triangle, and
down-pointing triangle represent numerically obtained r for δ − δc =
−0.005, 0.005, and 0.01, respectively. δc is determined from Fig. 4.
The solid line is Eq. (7) with MS = 0.1J and C1 = 0.6.

C1 = 0.3 for δ = 0.005, 0.01, and 0.015, respectively. The
variation of Eq. (7) by changing δ is quite small since the
only δ-dependent variable is MS and it is present only inside
a logarithm. It is difficult to estimate MS with good precision
for S = 1 because the value of u is not known. However, as we
have discussed, the MS dependence is rather weak in Eq. (7).
Thus, in a practical range to compare with the numerical
results, we can set MS/J = 0.1. Equation (7) with C1 = 0.6 is
shown as a solid line in Fig. 5(b). The fitting curves agree well
with numerical data for both S = 1/2 and 1 in the vicinity of
α = αc, where the marginal perturbation is small. The devia-
tion away from the theory (7) can be attributed to higher-order
correction in both FFPT and the renormalization equation.

Let us come back to the argument in Ref. 17. As we have
seen, their idea that r evolves from

√
3 as θ is changed from π

mod 2π does not seem to agree with the numerical results. On
the other hand, however, where the dimerization transition is
second order (α < αc), the marginal operator is marginally
irrelevant. Thus, in the limit θ → π mod 2π (δ → δc in
our spin-chain model), the SG theory without the marginal
operator becomes exact, and r = √

3 should follow. In this
sense, their idea is still qualitatively correct. However, the
marginally irrelevant operator is renormalized to zero very
slowly (logarithmically), and thus the mass scale must be
exponentially small in order to probe this regime. This can
indeed be seen in the logarithmic dependence of r on the
soliton mass MS in Eq. (7). Thus, for α < αc, the mass ratio
deviates very quickly from r = √

3 as δ is shifted from the
critical point δc. As a consequence, it would be impractical to
observe this behavior numerically.

VII. CONCLUSION

We have investigated the excitation spectrum of S = 1/2
and 1 frustrated HAF chains with dimerization δ. To evaluate
particle mass M = u/ξ , we calculate the corresponding
correlation function numerically and extract the correlation
length by using a fitting function Ce−lξ /

√
l for a range of

large enough and even l. The ratio r of the singlet (the
second breather) to the triplet (soliton, antisoliton, and the first
breather) is expected to be

√
3 from bosonized SG effective

field theory, but r is subject to correction from a marginal
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term. r = √
3 is recovered at the critical next-nearest-neighbor

coupling α = αc, for which the marginal term vanishes. At
α = αc, the dimerization transition with varying δ changes
from second order, with the critical behavior described by
c = 1 CFT, to first order. We give δ and α dependences of
r in Eq. (7) through FFPT and RG analysis. r obtained by
the iTEBD method is well fitted by Eq. (7). Our analysis
indicates that, for α < αc, the mass ratio r asymptotically
approaches

√
3 when δ → δc, consistent with the argument

in Ref. 17. However, this asymptotic behavior occurs only
for exponentially small |δ − δc|, and could not be observed
in numerical studies in the literature and in the present
work.

Finally, we comment on the general-S case. When the
dimerization δ is changed from 1 to −1, the phase transition
happens once for the S = 1/2 case (from one dimerized to the
other dimerized phase), and twice for the S = 1 case (from
one dimerized to the Haldane phase and from the Haldane to

the other dimerized phase). In the general-S case, there are
2S transitions from one fully dimerized to the other fully
dimerized phase, and they are the transitions between the
partially dimerized phases. Around those transition points,
the system is represented by the same effective field theory
as explained in this paper.
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