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We study generalizations of the singlet-sector amplitude-product (AP) states in the valence-bond basis of
S = 1/2 quantum spin systems. In the standard AP states, the weight of a tiling of the system into valence
bonds (singlets of two spins) is a product of amplitudes depending on the length of the bonds. We here introduce
correlated AP (CAP) states, in which the AP is further multiplied by factors depending on two bonds connected
to a pair of sites (here nearest neighbors). While the standard AP states can describe a phase transition between
an antiferromagnetic (Néel) state and a valence-bond solid (VBS) in one dimension (which we also study here),
in two dimensions it cannot describe VBS order. With the CAP states, Néel-VBS transitions are realized as a
function of some parameter describing the bond correlations. We here study such phase transitions of CAP wave
functions on the square lattice. We find examples of direct first-order Néel-VBS transitions, as well as cases
where there is an extended U(1) spin liquid phase intervening between the Néel and VBS states. In the latter
case the transitions are continuous and we extract critical exponents and address the issue of a possible emergent
U(1) symmetry in the near-critical VBS. We also consider variationally optimized CAP states for the standard
Heisenberg model in one and two dimensions and the J -Q model in two dimensions, with the latter including
four-spin interactions (Q) in addition to the Heisenberg exchange (J ) and harboring VBS order for large Q/J .
The optimized CAP states lead to significantly lower variational energies than the simple AP states for these
models.
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I. INTRODUCTION

The valence-bond (VB) basis1–6 is ideally suited for de-
scribing many different types of ground states and low-energy
excitations of quantum spin models.7–17 In the case of S = 1/2
spins in the singlet sector, a basis state corresponds to a tiling
of the lattice into bonds connecting pairs of sites forming
singlets, such that each spin belongs to one bond. This basis is
overcomplete if bonds of all lengths are included. To describe
the ground state of a Hamiltonian with bipartite interactions,
only bonds connecting sites on different sublattices have
to be included—this restricted VB basis exactly reproduces
Marshall’s sign rule18 for the ground state of such a system.
Thus, in this basis the wave function is positive definite
and can be sampled using Monte Carlo (MC) techniques.
We here investigate a class of bipartite correlated VB wave
functions which can exhibit valence-bond-solid (VBS) order
and related interesting quantum phase transitions in one and
two dimensions.

In this introductory section we provide some further
background and motivation for studying VB states. We review
the definition and properties of the well-studied Liang-Doucot-
Anderson amplitude-product states4 and introduce their more
versatile generalizations: the correlated AP (CAP) states that
we focus on in this paper. We discuss reasons to study such
states in the context of quantum phase transitions from the
antiferromagnetically ordered Néel state into nonmagnetic
VBS and spin liquid states.

A. Valence-bond states and Marshall’s sign rule

While some analytical work has been carried out in the VB
basis,8,12 in most quantitative calculations MC sampling of the

bonds must normally be used to reliably evaluate expectation
values. Since the basis is overcomplete, the non-negative
definiteness of the wave function is a requirement to avoid
problems due to negative sampling weights (the sign problem).
Thus, in most cases VB MC calculations are restricted to
bipartite (nonfrustrated) systems. A two-spin singlet (VB)
connecting sites a and b on sublattices A and B is then defined
according to the following phase convention:

(a,b) = (↑a↓b − ↓a↑b)/
√

2. (1)

Marshall’s sign rule is then incorporated for any tiling of an
even number N of spins into N/2 singlets,

|V 〉 = |(a1,b1) · · · (aN/2,bN/2)〉, (2)

that is, when expressed in the standard basis of z spin
components, |Z〉 = |Sz

1, . . . ,S
z
N 〉,

|V 〉 = 1

2N/2

∑
Z

ψV (Z)|Z〉, (3)

the sign of a nonzero coefficient ψV (Z), that is, for states with
antiparallel spins on each bond, is given by

sgn[ψV (Z)] = ψV (Z) = (−1)nA↓ , (4)

where nA↓ is the number of ↓ spins on sublattice A. The wave
function ψ0(V ) of the ground state of such a system expressed
in the VB basis,

|�0〉 =
∑
V

ψ0(V )|V 〉, (5)

is therefore non-negative. When using MC simulations, for
example, with a variational wave function |�〉 approximating
|�0〉, this is essential, because the overcompleteness implies
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that the sampling weight is not |ψ(V )|2, as it would be in a
standard orthogonal basis, but ψ(V )ψ(V ′)〈V ′|V 〉 for simul-
taneously sampled nonorthogonal bra and ket configurations
|V 〉 and 〈V ′|. The overlap 〈V ′|V 〉 and matrix elements of
operators of interest in characterizing the states can be easily
calculated,3–5 as we discuss below.

B. Amplitude-product states

The most commonly used variational states in this context
are the AP states introduced by Liang, Doucot, and Anderson.4

Here one associates a bond connecting two sites (a,b) with
an amplitude h(a,b), which in the case of a translationally
invariant system is only a function of the lattice vector rab

separating the two sites; h(a,b) = h(rab). The wave function
coefficient for a VB configuration V is then

ψ(V ) =
∏

r

h(r)nr , (6)

where nr is the number of bonds of “shape” r in the
configuration.

The amplitudes h(r) can be used as variational parameters.
In the original work with the AP states to describe the ground
state of the two-dimensional (2D) Heisenberg model,4 only
the amplitudes for a small number of short bonds were
optimized, and different functional forms (exponentially or
power-law decaying with the distance r) were tested. In later
work all the amplitudes (on finite lattices) were optimized,
leading to relative energy errors (deviations from results from
unbiased quantum Monte Carlo, QMC, calculations) of less
than 0.1%.19,20 In the optimal state the amplitudes decay
asymptotically as 1/r3, which is also the result of a mean-field
VB approach.12

In some cases, if one is just interested in the properties
of some class of states without reference to a specific
Hamiltonian, the optimization step is not needed. This ap-
proach has been taken in recent studies of the prototypical
resonating VB (RVB) spin-liquid state consisting of the super-
position of all configurations of the shortest (nearest-neighbor)
bonds on the square lattice,21–23 and also in the presence of
some fraction of the second bipartite bond (fourth-neighbor).21

These wave functions, for which the parent Hamiltonian was
recently identified (in the case of nearest-neighbor bonds
only),24 has exponentially decaying spin correlations but
power-law decaying VBS correlations. A phase transition from
the Néel state into this kind of spin liquid can be achieved
by using amplitudes of the form h(r) ∝ 1/rκ and tuning the
exponent κ to a critical value.12,25

C. AP states with bond correlations (CAPs)

One of the motivations of the work reported in the present
paper is to obtain a variational description of the 2D Néel-
VBS transition. For this, we need a class of wave functions
beyond the AP states, since they do not exhibit VBS order
(while the 1D variants do, as we discuss in Sec. III). The 2D
nonmagnetic AP states are believed to always be spin liquids,
with exponentially decaying spin correlations and power-law
VBS correlations, similar to the prototypical short-bond RVB
states.12,21

We study a class of generalized AP states defined with
bond-correlation factors multiplying the AP wave function
(6). We take these factors to be of the form Cb[r1(b),r2(b)],
where b denotes a nearest-neighbor link on a 1D chain or
2D square lattice (or, more generally, any lattice with some
imposed bipartition), and r1(b), r2(b) are the shapes of the two
VBs connected to this bond (with the case of there being just
a single bond connecting the two sites being a special case).
Thus, the wave-function coefficient is

ψ(V ) =
∏

r

h(r)nr
∏
b

Cb[r1(b),r2(b)]. (7)

For a translationally invariant system Cb(r1,r2) for given
(r1,r2) depends only on the orientation (horizontal or vertical
in two dimensions) of the bond b, and these weights also should
obey applicable lattice symmetries. The number of different
correlation factors is then ∝N2 for a system of N spins.
For simplicity of the notation we hereafter suppress the
subscript b.

In principle, in variational CAP calculations all correlation
factors can be optimized, along with the amplitudes h(r),
but one can also opt to consider only those factors C(r1,r2)
for which r1,r2 � rmax, with some maximum bond length
rmax, and set the remaining weights to unity. The possible
two-bond configurations with rmax = 1 are illustrated in Fig. 1.
In variational calculations one would expect the energy to
decrease monotonically with rmax, which we demonstrate
explicitly in Sec. V.

Beyond improving the energy in variational calculations,
the correlation factors also play an important qualitative role in
2D systems; without bond correlations, the standard AP states
are either long-range Néel ordered (although they do not, by
construction, break the spin-rotation symmetry, they can still
develop the magnitude of the sublattice magnetization) or are
RVB spin liquids with critical VBS correlations (as discussed
above in the context of the short-bond RVBs). They cannot
form VBS order. In contrast, the trivial 1D AP state with
only short bonds is an extreme case of a twofold degenerate
VBS state with alternating links with or without a VB. This
kind of long-range order remains stable also in the presence
of some fraction of longer bonds, as we discuss below in
Sec. III. The generalized CAP states (7) can exhibit 2D VBS
order if the correlation factors favor such correlations strongly
enough. This is true even with correlations only involving
only the shortest bonds on the square lattice, illustrated in
Fig. 1. The CAP states open the possibility to study the
Néel-VBS transition in classes of wave functions with the

c0 c1 c2 c3 c4

FIG. 1. (Color online) Configurations of short VBs (shown in red)
connected to a lattice link b (indicated by thick black bars). Their
associated CAP weights [Eq. (7)] are Cb(r1,r2), with r1 = r2 = 1
and b here being a horizontal link. We later use a notation with
weights ci for CAP states including only short-bond correlations,
with i corresponding to (r1,r2) according to the labeling above.
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bond correlations parametrized in some way and to carry out
improved variational calculations for systems with VBS order
or Néel states with significant VBS fluctuations.

D. Purpose and outline of the paper

One of our main reasons to study the CAP states here is to
investigate their abilities to describe the 2D Néel-VBS transi-
tion. This transition has received considerable interest recently
in the context of “deconfined” quantum criticality (DQC).26,27

Following earlier work on VBS states and quantum-critical
phenomena in antiferromagnets10,28–31 and topological aspects
of phase transitions in 3D classical spin systems,32 Senthil
et al. proposed26,27 that the 2D Néel-VBS transition is of an
unusual kind where the standard Landau rule stipulating a
generically first-order transition between the two ordered states
is violated. The two order parameters in the DQC scenario are
both consequences of the same underlying more fundamental
objects: spinons interacting with an emergent U(1) symmetric
gauge field. The spinons condense in the Néel state and confine
as pairs in the VBS state. Unbiased QMC studies of J -Q
models,33–38 which include certain multispin interactions (Q)
in addition to the standard Heisenberg exchange (J ), are in
general in good agreement with the theoretical predictions.
Among the most interesting features observed is an emergent
U(1) symmetry of the VBS order parameter (presumably
reflecting the emergent gauge field, the “photon”) as the
critical point is approached from the VBS side. Moreover,
studies of SU(N ) generalizations of the J -Q model36 and other
spin models39 have allowed direct connections with analytical
large-N calculations for the noncompact CPN−1 field theory
argued26,27 to describe the transition.

1. Scope of the paper

We here investigate whether the 2D Néel-VBS transition
can be correctly captured with a simple ansatz wave function of
the form (7) with fixed single-bond amplitudes (of a power-law
form) and continuously varying short-bond correlation weights
of the form in Fig. 1. The result so far is negative, in the
sense that we do not observe the same kind of continuous
VBS transition as in the J -Q model. Instead, with parameters
chosen such that there is a direct Néel-VBS transition, we
find strong discontinuities. In other cases we find an RVB
spin liquid intervening between the ordered phases. Thus,
it still remains an interesting challenge to find a simple VB
description of the DQC point.

Looking at the VBS order-parameter distribution, we do
not observe any emergent U(1) symmetry of the VBS at
the continuous VBS to RVB transition, impliying that this
is not a “deconfined” transition in this case. Nevertheless,
we find interesting scaling properties of the angular VBS
fluctuations, although the length scale associated with them
are not divergent.

In addition to the 2D studies, we also closely examine
the Néel-VBS transition within the standard AP states in
one dimension, with amplitudes h(r) of the form 1/rα . This
transition, which occurs at a critical value of α (which is not
universal but depends on the detailed form of the amplitudes
for small r) was previously studied by Beach,12 but only the
spin correlations were computed. Here we extract also the VBS

correlations and confirm that there is a single critical point
versus α. The exponents are continuously varying, depending
on the short-bond amplitudes.

We also report variational calculations including optimiza-
tion with the CAP states, minimizing the energy for 1D and
2D Heisenberg and J -Q models. Naturally, bond correlations
have a significant improving effect in VBS phases, but they
help also to improve the 2D Néel state and the critical ground
state of the 1D Heisenberg chain.

2. Outline of the paper

In Sec. II we briefly describe the technical aspects of MC
calculations with AP and CAP states. In Sec. III we study the
Néel-VBS transition in 1D AP states, and in Sec. IV we study
the more rich set of states and quantum phase transitions in 2D
CAP states. In Sec. V we present some 1D and 2D AP and CAP
variational calculations (minimizing the energy as a function of
the amplitudes and correlation factors) for prototypical model
Hamiltonians with Néel and VBS order (the Heisenberg and
J -Q models), showing how bond correlations improve the
states. We conclude in Sec. VI with a summary and discussion
of future prospects.

II. MC SAMPLING OF CAP STATES AND CALCULATION
OF OBSERVABLES

In an AP or CAP state with the wave function of the form
(7) the expectation value of an observable Ô can be written
for the purpose of importance sampling as

〈�|Ô|�〉 =
∑

αβ ψ(Vβ)ψ(Vα)〈Vβ |Ô|Vα〉∑
αβ ψ(Vβ)ψ(Vα)〈Vβ |Vα〉

=
∑

αβ WαβOαβ∑
αβ Wαβ

, (8)

where the configuration weight is

Wαβ = ψ(Vβ)ψ(Vα)〈Vβ |Vα〉, (9)

and the estimator corresponding to Ô given by

Oαβ = 〈Vβ |Ô|Vα〉
〈Vβ |Vα〉 . (10)

Here the overlap 〈Vβ |Vα〉 is evaluated by counting the number
lαβ of loops in the transition graph of Vα and Vβ

3,4;

〈Vβ |Vα〉 = 2lαβ−N/2. (11)

An example with two loops is shown in Fig. 2. Below we
briefly discuss MC sampling of the VB configurations and
estimators for some important observables.

A. Bond and spin sampling schemes

For a given functional form for h(r) and bond corre-
lation factors C(r1,r2), an expectation value 〈Ô〉 can be
computed stochastically by importance sampling according
to the weight Wαβ . Using some random reconfiguration of
bonds in either the state Vα or Vβ or both of them, the standard
Metropolis acceptance probability for a modified configuration

144405-3



LIN, TANG, LOU, AND SANDVIK PHYSICAL REVIEW B 86, 144405 (2012)

FIG. 2. (Color online) Transition graph on a 4 × 4 lattice consist-
ing of two states, Vα and Vβ , which are depicted by red and black
bonds, respectively. This transition graph has two loops formed by
alternating bonds of Vα and Vβ .

(Vα′ ,Vβ ′ ) is

Paccept = min

[
Wα′β ′

Wαβ

,1

]
, (12)

where the weight ratio is

Wα′β ′

Wαβ

= ψ(Vα′ )ψ(Vβ ′)

ψ(Vα)ψ(Vβ)
2(lα′β′−lαβ ). (13)

Even for the simplest update involving changes in just two
bonds,4 the calculation of the change in the new number of
loops (lα′β ′ − lαβ) can require a computational time up to ∝N

for each new update proposal, since a Néel state has extensive
loops (while magnetically disordered states have only short
loops). Since the number of such updates in each MC sweeps
should also be proportional to N , this type of update leads to
a total computational time O(N2) for a full sweep in a Néel
state, while in a nonmagnetic state the scaling is O(N ).

The unfavorable scaling in the Néel state can be avoided
by working in a combined space of both spins and bonds,19

where the VBs are also sampled, by randomly selecting either
↑a↓b or ↓a↑b for each singlet (a,b). Since the spin basis
is orthogonal, all spins in the bra and the ket have to be
the same, and a consistent assignment for both Vα and Vβ

thus implies that the spins on each loop in the transition
graph follow a staggered, ↑↓↑↓ . . . , pattern. The overlap
(11) in the pure VB basis then follows, since there are two
possible staggered configurations on each loop. The spins are
periodically updated by flipping all spins in randomly selected
loops. By such spin sampling, the weighting by the number
of loops is accounted for automatically, due to the entropic
effect of favoring configurations with large numbers of loops,
without the need for actually counting the loops. For a detailed
description of the combined spin-bond basis and simulations in
it, we refer to Refs. 19 and 21. Here we just note two different
ways of updating the bond configurations.

(i) In the two-bond reconfiguration scheme, an elementary
MC move consists of choosing two sites on the same sublattice
at random (typically, the two bonds on a randomly chosen
pair of next-nearest-neighbor spins) and exchanging the bonds
connected to these two sites for the other possible bipartite
configuration. Such a reconfiguration is only possible if the

spin states on the two selected sites are the same. If that is the
case, the acceptance probability (12) is applied, where in the
combined spin-bond basis the weight is

Wαβ = ψ(Vβ)ψ(Vα), (14)

instead of Eq. (9), and with Wα′β ′/Wαβ evaluated using only
the bond amplitudes and correlation factors in (7) affected by
the change.

(ii) In a loop update, we start by removing a dimer randomly
from two connected sites, creating two defects (“holes”).
We keep one defect stationary and move the second one by
connecting one end (the one on the same sublattice) of a chosen
bond to it (hence moving the hole to the previous location of
that end of the bond). The bond to move should be chosen
probabilistically in such a way as to satisfy detailed balance,
which is relatively straightforward in the case of AP states19,40

but more complicated when bond correlations are included.
In the present work we have used loop updates only for pure
AP states, while we use two-bond updates for CAP states. The
latter are also efficient enough to study relatively large lattices
(with thousands of spins).

It should be noted here that VB configurations can be
classified according to topological “winding numbers.”41 In
AP or CAP states defined with only short bonds, the two-bond
update conserves the winding number, but with no restriction
on the bond length such updates can change the winding
number. In practice, if the bond probability (which depends on
the single-bond amplitudes as well as the correlation factors in
CAP states) decays very rapidly with the length, a simulation
for a large system may still be confined to the sector of zero
winding number.

B. Spin and dimer correlations

In order to characterize the different phases realized by
the CAP states, we evaluate order parameters for detecting
antiferromagnetic (Néel) order and VBS order. Néel order
can be characterized using the standard two-spin correlation
function,

C(rij ) = 〈Sri
· Srj

〉(−1)(xij +yij ), (15)

where we use rij to denote the vector separating the lattice
sites i and j and the phase factor cancels the signs of the
staggered spin correlations obtaining in the systems we study.
Alternatively, one can study the full sublattice magnetization
averaged over the whole system;

ms = 1

N

∑
i

φiSi , (16)

where φi = +1 on sublattice A and φi = −1 on sublattice
B. Since the singlet AP and CAP states manifestly cannot
break the spin-rotation symmetry, order must be detected
in the squared order parameter, 〈m2

s 〉, which in the limit of
large system size will be identical to the long-distance spin
correlation (15).

To accurately locate an antiferromagnetic phase transition,
the Binder cumulant is very useful. It is defined according to42

U = 5

2

(
1 − 3

5

〈
m4

s

〉
〈
m2

s

〉2
)

, (17)
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where the factors are chosen for the three-component Néel
order parameter such that U (N → ∞) = 0 in the disordered
phase (where the order-parameter distribution is a Gaussian
with zero average) and U (N → ∞) = 1 in the ordered phase
(where the radial distribution is peaked at nonzero ms).
Typically, crossing points of U graphed versus a control
parameter for different system sizes approach the critical point
vary rapidly as a function of increasing system size.

To characterize VBS order we use the dimer correlation
function, defined as

Dxx(rij ) = 〈Bx(ri)Bx(rj )〉,
(18)

Dyy(rij ) = 〈By(ri)By(rj )〉,
in terms of the bond operators

Bx(ri) = Sri
· Sri+x̂,

(19)
By(ri) = Sri

· Sri+ŷ,

directed along the unit lattice vectors x̂ and ŷ. We do not need
the mixed x-y correlations here. In some cases we characterize
VBS order by the long-distance behavior of (18). The states
we will be studying have a two-site VBS unit cell, forming a
staggered weak-strong-weak-strong pattern in one dimension
and an analogous columnar pattern in two dimensions. In
both cases we can extract the dominant component of the
correlations, corresponding to the squared order parameter, by
taking the appropriate difference of (18) evaluated at nearby
distances. We here use a symmetric version of this difference;

D∗
xx(r) = Dxx(r) − 1

2

[
Dxx(r − x̂) + Dxx(r + x̂)

]
, (20)

and a function D∗
yy(r) for y-oriented dimers defined anal-

ogously. We also study the full order parameter, which in
two dimensions can be defined using the q = (π,0) and q =
(0,π ) Fourier transforms of the nearest-neighbor bond corre-
lations (19);

Dx = 1

N

∑
i

(−1)xi Bx(ri),

(21)

Dy = 1

N

∑
i

(−1)yi By(ri).

The magnitude D of the order parameter can be computed
as the square-root of the average squared operator, 〈D2〉 =
〈D2

x〉 + 〈D2
y〉. In addition to the expectation values, we also

investigate the probability distribution P (dx,dy), in which
emergent U(1) symmetry can be detected. Here dx and dy

are the expectation values of the corresponding operators
(21) evaluated in a given sampled configuration based on the
transition graph. We refer to Ref. 43 for further details on
this quantity, which is not a conventional quantum mechanical
expectation value but still very useful for characterizing VBS
states in simulations.

All of the above two- and four-spin correlations are related
to the transition-graph loops generated in the VB MC sampling
process. For instance, the estimator for the two-spin correlation
is given by3,4

〈Vα|Sri
· Srj

|Vβ〉
〈Vα|Vβ〉 =

{± 3
4 , [i,j ],
0, [i][j ],

(22)

where [i,j ] and [i][j ] denote sites i and j belonging to the
same loop and different loops, respectively, and the sign in
the case [i,j ] is + and − for spins on the same and different
sublattices, respectively. From Eq. (22) one can also obtain
a very simple expression for the estimator for the squared
staggered magnetization,

〈Vα|m2
s |Vβ〉

〈Vα|Vβ〉 = 3

4

lαβ∑
	=1

L2
	, (23)

where L	 is the size (the number of sites) of loop 	.
Both the dimer correlation function and the fourth power

of the staggered magnetization involve four-spin correlations.
Detailed descriptions on how to calculate these based on the
transition graph of two VB configurations can be found in
Refs. 5 and 21. Here we only write the expression for the
fourth power of the staggered magnetization, needed for the
Binder cumulant (17),

〈Vα|m4
s |Vβ〉

〈Vα|Vβ〉 =
∑

	

L2
	 + 15

16

(∑
	

L2
	

)2

− 5

8

∑
	

L4
	, (24)

which is also solely determined by the sizes of all loops formed
in the transition graph. We note that the Binder cumulant of
the VBS order parameter is much more difficult to evaluate,
since its definition in analogy with (17) requires eight-spin
correlations. While these also, in principle, can be evaluated
in terms of the transition-graph loops,5 the expressions are
quite complicated to implement in practice and we have not
done so.

III. NÉEL TO VBS TRANSITION IN ONE DIMENSION

In one dimension, the standard AP states given in Eq. (6) are
able to reproduce a Néel-VBS transition without correlation
factors. We study this 1D transition carefully in this section,
using the very efficient loop update of the VB configurations.

It is natural to study the evolution of the state as a function
of some parameter governing the long-distance behavior of
the amplitudes, for example, using the power law h(r) = 1/rκ

with tunable κ or an exponential form. Here we use the power
law. However, it is known that the nature of the state is not
just determined by the asymptotic behavior of h(r), but also
depends on details of the short-bond weights.12 In addition
to the exponent κ we here tune the shortest-bond amplitude
h(r = 1) = λ. The wave function is, thus, explicitly given by

ψ(V ) = λn1(V )
∏
r>1

(
1

rκ

)nr (V )

, (25)

where nr (V ) again refers to the number of bonds of length r

in the bond configuration V .
It is clear that for λ > 0 and large κ this AP state is a VBS,

since in the limit κ → ∞ only two configurations contribute;
those with r = 1 bonds on alternating links. For small κ there
is instead Néel order but no VBS order.12 Note that long-range
order corresponding to broken SU(2) symmetry is possible in
this kind of 1D system, since viewed as a classical statistical-
mechanics problem there are long-range interactions (since
the bonds have unbounded length), and the Mermin-Wagner
theorem44 prohibiting 1D Néel order does not apply. Note also
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again that the AP wave function is a singlet and, thus, the SU(2)
symmetry is not actually broken (as in any calculation targeting
the singlet ground state). The magnitude of the Néel order
measured by 〈m2

s 〉 [Eq. (16)] or the long-distance correlation
function (15) can still evolve toward a nonzero value as the
system size grows, tending to the square of the symmetry-
broken value of ms in the corresponding thermodynamic-limit
state with no constraint on the total spin.

Beach has previously studied Néel ordering in this class of
wave functions (with a somewhat different parametrization of
the short-bond amplitudes).12 He found a continuous transition
between the Néel state and the nonmagnetic state. Here we also
investigate the VBS correlations and find a single transition
point where both the spin and dimer correlations are critical.
We study the evolution of the transition in the plane (κ,λ).

For fixed λ, in order to find the critical value of κc of the AP
state we study the Néel Binder cumulant (17). The behavior
of curves for different system sizes L crossing each other as
a function of κ is illustrated in the top panel of Fig. 3. The
crossing points do not fall exactly on a single point due to
subleading size corrections. We observe a systematic smooth
drift of the crossing points as the system size is increased. In
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FIG. 3. (Color online) The top panel shows the crossing behavior
of the Binder cumulant U (κ) defined in Eq. (17) for several different
chain lengths L when λ = 1. The approach to 1 for small κ and 0
for large κ corresponds to the presence and absence of Néel order,
respectively. The crossing points approach the critical value of κ .
The bottom panel demonstrates extrapolations to the thermodynamic
limit of the critical κc by fitting crossing points of (L,2L) pairs to the
power-law correction (26).
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FIG. 4. (Color online) Phase diagram of 1D AP states with tuning
parameters κ and λ, as defined in Eq. (25). The circles are calculated
transition points and the curve is a guide for the eye representing
approximately the boundary between the long-range ordered Néel
(below) and VBS (above) phases. The inset exemplifies long-distance
spin correlation functions inside the phases and at the critical point
when λ = 1; the black squares correspond to κ = 1.6 (inside VBS
phase); and the green triangles are for κ = 1.4 (in the Néel phase).
The red circles show the behavior at the critical point.

order to eliminate this size effect and determine the critical
point from data such as those in Fig. 3, we extract κ values
corresponding to crossing points of (L,2L) size pairs, and plot
these points against 1/L, as shown in the bottom panel of
Fig. 3. We then extrapolate these values to L → ∞ and obtain
κc. The fitting function we use here for extrapolation is the
standard power law;42

fc(L,2L) = κc + a

Lb
. (26)

The extrapolated κc values versus λ are plotted in Fig. 4,
the phase diagram of 1D AP states with the two tuning
parameters λ and κ . The inset of this figure demonstrates
the qualitatively different behaviors of the spin correlation
functions in the two phases and at the critical point, using
λ = 1 results as an example. At κ = 1.6 the correlations
decay faster than power-law, as is expected for a nonmagnetic
VBS ordered state. In contrast, at κ = 1.4, the correlations
for small L first decay somewhat but then converge to a
nonzero value for larger L, even increasing somewhat for
large systems. Thus, there is long-range Néel order for κ < κc.
The nonmonotonic approach of the sublattice magnetization
to its infinite-size value becomes more pronounced deeper
inside the Néel phase. At the critical value κc, extracted using
Binder-cumulant crossing points as explained above, the decay
of the correlations are consistent with a critical, power-law
form.

To determine whether the VBS correlations are also critical
at the κc points extracted from the Néel Binder cumulant,
we further study both the spin and the dimer correlations at
these points. The results confirm the expectation of a common
critical Néel and VBS point. By studying chains as large as
L = 4096, we can extract the exponents governing the critical
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FIG. 5. (Color online) Staggered spin-spin (top) and dimer-dimer
(bottom) correlations of 1D AP states at the largest distance, graphed
versus the chain length at κ = κc for different short-bond amplitudes
λ. All lines are fits to the form aL−b.

correlation functions with relatively small error bars (thanks
to the powerful VB MC loop update discussed in Sec. II). The
analysis of the power laws is presented in Fig. 5. Note that
in order to avoid boundary modifications of the power-law
correlation functions as a function of the distance r in systems
of fixed L, we study the long-distance correlations versus
the system size, with r = L/2 for the spin correlations and
the staggered component of the dimer correlations extracted
based on r = L/2 and L/2 − 1 data according to Eq. (20)
[where it should be noted that D(L/2 − 1) = D(L/2 + 1) for
a periodic chain]. In practice, this method is typically more
convenient than studying the behavior as a function of r for
very large L, because the finite-size effects from the periodic
boundaries (which enhance the long-distance correlations45)
are significant and one has to choose a longest distance
rmax � L when fitting data. The asymptotic behavior appears
to be approached faster in the long-distance correlations versus
L, but the r dependence for large r gives very similar results
(up to a factor, due to the aforementioned boundary-enhanced
long-distance correlations when plotted versus L).

As λ increases, larger system sizes are needed to observe the
asymptotic critical forms. Especially for the largest λ studied,
λ = 8, one can observe in Fig. 5 (top panel) a clear crossover
of the spin correlation function from a rapidly decaying short-
distance form to the asymptotic power-law form. The straight
lines in Fig. 5 are fits to the simple asymptotic form aL−b.
We have also tried to include shorter chains in an analysis

including corrections, by fitting to the form aLb + cLd . This
form is, however, not capable of describing the small size effect
in this model (in contrast to 2D critical spin liquid RVB states,
where this form works very well21). In any case, the large-L
behaviors appear to be reasonably well converged to the simple
power law and the exponents extracted should be reliable. An
exception is λ = 0, for which the dimer correlations decay
very rapidly and are too noisy to allow the exponent β to be
reliably determined (and we have therefore not graphed these
correlations in Fig. 5). It is even possible that the VBS state
for λ = 0 is of a different kind than for λ > 0. Further studies
will be needed to settle this issue.

We plot the extracted critical exponents as a function of
λ in Fig. 6. The exponents vary continuously with λ, with
the dimer exponent decreasing monotonically and the spin
exponent increasing. An interesting conclusion that can be
drawn from these results is that the critical state becomes
increasingly “quasi-VBS ordered” with increasing λ, with the
decay exponent of the dimer correlations perhaps vanishing
as λ → ∞, although this is difficult to confirm definitely
(because the simulations become increasingly difficult for
large λ). The behavior is in line with the expectation that a
large λ favors VBS ordering because of the predominance of
the very shortest bonds, that is, when moving on the critical
line toward higher λ the density of short bonds increases, and
this leads to a strengthening of the VBS quasiorder. At the
same time, the exponent of the spin correlations appear to
approach 1. However, Néel order still exists for large λ when
reducing κ from the critical value. In terms of the transition
graph estimators of the correlation functions, VBS correlations
correspond to certain loop correlations,5 while Néel order is
related to the presence of long (∝L) loops. While long-range
Néel and VBS orders are mutually exclusive in these states, the
Néel state in the neighborhood of the critical curve for large λ

approaches a coexistence situation. Here the magnitude of the
Néel order parameter also becomes very small, however, and
the coexistence is therefore not robust.
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FIG. 6. (Color online) The continuously varying spin (α) and
dimer (β) decay exponents of the 1D AP state (25) as functions of the
short-bond amplitude λ. The exponents correspond to the power-law
decay of the correlation functions; C(r) ∼ r−α , D∗(r) ∼ r−β . The
points are calculated values and the curves are guides for the eye.
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The VB formulation of the ground state can be viewed as
a 1D classical statistical mechanics problem, but at the same
time it should also correspond to a path-integral formulation in
1 + 1 dimensions (with some underlying parent Hamiltonian).
One may then expect the system to be classifiable according
to the standard 2D conformal field theories by a central charge
c. Varying critical exponents, as we have found here, normally
imply c � 1, but the fact that the system includes long-range
interactions may invalidate this requirement, although it is not
clear how the power-law bond length translates into effective
interactions in an underlying parent Hamiltonian (and the
interactions in it may well be short-ranged). One notable aspect
of the AP states is that they are not able to reproduce the ground
state of the critical Heisenberg chain, where α = β = 1.46

We address this issue further in Sec. V with variational AP
calculations for the Heisenberg chain.

It would be interesting in the future to compute the bipartite
entanglement entropy of the 1D AP states to test its system size
scaling and consistency between c extracted from it47,48 and
from the correlation functions. Such calculations can also be
carried out using the VB MC sampling scheme used here.23,49

IV. NÉEL TO VBS TRANSITION IN TWO DIMENSIONS

The Néel state is known to be the ground state of the
square lattice Heisenberg antiferromagnet with homogeneous
nearest-neighbor couplings. There is convincing numerical
evidence20 as well as mean-field arguments12 showing that
the standard AP states with power-law decaying amplitudes
of the asymptotic form h(r) = 1/r3 is an optimal variational
wave function for the 2D Néel state (for any finite size, where
the ground state is a singlet with no explicitly broke symmetry).

The AP states have no Néel order for rapidly decaying
(exponentially or according to a power law 1/rκ with large
κ) bonds.4 An extreme case is the state that contains only
nearest-neighbor bonds (dimers). Such a short-bond VB state
on the square lattice normally corresponds to an U(1) spin
liquid with critical VBS correlations,21,22 in contrast to the 1D
AP VBS state discussed in the previous section. One should
expect the 2D AP state to turn into a long-range ordered
VBS when appropriate bond correlations are included. On the
square lattice, which we consider here, the simplest kinds of
VBS states (with two-site unit cell) form columnar, staggered,
or plaquette ordering patterns.

We here study the Néel-to-VBS transition on a square lattice
within the CAP states by imposing bond correlations that
favor or suppress only certain types of short-dimer alignments.
All possible configurations of short dimers connected to a
pair of nearest-neighbor sites on a square lattice are shown
in Fig. 1. We assign a weight to each of those two-dimer
configurations according to Eq. (7), with all weights with
r1,r2 �= 1 set to 1. To simplify the notation we here use ci for
the short-bond correlation factors, instead of C(r1,r2), with
the correspondence between the two shown in Fig. 1. For the
special case of there being a single bond connecting the two
reference sites, we set c0 = 1 as a normalization factor for the
correlations.

To reduce the number of control parameters in our simula-
tions we introduce a single parameter p such that ci = p > 1
for favored two-dimer configurations i, while ci = 1/p < 1

for unfavored configurations and p = 1 for cases that are
considered “neutral.” If all dimers are uncorrelated, that is,
p = 1, the state reduces to the standard AP state, for which
we choose the single-bond amplitudes to be h(r) = 1/r3. This
choice, which we keep also for the CAP states, is motivated
by the fact that this gives the correct description of the Néel
state. The generalized CAP states we use in our simulations are
therefore characterized by the single parameter p controlling
the bond correlations.

Below we investigate two different parametrizations of the
bond correlations. In both cases we use c1 = p > 1 to locally
favor the columnar or plaquette VBS pattern (and whichever
of these two VBS patterns that actually will be realized is not
clear from the outset). Other types of dimer correlations are
suppressed, by setting c2 = c3 = c4 = 1/p in the first case—
case (I)—while they are set to neutral, c2 = c3 = c4 = 1, in
case (II).

We destabilize Néel order by increasing the control param-
eter p and study the phase transition into a VBS. For case (I),
we have found a first-order Néel to columnar VBS transition,
while for case (II) we have found a continuous transition into
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FIG. 7. (Color online) Results for CAP states with the case
(I) parametrization. (a) The Binder cumulant of the staggered
magnetization as a function of the weight p favoring parallel dimer
alignment (c1 = p in Fig. 1, with the other configurations suppressed
by setting ci>1 = 1/p). The growing negative peaks of the cumulant
indicate the location of the first-order phase transition developing as
a function of the system size. (b) The columnar component D∗(r) of
the dimer correlation function at the largest distance, r = (L/2,L/2),
plotted against p. The correlation function approaches zero for large
systems in the non-VBS state and becomes finite in the VBS. The
behavior of the correlation function tending to a step function as
L increases, and the curves for different L crossing each other,
is in accord with the first-order phase transition signaled by the
pronounced negative cumulant peaks in (a).
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a critical U(1) spin liquid, followed by a second continuous
transition to the columnar VBS. We discuss the two cases in
order.

A. A first-order Néel to VBS transition

Case (I) again corresponds to favoring parallel VB bond
configuration by setting c1 = p > 1 in Fig. 1 and suppressing
fluctuations by setting ci>1 = 1/p. As in the 1D case discussed
in Sec. III, we here first use the Binder cumulant of the
staggered magnetization U to detect the transition of the Néel
order. This quantity is also useful for distinguishing between
a first-order and continuous phase transitions. As shown in
Fig. 7(a), the Binder cumulant as a function of the control
parameter p exhibits a minimum separating the Néel phase,
where U → 1, and a nonmagnetic phase, where U → 0. The
minimum value of U is negative for all system sizes we studied,
and the negative peak becomes narrower and deeper as the
system size increases. In fact, the negative peak diverges as
−L2 when L → ∞, as plotted in Fig. 8, which provides strong
evidence50 for a first-order phase transition.

Note that the divergence of Umin of the form Ld expected for
a classical d-dimensional system could, in principle, change to
Ld+z for a quantum system, where z is a dynamical exponent.51

However, our definition of the Binder cumulant is purely a
real-space definition and does not include integration over the
imaginary time dimension (to which we do not even have
access because it relies on a path integral formulated using
the underlying, unknown parent Hamiltonian). The form L2,
therefore, is expected.

To check whether the nonmagnetic phase exhibits VBS
order, we next compute the columnar component of the dimer
correlation defined according to (20). Figure 7(b) shows D∗(r)
for the largest distance, r = (L/2,L/2). The correlation indeed
converges to a nonzero value in the nonmagnetic phase,
tending to a step function at pc as L increases. The location
of the discontinuity coincides with the point where the Binder
cumulant reaches its minimum in Fig. 7(a). Note also that the
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FIG. 8. (Color online) Finite size scaling behavior of the Binder
cumulant minimum of the CAP states, case (I). The negative minimum
increases linearly with L2, indicating a first-order transition.
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FIG. 9. (Color online) Finite-size scaling plots for extracting the
location of the phase transition in CAP case (I). (a) the location pmin

at which the Binder cumulant reaches its minimum, (b) the crossing
point of the Binder cumulant for system sizes (L/2,L), and (c) the
crossing point of the columnar dimer correlation function. From
finite-size extrapolations of these three quantities, assuming 1/L2

dependence, we obtain consistently the transition point pc located
within the range 1.500–1.505. Note that there are still some visible
deviations from the assumed form and a more precise determination
of pc would require data for still larger systems.

curves for different L cross each other. This size-independence
of the order parameter (as opposed to size-independence
after multiplying with some power of L corresponding to an
exponent of critical correlations) at the transition also supports
a first-order scenario.

The location of the transition point pc in the thermodynamic
limit can be determined, for example, by extrapolating the
U minimum location pmin (Fig. 7) to the infinite-L limit.
The finite-size scaling plot in Fig. 9(a) shows that the
finite-size shift of the transition point defined in this way
is consistent with ∝L−2 for large L, where the exponent 2
again is the one expected based on scaling at a first-order
transition, as discussed above. We estimate pc ≈ 1.500 from
an extrapolation to L → ∞.

In the regime for p < pc the cumulant for different system
sizes exhibits crossing points versus p. We expect that the
crossing points should coincide with the minimum location
when L = ∞. By finite-size extrapolation of crossing points
p∗ for pairs of two system sizes L/2 and L, shown in
Fig. 9(b), we estimate p∗

c ≈ 1.500 in the thermodynamic
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limit, in perfect agreement with the result obtained from the
cumulant minimum.

In addition to the Binder cumulant signaling the transition
of the Néel order, we also estimate the transition point of the
VBS order from the scaling of the crossing points p′ of the
long-distance dimer correlation function. The inset of Fig. 7(b)
shows a magnification of the region where the crossings occur.
As shown in Fig. 9(c), these crossing points also appear to
shift as p′ ∼ L−2 for large L, and the extrapolation to L → ∞
yields an estimated location of the transition point p′

c ≈ 1.503.
This is marginally above the two other estimates discussed
above, but given the very small range of data points for which
the L−2 fits work well (we have used the points for the three
largest systems in all cases, but the data still show some
nonasymptotic curvature here), this result is still consistent
with a single Néel-VBS transition point. Larger system sizes
would be required to extract the location of this point more
precisely.

Finally, for case (I) we examine the histogram P (dx,dd )
of the order parameters dx and dy , corresponding to VBS
order with x- and y-oriented dimers [Eq. (21)]. In Fig. 10
we show P (dx,dy) for L = 28 at p = 1.46,1.48, and 1.50.
At p = 1.46 inside the Néel phase, the distribution has
a circular shape with a central peak. At p = 1.48 in the
transition region, the distribution shows coexistence of the
Néel order (characterized by the central circular region) and
the columnar VBS order [characterized by the four narrow
peaks at angles φ = arctan(dy/dx) = 0,π/2,π,3π/2]; this
again provides clear evidence for a first-order Néel-VBS phase
transition. At p = 1.50, only barely inside the columnar VBS
phase of this finite system, the distribution exhibits only the
four VBS peaks.

From the many consistent results discussed in this section,
we can conclude that the CAP states with favored parallel
dimer pairs and suppressed flips of such pairs can characterize
a first-order phase transition between the Néel and the
columnar VBS phases. In such a CAP state, the Néel order
is destroyed by the formation of parallel dimers as the weight
p increases. A first-order transition is also, of course, what
would normally be expected for an order-order transition
involving two unrelated order parameters. Note also that the
system sizes studied in this section were rather modest, up to

FIG. 10. (Color online) VBS order parameter distribution
P (dx,dy) for L = 28 CAP states in case (I). Brighter regions
correspond to higher density. (Left) The distribution at p = 1.46
is circular-shaped with a central peak, showing U(1) symmetry in
the Néel state. (Right) At p = 1.50 there are four peaks at the Z4-
symmetric angles φ = arctan(Dx/Dy) = 0,π/2,π,3π/2, reflecting
columnar VBS order. (Middle) At p = 1.48, in the transition region,
the five-peak distribution shows coexistence of the Néel and VBS
order, providing evidence for a first-order transition.

L = 36 (while much larger systems, up to L = 128, will be
considered in the next section). For larger systems it becomes
very difficult to obtain good statistics and smooth curves versus
the control parameter, because of hysteresis effects related to
the first-order nature of the transition. Still, as we have shown,
the system sizes studied are sufficient to study the asymptotic
finite-size scaling forms.

In the context of VBS ground states of Hamiltonians, a
first-order transition was previously observed with a J -Q
model with the multispin interaction Q arranged to favor
a staggered state.52 In that case, the first-order transition
was expected, because local dimer fluctuations are strongly
suppressed with this kind of bond order. Alternatively, one can
make an argument based on the nature of vortexlike defects in
the VBS.53 In contrast, in a columnar state parallel short-dimer
pairs can fluctuate by 90◦ rotation, unless such fluctuations are
energetically expensive. In the DQC theory, these fluctuations
are essential and correspond to an emergent U(1) symmetry
of the VBS order parameter, which has been confirmed in
J -Q models with plaquette VBS ground states.33,35,36,43 In
the CAP state considered here, we suppressed the fluctuations
out of the perfect columnar state by the use of correlation
weights and the observed first-order transition then is in line
with expectations based on the DQC theory and the earlier
studies of the Néel-VBS transitions in various models.

B. A critical U(1) spin liquid and a second-order
transition to the VBS

Given the findings and discussion in the previous section,
we now investigate whether the removal of the correlation
factors suppressing dimer fluctuations can change the nature
of the Néel-VBS transition of the CAP states. In this case (II)
we only set c1 = p > 1 and keep the other correlation factors
in Fig. 1 as neutral; c2 = c3 = c4 = 1.

Figure 11 shows the Néel Binder cumulant and the stag-
gered dimer correlation function against the control parameter
p. Like in case (I), the Néel order, characterized by the Binder
cumulant tending to 1 as L grows, survives in the small p

region up to a certain value of p, and a substantial columnar
dimer correlation D∗ sets in when the Néel order is destroyed.

We notice that the negative peak of the Binder cumulant,
which occurs only for large systems, is less pronounced than
the cumulant peak in case (I). A negative Binder cumulant is
often taken as evidence for a first-order transition,54 but there
are now known examples of rigorously understood continuous
classical phase transitions associated with this behavior, for
example, the 2D four-state Potts model and the related Ashkin-
Teller model in the neighborhood of this special point.55 In
such cases of “pseudo-first-order” scaling the minimum Umin

of the Binder cumulant diverges much slower than the expected
Ld form at a first-order transition (or, in some cases, possibly
converges to a finite value).

The finite-size scaling plot Fig. 12 shows that −Umin for
CAP in case (II) grows only logarithmically with the system
size. Thus, we conclude that the Néel order here vanishes
in a continuous transition associated with pseudo-first-order
behavior (related to anomalies in the critical order-parameter
distribution).
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FIG. 11. (Color online) Results for CAP states, case (II), for
different system sizes plotted versus the control parameter p. (a) The
binder cumulant of the staggered magnetization exhibits a shallow
peak at the transition from the Néel to a nonmagnetic state, with
p1c ≈ 1.28. (b) The columnar dimer correlation function indicates
a second transition, into the VBS, at p2c ≈ 1.65, with a completely
disordered phase for p1c < p < p2c.

Next we determine the phase boundaries more precisely.
For a continuous phase transition, a frequently used method
to determine the critical point is to find the unique asymptotic
crossing point of the Binder cumulant for different system
sizes. Due to finite size effects, the cumulant curves will
intersect at a single point only when the system sizes are
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FIG. 12. (Color online) Finite size scaling behavior of the Binder
cumulant minimum in case (II). The negative minimum (obtained
by interpolation of the data shown in Fig. 11) increases only
logarithmically with the system size L, indicating a continuous
transition.
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FIG. 13. (Color online) (a) The Binder cumulant for large system
sizes in case (II). The curves intersect at a point, p ≈ 1.276, which
separates the Néel phase and the spin liquid. (b) Finite-size scaling
of the location pmin at which the cumulant reaches its minimum. The
critical point of the Néel-spin liquid transition in the thermodynamic
limit is also here estimated as p1c ≈ 1.276, from an extrapolation to
L = ∞.

sufficiently large. In our analysis, we find the intersection point
of the cumulant for L � 80, and it is located at p ≈ 1.276
[Fig. 13(a)], which can be identified as the Néel-spin liquid
transition point p1c. As the cumulant for a large system size
exhibits a negative peak before it vanishes in the spin liquid
phase, we also extrapolate the location of the peak to L → ∞
to determine the critical point from another route. By doing
so, we estimate p1c ≈ 1.276, in perfect agreement with the
cumulant intersection point.

Beyond the order of the transition, another major difference
from case (I) is the behavior of the dimer correlations.
As seen in Fig. 11(b), there is a wide intermediate region
between the Néel phase and the VBS phase for larger
p (where the correlation clearly converges to a non-zero
constant for large systems); in this intermediate region, the
dimer order parameter still decays versus the system size
and, for the largest systems, the curve versus p develops
a behavior suggestive of a second phase transition between
a disordered state and the VBS above p = 1.6. The dimer
correlations decay in the intermediate region as a power
law, D∗(r) ∼ r−β , with the exponent β depending on p, as
shown in Fig. 14. Algebraically decaying dimer correlations
were previously found in short-bond resonating valence bond
(RVB) spin liquids investigated in Refs. 21 and 22. We thus
tentatively identify this intermediate p region with critical
dimer correlations as a spin liquid in the same class of RVB
states, for which it is known that the exponent of the dimer
correlations depends on details of the bond fugacities.21
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FIG. 14. (Color online) Long-distance columnar dimer correla-
tion function versus system size for different p in the intermediate
region. The correlations decay as power laws (with the decay
exponent β = 0.57 for p = 1.4, 0.43 for p = 1.5, and 0.32 for
p = 1.6) in the spin-liquid phase and are size independent in the
VBS state (p = 1.8). At p = 1.7 the behavior is approximately a
power law but with a slight upturn for the largest size, indicating a
weakly VBS ordered state here.

We next study the distribution of the VBS order parameter
P (dx,dy). The examples of distributions shown in Fig. 15 for
L = 64 are ring shaped in the intermediate region (at p = 1.4
and p = 1.5) before evolving into the expected Z4-symmetric
shape in the larger-p regime where columnar VBS order is
formed (as seen in the location of the peaks; a 45◦ rotated
distribution would correspond to a plaquette VBS). The same
kind of ring-shaped P (dx,dy) distribution was also found in
the prototypical short-bond RVB spin liquid (when the bond
configurations are restricted to the dominant topological sector
of zero winding number).21,22

An important issue here is whether the VBS hosts emergent
U(1) symmetry when the critical point is approached. To
investigate this, we also need to determine the location of the
point where the VBS becomes long-range ordered. This is not
easy to do just based on the scaling behavior versus the system
size in Fig. 14, because there is a whole critical VBS phase and
the change from the power-law decay to convergence to a small
nonzero constant is subtle. We can instead characterize the
VBS state by the quantity cos(4φ), where φ = arctan(dy/dx) is
the angle in the VBS order parameter (dx,dy) computed for the
individual VB configurations, that is, based on the histogram,
P (dx,dy). This expectation value measures the degree of the
developed Z4 symmetry of the VBS order parameter. In the
spin liquid (as well as in the Néel state), where the U(1)
symmetry is preserved as L → ∞, we have 〈cos(4φ)〉 = 0.
In the VBS states in which the distribution for large systems
develops Z4 symmetry, we have 〈cos(4φ)〉 → 1 as L → ∞
for a columnar VBS (while it approaches −1 for a plaquette
VBS).

As seen in Fig. 16(a), for the case (II) CAP, a crossing point
develops at a nonzero value of 〈cos(4φ)〉, at p ≈ 1.65, which
we thus identify as the liquid-VBS transition point. The fact
that cos(4φ) > 0 at this point shows that there is no emergent

FIG. 15. (Color online) Histograms of the VBS order parameter
defined in Eq. (21) shown for L = 64 systems in CAP case (II). In the
spin liquid phase with p = 1.4 and p = 1.5 [(a) and (b), respectively],
the distributions are ring-shaped with weight at all angles (bright
regions). As p increases to p = 1.6 (c) and p = 1.7 (d), the U(1)
symmetric distributions evolve into Z4-symmetric ones, with higher
densities at the angles 0,π/2,π,3π/2 corresponding to columnar VBS
order.

U(1) symmetry at the VBS-liquid transition, since the order
parameter remains Z4 symmetric exactly at the transition
point. For reference, in Fig. 17 we show QMC results for the
J -Q model with six-spin columnar Q interactions, for which
the order-parameter symmetry was previously analyzed in a
slightly different way.36 The results for 〈cos(4φ)〉 here show
crossing points decaying toward 0 in the vertical direction.
The system sizes are not yet sufficiently large to see that the
crossings tend toward the critical point, (J/Q)c ≈ 0.66. The
contrast with the CAP states in Fig. 16(a) is stark, however,
with the absence of fourfold symmetry—presence of emergent
U(1) symmetry—at the transition being very plausible.

Since the results shown in Fig. 16(a) appear to give a
rather precise estimate for the transition point, p2c = 1.650(5),
without any scaling needed of the vertical axis, we now
use this result to investigate scaling of the VBS order
parameter. In Fig. 18, in order to achieve data collapse, we
have rescaled the long-distance dimer correlation functions
in Fig. 13(b) both vertically, multiplying by Lβ , with β =
0.22, and horizontally, multiplying (p − p2c) by L1/ν , with
1/ν = 0.44. The correlation-length exponent is, thus, ν ≈ 2.3,
which is anomalously large and definitely rules out a first-order
transition (in which case ν = 1/d = 1/2 would be expected).

The 〈cos(4φ)〉 curves in Fig. 16(a) can also be scaled in
the horizontal direction to collapse all the data onto a single
curve, as shown in panel (b). In cases where there is emergent
U(1) symmetry, this procedure, using the control parameter
scaled as L1/aν(p − pc), gives the correlation-length exponent
ν multiplied by a number a > 1,36 reflecting the faster

144405-12



CORRELATED VALENCE-BOND STATES PHYSICAL REVIEW B 86, 144405 (2012)

-4 -3 -2 -1 0 1 2 3 4

( p - p
c
 ) L

0.55

0

0.2

0.4

0.6

0.8

1

<
co

s 
(4

φ)
> L = 16

L = 32

L = 64

L = 128

1.5 1.6 1.7 1.8
p

0

0.2

0.4

0.6

0.8

1

<
co

s(
4φ

)>

(a)

(b)

FIG. 16. (Color online) The quantity 〈cos(4φ)〉 with φ =
arctan(dy/dx) measures the degree of Z4 symmetry in the VBS order
parameter and also gives a good estimate of the location of the
liquid-VBS transition. In the spin liquid the distribution P (dx,dy)
is U(1) symmetric, leading to 〈cos(4φ)〉 = 0 for L → ∞, while in
the columnar VBS phase, where the distribution is Z4-symmetric,
〈cos(4φ)〉 approaches 1. (a) The curves for different system sizes
cross at a single point located at p = 1.65, which is identified as the
transition point; p2c = 1.650(5). Since 〈cos(4φ)〉 > 0 at this point,
there is no emergent U(1) symmetry at this transition, although it
appears to be a continuous transition based on other results. (b) When
p − p2c is scaled with the system size L raised to the power L1/aν ,
with aν ≈ 1.82, the curves for different systems collapse onto each
other.

divergence of the length-scale � controlling the emergent
symmetry; � ∼ ξa . In the case at hand, we have already
concluded that there is no emergent U(1) symmetry, since
〈cos(4φ)〉 remains nonzero as p → p2c, and the exponent
aν, with a < 1 should instead reflect a shorter length scale
(irrelevant operator), governing the reduction of the angular
VBS fluctuations (〈cos(4φ)〉 → 1) in the VBS and the growth
of these fluctuations (〈cos(4φ)〉 → 0) in the liquid. We find
very good scaling, and indeed the factor a ≈ 0.8 is clearly less
than one.

We finally investigate the nature of the spin correlations
in the spin liquid phase. Results for the squared sublattice
magnetization for several points representing the three dif-
ferent phases are shown in Fig. 19. Here we plot the results
on a log-log scale, in order to study power-law correlations.
In the Néel state the sublattice magnetization approaches a
nonzero constant, while in the liquid and VBS states we
observe a clear 1/L2 decay. This is the form expected with
exponentially decaying spin-spin correlation functions. We
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FIG. 17. (Color online) The degree of Z4 anisotropy of the
VBS order parameter of the J -Q model with six-spin interactions
for different system sizes. Here the curve crossings tending to
〈cos(4φ)〉 = 0 with increasing L demonstrate the emergent U(1)
symmetry at the Néel-VBS transition of this model.

see a power-law behavior with a nontrivial exponent, ∼L−α ,
with α = 1.55 only at the Néel-liquid critical point. These
results again confirm that the liquid is of the same type as the
prototypical AP RVB states (i.e., with no correlation factors),
where the varying power law for the critical VBS correlations
corresponds to a varying stiffness constant in a mapping to a
height model.21,56

V. VARIATIONAL CALCULATIONS

In this section we explore variational optimization of CAP
states, carrying out energy minimization based on derivatives
along the same lines as in Refs. 20 and 19. We consider two
models. First, the standard Heisenberg model, defined by the
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FIG. 18. (Color online) The data of Fig. 11(b) in the neighbor-
hood of the liquid-VBS transition, rescaled to extract the exponent β

of the dimer correlation function, D∗(r) ∼ r−β , here with β = 0.22,
and the correlation length exponent ν, here with ν ≈ 1/0.44 ≈ 2.27.
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FIG. 19. (Color online) Finite-size dependence of the squared
staggered magnetization for different values of p. In the Neel phase
(p = 1.260), m2 converges to a non zero value for L → ∞. At the
Neel-spin liquid critical point, p = 1.276, it scales as m2 ∼ L−1.55.
We see m2 ∼ L−2 inside the spin liquid phase (p = 1.4), at the liquid-
VBS critical point (p = 1.65), as well as in the VBS phase (p = 2),
indicating an exponentially decaying spin-spin correlation function.
The lines are fits to the power law mentioned.

Hamiltonian

HJ = J
∑
〈ij〉

Si · Sj , (27)

where 〈ij 〉 denotes a pair of nearest-neighbor sites. We con-
sider both the 1D chain and the 2D square lattice (in both cases
adopting periodic boundary conditions for systems an even
number of spins). We also consider the J -Q model,33 which
includes four-spin interactions in addition to the exchange J :

HJQ = HJ − Q
∑
〈ijkl〉

(
Si · Sj − 1

4

)(
Sk · Sl − 1

4

)
. (28)

Here ij and kl form opposite edges on an elementary 2 × 2
plaquette on the square lattice and the summation includes
both horizontal and vertical orientations of these edges on
all plaquettes (i.e., the Hamiltonian obeys all the symmetries
of the square lattice). With the negative prefactor of the Q

term, this interaction clearly is related to enhancement of
the parallel-dimer weight c1, in the notation of Fig. 1, in
the ground-state wave function (although the state is still, of
course, not expected to be exactly reproduced by the CAP
ansatz).

A. Optimization method

We start a variational calculation from some initial value of
the parameters in the CAP state (7), typically a power-law form
of the amplitudes h and all the correlation constants C = 1.
When optimizing states for different values of some parameter
(e.g., J/Q), we also normally start the calculation for a new
parameter value from a previous calculation for some nearby
value. One can also use this approach for different system
sizes, although when increasing the system size initial values
for the parameters corresponding to the longest bonds are,
of course, not available and have to be set to some suitable

values based on the longest previous bonds. In general, we
have found that the starting point does not play an important
role in optimization of AP and CAP states, indicating that the
energy landscape is relatively smooth.

To minimize the energy as a function of all parameters, we
compute the energy and its derivatives. We then apply either
(a) the steeped-decent method or (b) a stochastic variant of it
where only the signs of the derivatives are used, as discussed
in Ref. 20. A generic parameter p is in these two cases updated
according to

(a) p → p − δ · R · sgn(dE/dp),
(29)

(b) p → p − δ · (dE/dp)/max(|dE|).

Here, in (a) R ∈ [0,1) is a random number and in (b) max(|dE|)
denotes the derivative that is the largest in magnitude among all
the derivatives considered. The maximum shift δ is gradually
reduced so that the variational parameters eventually will
converge. If δ is reduced sufficiently slowly, then one will
reach a minimum. This minimum is not necessarily the global
one, however. The stochastic scheme (a) should be better in
avoiding local minimums, although one can, of course, never
be completely guaranteed to find the global minimum. For the
case at hand, the energy landscape appears to be relatively
smooth, with no serious problems in consistently reaching the
same minimum energy (regardless of the starting point, as
mentioned above). Occasionally the method does fail, with
independent runs of the same system leading to different final
results. Typically, in a set of several runs, most of them will be
consistent with each other, with only a small fraction of them
deviating significantly from the majority value. As expected,
the failure rate decreases when increasing the number of MC
sweeps for sampling the VB configurations (leading to smaller
error bars on the derivatives) and when reducing δ at a slower
rate.

We typically use a protocol based on an iteration number
k. For each k, the parameters are adjusted some number M

of times (e.g., M = 100) based on derivatives obtained in MC
simulations with ∝k2 steps. This way, the derivatives become
more precisely determined as the solution approaches the
minimum (where the derivatives decrease in magnitude, thus
necessitating a larger number of MC sampling steps to obtain
statistically useful information). The maximum parameter shift
δ in Eqs. (29) is of the form δ0/kα , with α = 3/4 a suitable
exponent in practice, based on experience.

Figure 20 shows an example of the evolution of the energy
and the sublattice magnetization squared in a run for a
Heisenberg chain of length L = 256. It is clear that at the
final step shown here, k = 30, the calculation has not yet
completely converged (but note that one should not expect
convergence to the shown exact values, as the CAP states still
are, of course, not sufficiently flexible to reproduce the true
ground-state wave function completely). In practice, one can
quite easily converge calculations for small systems essentially
completely, while large systems require very long runs. There
is still some room for improvement of the energy minimization
protocol, as what we have explored so far are essentially
schemes based on trial-and-error approaches. Nevertheless,
the results to be presented next can be considered as almost
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FIG. 20. (Color online) Convergence of the energy per spin (top)
and the staggered spin structure factor (bottom) as a function of the
iteration number k for a 1D Heisenberg chain with L = 256 sites
and all correlation amplitudes (i.e., rmax = L/2 − 1) included in the
CAP wave function (7). For each k, 100 adjustments of the parameters
were carried out, each based on an MC simulation with 104k2 updating
sweeps. The points with error bars correspond to averages over the last
20 iterations for each k. The horizontal lines are results of unbiased
QMC calculations (Ref. 45).

optimized and we do not anticipate that our conclusions would
change based on more complete optimizations.

B. Heisenberg chain

An interesting question in one dimension is whether AP
or CAP states can describe the critical ground state of the
Heisenberg chain. As we saw in Sec. III, with the simple
parametrized 1D AP wave function (25) the correct critical
decay exponents (α = β = 1)46 corresponding to this system
cannot be achieved. In a variationally optimized state, we
are not tied to any particular form of the amplitudes, and a
sufficiently flexible variational wave function should then be
able to capture the correct criticality, including the logarithmic
corrections that arise in the field-theory language due to a
marginally irrelevant operator. The question then is whether
the AP or CAP states have this kind of flexibility, to possibly
capture even such a subtle effect as the logarithmic corrections
to the correlation functions.57

To answer the above question, we have carried out energy
minimizations with the simple AP state (with all amplitudes as
adjustable parameters) as well as with two types of CAP states.
To include only the minimum amount of bond correlations
beyond the AP state we include in (7) only the two 1D bond-
pair configurations with length-1 bonds; C(r1,r2) with r1 =
±1 and r2 = ±1. The case r1 = 1,r2 = −1 corresponds to a
single bond on a nearest-neighbor link and we can regard this
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FIG. 21. (Color online) Staggered spin structure factor of the
Heisenberg chain versus system size in variational AP and CAP
calculations at different correlation levels. The results are compared
with exact results from unbiased QMC calculations (Ref. 45).

as a normalization for the correlation factors, C(1, − 1) = 1,
in the same way as we also set h(r = 1) = 1. There is then only
one other correlation factor, C(−1,1) to optimize at this level.
We also consider the extreme case of optimizing all C(r1,r2),
rmax = L/2 − 1, again with C(1, − 1) = 1.

Let us first discuss the energy. As an example, for L = 256
the exact energy per site is E/L = −0.443 16 while for the
AP state we obtained −0.441 84. For the CAP the best energy
when rmax = 1 is E/L = −0.442 72, and with rmax = L/2 − 1
it decreases to −0.443 06. As discussed in the previous section,
it is difficult to completely optimize long chains, so the optimal
variational energies may still be somewhat lower. Following
the trends as a function of system size, the relative energy error
with the CAP state seems to remain at about 0.05%.

Turning now to the spin correlations, in Fig. 21 the
staggered spin structure factor, defined according to

S(π ) =
L−1∑
r=0

(−1)rC(r), (30)

is graphed versus the system size for all the cases discussed
above. Since the exact C(r) decays as 1/r with a multiplicative
logarithmic correction, the exact S(π ) grows slightly faster
with L than ln(L), as demonstrated with unbiased QMC results
in Fig. 21. All the AP and CAP results exhibit a faster growth
with L. When graphed on a log-log scale (instead of the
lin-log scale used in Fig. 21), the AP behavior is consistent
with a power law, S(π ) ∼ L1−α with α ≈ 0.70. With the CAP
states, the data move closer to the exact points, but even with
the maximally correlated CAP state the divergence is still
somewhat too fast.

It is also interesting to examine the optimized amplitudes
of the AP state. Figure 22 shows results for L = 256. Interest-
ingly, a power law applies here for short and moderate bond
lengths, with the deviations (enhancements) at large lengths
likely related to the periodic boundary conditions (and some
jaggedness of the large-r data due to imperfect optimization,
reflecting the total energy not being very sensitive to these
“noise” features). Even the r = 1 amplitude falls on the
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FIG. 22. (Color online) Optimized AP amplitudes for the Heisen-
berg chain of length L = 256. The line has slope −1.44.

common power-law line in Fig. 22; that is, in the notation of
Sec. III the optimized state has λ = 1. Looking at Fig. 6, when
λ = 1 the exponent α ≈ 0.75, quite close to α ≈ 0.70 obtained
above with the optimized amplitudes. Thus, the boundary
effects on h(r) seen in Fig. 22 appear to have only minor effects
on the critical behavior. The conclusion for the optimized AP
state is, thus, that a critical behavior is reproduced, but with the
wrong exponents for the correlation functions. Note, however,
that α ≈ β for the applicable power-law obtained here, which
is also the case for the true Heisenberg correlations (but with
larger values, α = β = 1).

C. Two dimensions

We next systematically investigate the improvement of
the energy with the inclusion of bond correlations in two
dimensions, using several choices for the maximum bond
length rmax in the correlation factors C(r1,r2). Figure 23
illustrates all the bond shapes (r1,r2) at three correlation levels,
with rmax = 1,

√
5, and 3 for correlation levels 1, 2, and 3,

respectively.
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FIG. 23. (Color online) Levels of bond correlations. At level n,
the longest bonds (r1,r2) for which the correlation weight C(r1,r2) in
Eq. (7) is optimized (i.e., can be different from 1) are those marked
by n.
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FIG. 24. (Color online) Energy of the 2D Heisenberg model with
variational CAP states at three different levels of bond correlations,
according to the definition of the levels in Fig. 23. Level 0
corresponds to the pure AP state, with no bond correlations included.
The horizontal lines show energies obtained with unbiased QMC
calculations (with the width of the lines corresponding approximately
to the statistical errors).

1. Heisenberg model

For the 2D Heisenberg model, previous variational AP
calculations have shown that the energy error within this class
of state is <0.1% for large systems, and the spin correlations
are reproduced to within 1% or better.19,20 Although the
system is strongly Néel-ordered and only has rapidly decaying
short-range VBS correlations, including bond correlations
with CAP states can still significantly improve the energy
further. Figure 24 shows results for L × L systems with
L = 16, 32, and 64 at different correlation levels. The deviation
from unbiased QMC calculations decreases with increasing
correlation level. For L = 16 with rmax = 3 the relative error
is as small as ≈4 × 10−5, while for the larger systems it is
somewhat larger, about 10−4.

Going further and optimizing all correlation weights
C(r1,r2) with r � L/2 − 1, one should, in principle, be able
to further improve the energy and obtain the best possible
CAP state (with the kind of correlations included here)
when L → ∞. The energy only improves marginally on the
rmax = 3 results, however. Figure 25 shows results versus
the system size for the energy as well as the sublattice
magnetization. On the scale of the graphs, one can barely
see any differences between the CAP and unbiased QMC
results for L � 20, while for the larger systems there are
some visible deviations. Here it should again be noted that the
results for large systems are likely not completely optimized.
As discussed above in Sec. V A, the energy depends only
very weakly on the long-bond statistics, which implies that
MC evaluations of the corresponding derivatives are affected
by relatively large fluctuations, leading to slow convergence.
The sublattice magnetization is more sensitive to the long
bonds, however, and this makes it very difficult to obtain
completely unbiased results for large systems. For example,
five independent optimizations for L = 32 with rmax = 3 all
gave the same energy within statistical errors, but the sublattice
magnetization showed significant fluctuations, with the results
〈m2

s 〉 = 0.1131,0.1113,0.1132,0.1129,0.1094, with the error
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FIG. 25. (Color online) Energy (top) and squared sublattice
magnetization (bottom) of the 2D Heisenberg model obtained by
unbiased QMC calculations and by optimized CAP state with all
bond correlations included (Ref. 45).

bar approximately equal to 2 in the last digit. Here it can be
noted that three of the results agree well, while two of them
are clearly off. One may then conclude that the best optimized
results should be around 0.1131, although to confirm this one
should carry out a much larger number of independent runs.
The correct results based on unbiased QMC calculations19 is
〈m2

s 〉 = 0.1128, less that 0.3% below the average of the above
three consistent points.

2. J-Q model

As discussed in Sec. I, the J -Q model (28) exhibits a
Néel-VBS transition at a critical value of the coupling ratio
J/Q, with most precise estimate so far being (J/Q)c =
0.0447(2).38 An interesting question is whether this transition
can be described by the CAP states. Here we consider the
case J = 0, where the ground state is a columnar VBS. This
VBS is very complex, however, since the order parameter is
only about 20% of the maximum possible value (i.e., for states
with length-1 singlets forming columns and no fluctuations
around this configuration).43 The fluctuations are significant
and have U(1) character up to a very large length scale (larger
than what can currently be studied). As it turns out, the fully
optimized CAP state (using rmax = L/2 − 1) for this J = 0
system does not reproduce the VBS order. Instead, as we see
below, the system is still on the Néel side of the quantum phase
transition.

First, let us again investigate the impact of including longer
bonds in the correlation factor in Eq. (7). The energy is
improved very dramatically with increasing rmax. For example,
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FIG. 26. (Color online) Squared antiferromagnetic and VBS
order parameters versus the correlation level in CAP states optimized
for the Q model on a 32 × 32 lattice.

for L = 32 the best optimized AP state has an energy E0/N =
−0.8013. The CAP states have E/N = −0.8215, −0.8229,
and −0.8232, at correlation levels 1, 2, 3 in the scheme of
Fig. 23. Going to rmax = 5 there is only a marginal energy
improvement to −0.8233, which differs by about 0.1% from
an unbiased QMC result: E/N = −0.8240.

Although an energy deviation of 0.1% would normally
be considered excellent in variational calculations, the order
parameters are still not well reproduced. Figure 26 shows
the dependence of both the Néel and VBS order parameters
on rmax. With increasing rmax, the sublattice magnetization is
reduced and the VBS order parameter increases, as would be
expected with CAP states in a VBS state. However, the VBS
order parameter is still more than 30% too small at rmax = 5,
and it appears to be essentially converged at that point.
Accordingly, the Néel order parameter is instead too large.

Figure 27 shows both order parameters calculated with
rmax = 3 as a function of the inverse system size, along
with unbiased QMC results. Here one can observe that the
agreement between the two calculations is very good for small
systems, but the agreement becomes worse with increasing
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FIG. 27. (Color online) Squared antiferromagnetic and VBS
order parameters versus the inverse system length for the 2D Q model
within the CAP states with rmax = 3.
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L. Asymptotically, the variational calculations tend toward a
weakly Néel ordered state, with no VBS long-range order, as
opposed to the actual VBS ground state. This calculation serves
to illustrate the insensitivity of the energy to long-distance
correlations and the related difficulty in using the energy as a
reliable measure of the quality of a state obtained by variational
means (see Ref. 58 for a different example of this issue).

While this result could be seen as a failure of the variational
CAP states, it should be noted again that the actual Néel-VBS
transition takes place at a very small coupling ratio, (J/Q)c ≈
0.045, and one cannot expect a variational calculation to
reproduce the critical point exactly. For the CAPs considered
here we have confirmed that the transition is pushed to a
small negative J/Q, but we leave more detailed studies of
the transition (which requires very well optimized states) for
a future study.

VI. SUMMARY AND DISCUSSION

In conclusion, we have discussed VBS states and associated
quantum phase transitions in 1D and 2D wave functions in the
VB basis. VBS states appear naturally within the standard
1D AP states, and we have here characterized the continuous
Néel-VBS transition in such a class of states with amplitudes
decaying as a power law of the bond length. To stabilize a 2D
VBS requires explicit bond correlations beyond the AP states.
We have introduced the CAP states, where correlations are
enforced through factors corresponding to bond pairs, as in the
wave function (7). We have shown how tuning of parameters
in 2D CAP states can lead to transitions from the standard Néel
antiferromagnet to a VBS, in some cases with an intervening
spin liquid phase. With the parametrization considered here,
the direct Néel-VBS transition is first order, while the Néel-
liquid and liquid-VBS transitions are continuous.

The 2D Néel-liquid transition is of the same kind as in the
pure AP states, although the short-distance VBS fluctuations
are enhanced. Interestingly, the liquid-VBS transition is not
associated with an emergent U(1) symmetry, although the
columnar VBS (which is the VBS variant stabilized with the
CAPs studied here), in principle, supports this phenomenon26

and has been observed in QMC studies of J -Q models
at the Néel-VBS transition.33,35,43 Thus, in the states we
have studied here the columnar VBS should be induced
by a relevant operator, instead of the dangerously irrelevant
operator associated with the emergent U(1) symmetry in the
“deconfined” criticality scenario.

It remains an interesting challenge to find a parametrization
of the CAP states such that a DQC point is obtained. In
the study with short-bond correlations in Sec. IV we kept
the single-bond amplitudes fixed with the form h(r) = 1/r3

and varied only a correlation parameter p. In principle, we
could also use h(r) = 1/rκ and vary κ . It would be interesting
to study the full phase diagram in the plane (p,κ) for the
two parametrizations of the bond correlations, and also with
different choices of the correlation factors.

We note a recent study of AP states, with a certain
parametrization of the amplitudes, to describe the Néel to
quantum-paramagnetic transition in the bilayer Heisenberg
model.59 Remarkably, the correct 3D classical Heisenberg
exponents were obtained for this transition; that is, the AP

states contain effectively long-range interactions that allow
(2 + 1)-dimensional criticality to be correctly reproduced
within a 2D configuration space. In principle, it seems that
this should be possible to achieve also for the DQC transition,
and if such a program to construct a simple CAP wave function
is successful, it would likely lead to further useful insights into
the mechanism of spinon deconfinement and emergence of the
effective U(1) gauge field.

It is possible that CAP states with all parameters adjusted to
minimize the energy of a model such as the J -Q model could
lead to a DQC point. Here we carried out such variational
QMC calculations for the standard J -Q model with four-spin
interactions. This model has a critical point very close to
J/Q = 0, however, and in the variational calculation the
J = 0 system is still inside the Néel phase. In principle, one
can still study the phase transition by going to negative J , but
in that case Marshall’s sign rule cannot be proven rigorously
(although most likely it should still hold when J/Q is small
and negative). We will investigate this case in future studies and
also consider the model with six-spin interactions,36 where the
transition point is at much larger J/Q and should remain well
within the range of positive J/Q values within optimized CAP
states. If indeed the correct type of criticality can be achieved,
then by examining the bond amplitudes and correlation factors
in the optimized state it may also be possible to construct a class
of CAP states with a single tunable parameter (instead of all the
parameters changing as a function of J/Q in the variationally
optimized states) to drive this type of criticality—which the
parametrization used in the present paper was not capable of.

Beyond the case (I) and (II) parametrizations of the CAP
states that we considered here, we have also explored other
cases. In particular, with c1 = c3 = p and c2 = c4 = 1/p, in
the notation of Fig. 1, we have found a plaquette VBS, in
contrast to the columnar VBS states obtaining in cases (I) and
(II). In future studies it will also be interesting to study the
nature of the transition from a Néel antiferromagnet to a VBS
in this case.

It is, in principle, possible to further improve on the CAP
states, by including more correlations. We here considered
pairs of bonds connected to a nearest-neighbor link only. We
have verified that this gives a better variational energy (for the
Heisenberg and J -Q models) than correlation factors based
on next-nearest-neighbor links. Therefore, most likely, the
nearest-neighbor links are optimal for introducing correlations
in this kind of CAP states. One could also combine several
types of correlation factors, and include also factors for
correlations between more than two bonds. In practice this may
not be worth the effort, however, as the main utility of CAP
states should be (i) to have a simple class of states to capture
the Néel-VBS transition and (ii) to use them as “trial states”
for projector QMC calculations in the VB basis.19,60–62 While
the variational states can be improved, in practice it is better to
project out the ground state exactly using QMC if completely
unbiased results are needed, and too many parameters in a
CAP state defeats the purpose of (i).

We should also point out that variational calculations to
fully optimize CAP states are quite time consuming. As
an example, the J -Q results for N = 32 × 32 reported in
Sec. IV typically required several hundred CPU hours for each
coupling ratio. Unbiased projector QMC calculations can be
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carried out with less effort, even with poor starting states. Thus,
point (ii) may also not pay off in many cases, unless the goal is
to obtain QMC results of very high precision (small error bars),
in which case the time-savings in long calculations should
outweigh the effort of optimizing a trial state. In general, we
believe that the most important utility of the CAPs is in the
context of point (i) above.

A very interesting question is whether the phase transitions
we have discussed here can be realized in ground states
of reasonable Hamiltonians, with only local interactions. In
particular, the Néel-liquid-VBS series of phases would be of
interest in this regard. We already know from the work of Cano
and Fendley24 on the short-bond RVB that there is a local
parent Hamiltonian for that state. It is then also appears very
plausible that some local perturbations of this Hamiltonian
will effect the stiffness constant characterizing the RVB21,56

and governing its critical VBS correlations. Thus, a class of
local Hamiltonians should be able to capture the whole spin

liquid phase in our case (II). Then, it also seems plausible
that other local perturbations can drive the system into a Néel
or a VBS state; for example, the Q term of the J -Q model
should do this. Since the Cano-Fendley Hamiltonian has a sign
problem in QMC calculations, some other methods would be
needed to study phase transitions in perturbations of it.

ACKNOWLEDGMENTS

We would like to thank Ribhu Kaul for useful comments
and discussion. This work was supported by the NSC under
Grants No. 98-2112-M-004-002-MY3 and No. 101-2112-M-
004-005-MY3 (Y.C.L.) and by the NSF under Grant No. DMR-
1104708 (A.W.S.). Y.C.L. would like to thank the Condensed
Matter Theory Visitors Program at Boston University for
support and AWS gratefully acknowledges support from the
NCTS in Taipei for visits to National Chengchi University.

1L. Pauling, J. Chem. Phys. 1, 280 (1933).
2L. Hulthén, Ark. Mat. Astron. Fys. A 26, 1 (1938).
3B. Sutherland, Phys. Rev. B 37, 3786 (1988); 38, 6855 (1988).
4S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61, 365
(1988).

5K. S. D. Beach and A. W. Sandvik, Nucl. Phys. B 750, 142 (2006).
6J. Wildeboer and A. Seidel, Phys. Rev. B 83, 184430 (2011).
7P. Fazekas and P. W. Anderson, Philos. Mag. 30, 423 (1974).
8B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964 (1981).
9P. W. Anderson, Science 235, 1196 (1987).

10N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).
11N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989).
12K. S. D. Beach, Phys. Rev. B 79, 224431 (2009).
13L. Wang and A. W. Sandvik, Phys. Rev. B 81, 054417 (2010).
14A. Banerjee and K. Damle, J. Stat. Mech. (2010) P08017.
15A. Banerjee, K. Damle, and F. Alet, Phys. Rev. B 83, 235111 (2011).
16H. Tran and N. E. Bonesteel, Phys. Rev. B 84, 144420 (2011).
17Y. Tang and Anders W. Sandvik, Phys. Rev. Lett. 107, 157201

(2011).
18W. Marshall, Proc. R. Soc. A 232, 48 (1955).
19A. W. Sandvik and H. G. Evertz, Phys. Rev. B 82, 024407 (2010).
20J. Lou and A. W. Sandvik, Phys. Rev. B 76, 104432 (2007).
21Y. Tang, A. W. Sandvik, and C. L. Henley, Phys. Rev. B 84, 174427

(2011).
22A. F. Albuquerque and F. Alet, Phys. Rev. B 82, 180408 (2010).
23H. Ju, A. B. Kallin, P. Fendley, M. B. Hastings, and R. G. Melko,

Phys. Rev. B 85, 165121 (2012).
24J. Cano and P. Fendley, Phys. Rev. Lett. 105, 067205 (2010).
25M. Havilio and A. Auerbach, Phys. Rev. Lett. 83, 4848 (1999).
26T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.

Fisher, Science 303, 1490 (2004).
27T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A.

Fisher, Phys. Rev. B 70, 144407 (2004).
28S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39,

2344 (1989).
29N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
30G. Murthy and S. Sachdev, Nucl. Phys. B 344 (1990).

31A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919
(1994).

32O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
33A. W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007).
34R. G. Melko and R. K. Kaul, Phys. Rev. Lett. 100, 017203 (2008);

R. K. Kaul and R. G. Melko, Phys. Rev. B 78, 014417 (2008).
35F. J. Jiang, M. Nyfeler, S. Chandrasekharan, and U. J. Wiese,

J. Stat. Mech. (2008) P02009.
36J. Lou, A. W. Sandvik, and N. Kawashima, Phys. Rev. B 80,

180414(R) (2009).
37A. W. Sandvik, V. N. Kotov, and O. P. Sushkov, Phys. Rev. Lett.

106, 207203 (2011).
38A. W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010).
39R. K. Kaul and A. W. Sandvik, Phys. Rev. Lett. 108, 137201 (2012).
40A. W. Sandvik and R. Moessner, Phys. Rev. B 73, 144504 (2006).
41D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).
42K. Binder, Z. Phys. B 43, 119 (1981).
43A. W. Sandvik, Phys. Rev. B 85, 134407 (2012)
44N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
45A. W. Sandvik, AIP Conf. Proc. 1297, 135 (2010).
46I. Affleck, Phys. Rev. Lett. 55, 1355 (1985).
47V. E. Korepin, Phys. Rev. Lett. 92, 096402 (2004).
48P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
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