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Large magnonic band gaps and spectra evolution in three-dimensional magnonic crystals based
on magnetoferritin nanoparticles
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We study magnonic crystals based on magnetoferritin nanoparticles. These nanoparticles self-assemble to form
crystals of highly ordered fcc structure with a lattice constant of ten-odd nanometers. Filling the interparticle
space by a ferromagnetic material should stabilize the ferromagnetic order in such a crystal at room temperature.
We use the plane wave method to demonstrate that the introduction of a ferromagnetic matrix can also lead to
the opening of a complete band gap, referred to as a magnonic band gap, in the spin-wave spectrum. We use a
model based on a homogeneous medium with effective parameters to interpret the characteristics of the obtained
spin-wave spectra in the long wave limit. We also study in detail the width of the band gap and its central frequency
versus the matrix material and the lattice constant. The occurrence of a maximum width in the lattice-constant
dependence is shown to be closely related to the specific behavior of the dynamic magnetization profiles of the
lowest excitations in the spin-wave spectrum. On the basis of our results we determine the conditions conducive
to the occurrence of a complete magnonic band gap. We also show that the crystallographic structure and the
lattice constant of the crystals produced by the protein crystallization technique are almost optimized for the
occurrence of a magnonic band gap.
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I. INTRODUCTION

Magnetic nanoparticles (NPs) have been intensively
studied because of their unusual physical properties as
well as promising applications, and the interest in them
continues to grow.1 This is due to their potential applications
in a wide variety of fields that range from medicine to
nanoelectronics.2 Biomimetic nanoparticles, a class of NPs
grown by biomineralization in biological protein cages, prove
to be of use in many fields: As magnetic resonance imaging
contrast agents3 or drug delivery vessels,4 in the production
of nanodot floating gate memory5 or new types of battery
electrodes,6 or for carbon nanotube growth.7 Biomimetic
NPs are also used in the realization of two-dimensional
(2D) and three-dimensional (3D) systems of highly ordered
structure.8–12 In this study we consider the use of NPs of
the very numerous magnetoferritin superfamily13 as the basis
for the realization of 3D magnonic crystals in which the
interparticle space is filled with a ferromagnetic material.

The use of protein cages as reaction chambers for the
production of NPs has a number of advantages. One of them
is a high level of homogeneity of the NPs in terms of size
and shape, determined by the internal surface of the protein
cage. The diameter of the biomimetic magnetic nanoparticles
ranges from 5 nm for Dps (DNA-binding protein from starved
cells)14,15 to approximately 100 nm for equine herpesvirus.16,17

For a survey of biological particles used as supramolecular
templates to encapsulate NPs see, for example, 18 or 19.
Another major advantage of biomimetic NPs from the point of
view of this study is the possibility of producing highly ordered
3D structures by self-assembly. Moreover, the self-assembly
processes depend on the external surface of the protein cage,
the characteristics of which can be modified without affecting
those of the internal surface, involved in the biomineralization
process.20 This allows us to control the self-assembly of
biomimetic particles without modifying the core obtained
inside the protein cage.

A large class of biomimetic NPs are based on ferritin,
a protein that stores iron in a nontoxic form in living
organisms.21 Ferritin consists of 24 protein subunits forming a
spherical cage that can store approximately 4500 Fe atoms.
Iron is stored in the form of ferrihydrite (hydrous ferric
oxyhydroxide); its removal is the first step in the production
of biomimetic NPs. An empty ferritin shell, or apoferritin, is
filled with the accumulated material22–24 (see, e.g., Refs. 2,
19, or 20 for the wide spectrum of filling materials). If the
core obtained in this way has a significant total magnetic
moment the nanoparticle is referred to as magnetoferritin
(mFT).25 Current technologies allow the production of mFT
NPs highly monodisperse in terms of both size and magnetic
parameters; for example, with apoferritin completely filled
with magnetite/maghemite (Fe3O4/γ –Fe2O3), a commonly
used magnetic filling material, the obtained magnetic core
has a diameter of approximately 8 nm and a total magnetic
moment of the order of 104 μB .9,26–28

The protein crystallization technique has been successfully
used for the production of 3D fcc mFT crystals9 of highly
ordered structure and the external size up to 100 μm. An
interesting effect observed in structures produced in this
way is a substantial reduction of the lattice constant as a
result of dehydration. As prepared, the mFT crystals have
a lattice constant of approximately 18.5 nm, which decreases
to approximately 14 nm when the crystals are taken off the
mother liquor and dried.27 In combination with the possibility
of modifying the external surface of mFT NPs this property
opens the prospect of controlling the lattice constant with a
control range of at least ten-odd nanometers. As demonstrated
by our results, even slight changes in the lattice constant in
the considered range will modify drastically the spin-wave
spectrum of the magnonic crystal.

Magnonic crystals (MCs) are the magnetic counterpart of
semiconductor, photonic, and phononic crystals, with spin
waves acting as information carriers and thus playing the
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same role as electrons and electromagnetic and elastic waves,
respectively, in the other three types of crystals.29–32 By
adjusting the constituent materials, the shape of individual
elements and their periodic spatial (or planar) arrangement
the dispersion of spin waves in MCs can be tailored in a way
impossible in other materials and composites. This implies a
possibility of modeling the velocity and direction of the spin
waves propagating in the MCs. However, the fundamental
characteristic of periodic structures, including magnonic crys-
tals, is the occurrence of a band gap in their energy spectrum.
In MCs this band gap is referred to as magnonic band gap,
and represents a frequency range unavailable to spin waves
propagating in the MC. Along with the possibility of tuning this
forbidden frequency range by controlling the applied magnetic
field, this property makes MCs the basic building blocks of
the new branch of physics referred to as magnonics.32–35

The main objective of magnonics is practical application
of spin waves for the construction of new logic systems
and improvement of parameters and functionalities of rf
devices.36–41

The current experimental studies of spin waves in MCs
mainly focus on 1D or 2D structures. These tend to be
regular lattices of holes (with a period down to a few hundred
nanometers) drilled in a homogeneous ferromagnetic material,
referred to as antidot lattices,42–45 or periodic lattices of stripes
or magnetic dots.46–49 So far, the occurrence of a magnonic
band gap has been verified experimentally in a thin-film
one-dimensional (1D) MC composed of two ferromagnetic
materials50,51 and just recently in a two-component thin-film
2D MC in the form of an antidot lattice in Py with holes filled
with Co.52 The realization of MCs with a lattice constant of
tens of nanometers, though technologically possible, remains
a challenge. Magnonic crystals with even smaller lattice
constants, down to ten-odd nanometers, have only been
studied theoretically so far.53,54 Neither have 3D MCs been
realized experimentally, and remain the subject of theoretical
studies.54–58 The protein crystallization technique discussed
above seems to open the prospect of realizing 3D MCs with
a lattice constant of ten-odd nanometers. This would be an
enormous step forward in magnonics, and would allow us to
shift the magnonic band gap to the subterahertz frequency
range.

A number of methods are used for calculating the spec-
trum of spin waves in 2D MCs. The calculation techniques
include the plane wave method (PWM),29,53,59 averaging
methods,60,61 the dynamical matrix method,62–64 and ap-
proximative semianalytic techniques.65,66 The introduction of
periodic boundary conditions to micromagnetic calculations
has allowed numerical simulations of spin waves propagating
in magnonic systems.67–69 Based on the finite difference
method or the finite element method, such micromagnetic
simulations require, however, huge computer resources and
therefore are currently used mainly for studying thin films.70,71

Especially PWM seems to be very useful for the theoretical
study of the structures considered in this paper. Because
of its conceptual simplicity and applicability to any type
of lattice and any shape of scattering centers the PWM is
one of the most popular tools used for studying MCs as
well as photonic and phononic crystals.72–75 The method is
being constantly improved, its field of application extending

to new problems. Recently, the PWM has been used for
calculating the band structure of photonic and magnonic
crystals composed of materials with energy dissipation or with
frequency-dependent properties,76,77 1D and 2D MCs of finite
thickness,78,79 2D antidot lattices,80,81 and 2D MCs with a point
defect.82

The extension of the PWM to 3D MCs is developed in
Refs. 55–58. These papers present a systematic study of
the effect of a number of factors on the magnonic band
structure; the considered factors include structural parameters
(filling fraction, lattice constant, ellipsoidal deformation of the
scattering centers) and magnetic properties of the constituent
materials (contrast of saturation magnetization and exchange
constant). The investigated 3D MCs have the simple cubic
(sc),55 body-centered cubic (bcc),56,57 face-centered cubic
(fcc),57 and simple hexagonal (sh)58 crystallographic structure.
Both magnetic contrasts, that is, the saturation magnetization
contrast and the exchange constant contrast, are shown to play
an important role in the opening of magnonic gaps. A satura-
tion magnetization contrast above a certain critical level pro-
vides a sufficient condition for magnonic gaps to open (even if
the values of the exchange constant in the constituent materials
are equal); the critical value of saturation magnetization cotrast
strongly depends on the lattice type. The exchange contrast has
a significant effect on the gap width, but needs to be very large
to induce the opening of magnonic band gaps in the absence of
magnetization contrast. As demonstrated in Ref. 57, an impor-
tant role in the creation of magnonic band gaps is played by
the crystallographic structure. The best conditions for the oc-
currence of magnonic band gaps are offered by the fcc lattice.
Moreover, the results of these calculations indicate that the gap
width depends on the shape of the scattering centers; in the fcc
and bcc structures the largest band gaps are observed for scat-
tering centers with a shape close to a sphere. The important role
of the lattice constant is demonstrated in cubic magnonic struc-
tures, in which, for lattice constants greater than the exchange
length in the matrix material, the dipolar interactions gain in
importance, which results in a substantial reduction of the gap
width.

The concept of 3D MC was also used in an attempt
to explain the experimental data obtained in low-doped
manganites by neutron scattering on SWs and proving the
occurrence of a spin-wave frequency gap.83 According to a
hypothesis proposed in Ref. 56, two phases related with two
forms of manganese might self-arrange into a regular bcc
lattice of ellipsoidal droplets rich in Mn4+ immersed in a
canted-antiferromagnetic Mn2+ matrix. The results based on
this model are in good agreement with the experimental SW
spectra. The theoretical hypothesis of separate phases forming
a regular lattice has not yet been confirmed experimentally,
though. In the latest paper58 the theoretical considerations are
extended to sh lattice-based MCs composed of two ferromag-
netic metals. Twelve MCs of different material composition are
investigated by considering the combinations of four metallic
ferromagnetic materials: Co, Fe, Ni, and Py. The absolute
magnonic gap is only found to occur in the MC with Ni
spheres in an Fe matrix. The results presented in this reference
paper point out the difficulties encountered in the engineering
of 3D MCs with a complete band gap from ferromagnetic
metals.
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In the present paper we propose an MC based on a 3D mFT
crystal with a ferromagnetic material used as a matrix. We
present the results of numerical calculations of the magnonic
band structure for the fcc lattice, a structure characteristic of
mFT crystals, in the lattice constant range in which magneto-
ferritins can aggregate in the protein crystallization process.
Five representative ferromagnetic materials are considered,
with fixed size and properties of mFT NPs. We show that a
complete magnonic gap should open with a suitably chosen
matrix material, and provide a qualitative explanation of this
effect. Moreover, our analysis of the impact of the lattice
constant of the MC on the properties of the magnonic band gap
leads to the conclusion that the natural separation of mFT NPs
is close to the optimal value for which the obtained complete,
or omnidirectional, magnonic gap is the largest. We use an
adaptation of the PWM suitable for the treatment of 3D MCs,
in the development of which we extend the model presented in
previous papers devoted to 3D MCs (Refs. 55–58) by taking
into account the effect of inhomogeneous static demagnetizing
field. Each of these four papers presents a detailed study of
the effect of the structural and material parameters on the
width of the magnonic band gap, but does not elucidate its
physical origin. Here we clarify this issue with the aid of
the empty lattice approach. We also readdress the problem
of reduction of the gap width with increasing lattice constant
by associating this effect with the particular behavior of the
spin-wave amplitude profiles.

Our theoretical approach is discussed in detail in Sec. II.
In the next sections we present the results of our theoretical
study of the propagation of spin waves in 3D MCs based on
mFT NPs arranged in sites of an fcc lattice and embedded
in a ferromagnetic matrix. In Sec. III we refer to a model
homogeneous medium with effective magnetic parameters
to explain the characteristics of the spin-wave frequency
spectra obtained for the MCs under consideration in the
long-wavelength limit, that is, near the center of the Brillouin
zone. Section IV presents the evolution of the magnonic band
gap with the lattice constant. We also present spin-wave
amplitude profiles, on the basis of which we explain the
occurrence of a maximum in the lattice-constant dependence
of the gap width. In Sec. V we analyze the dependence of the
gap width on the matrix material. The physical grounds of the
main results presented in this paper are discussed in Sec. VI.
The main conclusions drawn from the results obtained in this
study are summed up in Sec. VII.

II. THEORETICAL APPROACH

For the description of spin waves propagating in the
magnonic crystal under consideration we are going to use a
Cartesian coordinate system corresponding to regular crystal
lattices, with the z axis parallel to the [001] direction in the
crystal [Fig. 1(c)]. An external magnetic field homogeneous in
space and strong enough to align all the magnetic moments in
the direction of the field is applied along the z axis. This
allows the use of the linear approximation, which implies
small deviations m(r,t) of the magnetization M(r,t) from its
ground state. Thus, the magnetization vector can be expressed
as M(r,t) = Mz(r)ẑ + m(r,t). Because |m(r,t)| � Mz(r),
we can assume Mz(r) ≈ MS(r), where MS is the saturation
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FIG. 1. (Color online) (a) and (b) Spin-wave spectra of MC with
magnetoferritin (mFT) nanoparticles embedded in an iron matrix and
arranged in an fcc lattice with lattice constant (a) 18.5 nm (mFT
crystal as prepared) and (b) 14 nm (dehydrated mFT crystal). The
spectra are plotted along the high-symmetry path in the first Brillouin
zone shown in (d). Shaded area represents the complete magnonic
band gap. (c) Schematic plot of the fcc structure with coordinating
system used.

magnetization. In this study we will seek solutions in the form
of monochromatic spin waves m(r,t) = m(r)eiωt , ω being the
spin-wave angular frequency.

In the classical approach the dynamics of the magnetization
is described by the Landau-Lifshitz (LL) equation:

∂ M
∂t

= −|γ |μ0 M × Heff, (1)

where γ is the gyromagnetic ratio, μ0 is the permeability of
vacuum, and Heff is the effective magnetic field. As in the case
of free electrons, we assume |γ |μ0 = 2.21 × 105 mA−1 s−1.
Damping is neglected in the calculations performed in this
study.

The effective magnetic field Heff acting on magnetic
moments in an MC is in general a sum of several components.
If the magnetocrystalline anisotropy is negligible in the studied
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structure Heff can be written as

Heff(r,t) = H0 + Hex(r,t) + Hms(r,t). (2)

The first component of the effective field in (2) is the applied
magnetic field. The second component is the exchange field. To
express this field we shall use the formula specified in Ref. 58:
Hex(r,t) = [∇λ2

ex(r,t)∇]m(r,t), where λex =
√

2A/μ0M
2
S is

the exchange length and A is the exchange constant. The last
component of the effective field is the magnetostatic field.
In the linear approximation it can be decomposed into the
static and dynamic components H(r) and h(r,t), respectively,
Hms(r,t) = H(r) + h(r,t), where |h(r,t)| � |H(r)|. The
time dependence of the dynamic component of the dipolar
field has the same form as that of the dynamic component of
the magnetization vector h(r,t) = h(r)eiωt .

The calculations of the spin-wave spectra of 3D MCs
performed to date (see, e.g., Refs. 57 and 58) only take into
consideration inhomogeneity of the dynamic magnetostatic
field. In this study we extend our previous results by allowing
for an inhomogeneous static demagnetizing field. In the linear
approximation, (1) leads to the following system of equations:

ω̃mx = −MS

[(∇λ2
ex∇

)
my + hy

] + (H0 + Hz)my,
(3)

ω̃my = MS

[(∇λ2
ex∇

)
mx + hx

] − (H0 + Hz)mx,

where ω̃ = iω/|γ |μ0. The static demagnetizing field is as-
sumed to have only one nonzero component Hz along the
direction of the external field. The other two components Hx

and Hy must be neglected for the equations to be consistent
under the linear approximation used.

Let us consider an MC composed of two ferromagnetic
materials, A and B. Material A is distributed periodically in the
MC in the form of spherical scattering centers arranged in an
fcc lattice. The spheres of material A are embedded in a matrix
of material B. A periodic spatial distribution of magnetic
parameters is of key importance for the magnonic properties
of composites of this type. These material parameters, namely
A and MS , and consequently λ2

ex, are periodic functions of the
position vector r(x,y,z), with the same periodicity as the lat-
tice. Thus, we can use the Fourier transformation to map these
periodic functions to the reciprocal space in the following way:

MS(r) =
∑

G

MS(G) exp(iG· r),

(4)
λ2

ex(r) =
∑

G

λ2
ex(G) exp(iG· r),

where G denotes a vector of the reciprocal lattice of the
considered fcc structure. In the case of spherical scattering
centers the Fourier components MS(G) and λ2

ex(G) of the
saturation magnetization and the squared exchange length,
respectively, can be easily obtained analytically, and have the
form

X(G) =
{

ff XA−B + XB for G = 0,

3ff XA−B(sin P − P cos P )/P 3 for G �= 0,

(5)

where XA−B = (XA − XB); X stands for MS or λ2
ex; subscripts

A and B refer to the scattering centers and the matrix,
respectively; P = R|G|, where R is the scattering center
radius; ff is the filling fraction, defined as the volume
proportion of material A in the unit cell. For spheres of radius
R arranged in an fcc lattice with lattice constant a the filling
fraction is ff = 16πR3/3a3.

In order to solve the system of Eqs. (3) we will use the
Bloch theorem, which asserts that a solution of a differential
equation with periodic coefficients can be represented as the
product of a plane wave envelope function and a periodic
function mk(G):

m(r) =
∑

G

mk(G) exp[i(k + G)· r], (6)

where k is a Bloch wave vector of the spin wave.
To complete the formalism in which an eigenvalue prob-

lem in the reciprocal space is derived from the system of
Eqs. (3) we need to calculate the magnetostatic field Hms(r,t).
In the magnetostatic approximation both the dynamic and
static components of the dipolar field must fulfill Maxwells
equations:

∇ × H(r) = 0, ∇ · [H(r) + MS(r)ẑ] = 0,
(7)

∇ × h(r,t) = 0, ∇ · [h(r,t) + m(r,t)] = 0.

According to these equations, one can introduce the magneto-
static potentials for both magnetic fields:

H(r) = −∇ϕ(r), h(r,t) = −∇ψ(r,t). (8)

By applying the Bloch theorem and Fourier expanding all
the periodic functions in (7) and (8) by formulas (4)–(6) one
obtains the magnetic field in the considered MC as a function
of the magnetization vector:

hx(r) = −
∑

G

(kx + Gx)2mx,k(G) + (kx + Gx)(ky + Gy)my,k(G)

|k + G|2 ei(k+G)·r ,

hy(r) = −
∑

G

(kx + Gx)(ky + Gy)mx,k(G) + (kx + Gx)2my,k(G)

|k + G|2 ei(k+G)·r , (9)

Hz(r) = −
∑

G

G2
z

G2
MS(G)eiG·r .
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Substitution of Eqs. (4), (6), and (9) into (3) leads to an
eigenvalue problem with eigenvalues 	 = iω/|γ |μ0H0:

M̂mk(G) = 	mk(G), (10)

where the eigenvector is defined as mk = [mx,k(G1), . . . ,
mx,k(GN ),my,k(G1), . . . ,my,k(GN )]T, and a finite number N

of reciprocal lattice vectors is used in (4)–(6). The block-matrix

M̂ has the form M̂ = [ M̂xx M̂xy

M̂yx M̂yy
] with following elements:

Mxx
ij = −M

yy

ij = (kx + Gx,j )(ky + Gy,j )MS(Gi − Gj )

H0|k + Gj |2 ,

M
xy

ij = δij + 1

H0

∑
l

(k + Gl)(k + Gj )λ2
ex(Gl − Gj )

×MS(Gi − Gl) + (ky + Gy,j )2MS(Gi − Gj )

H0|k + Gj |2

− (Gz,i + Gz,j )2MS(Gi − Gj )

H0|Gi + Gj |2 , (11)

M
yx

ij = −δij − 1

H0

∑
l

(k + Gl)(k + Gj )λ2
ex(Gl − Gj )

×MS(Gi − Gl) − (kx + Gx,j )2MS(Gi − Gj )

H0|k + Gj |2

+ (Gz,i + Gz,j )2MS(Gi − Gj )

H0|Gi + Gj |2 ,

where indices i, j , and l are integers in the range 〈−N,N〉.
We solve the eigenvalue problem (10) by standard numerical
routines using 1241 plane waves or reciprocal vectors G
which is enough to obtain convergence of the results (with an
error less than 2%) for both lowest magnonic gap width and
its central frequency.

III. PROPERTIES OF THE SPIN-WAVE SPECTRUM

We have used the theoretical method discussed above to
determine the spin-wave spectrum of magnonic crystals based
on mFT NPs arranged in an fcc lattice and embedded in a
ferromagnetic matrix. The matrix materials considered are
cobalt, iron, nickel, permalloy (Py), and yttrium iron garnet
(YIG). The material parameters used in the calculations are
specified in Table I. In all considered cases we assume an
external magnetic field of 0.1 T to stabilize the uniform
magnetization in the crystal.

Figures 1(a) and 1(b) presents sample magnonic spectra
obtained for an Fe matrix and two values of the lattice constant:

TABLE I. Values of material parameters: Spontaneous magneti-
zation MS , exchange stiffness constant A, and exchange length λex,
in the materials considered in this study (see, e.g., Ref. 84).

Material Fe Co Py Ni YIG mFTa

MS (A/m) 106 1.752 1.390 0.810 0.480 0.194 0.346
A (J/m) 10−11 2.1 2.8 1.1 0.86 0.4 1.0
λex (nm) 3.30 4.80 5.17 7.71 13.01 11.53

aParameter values calculated on the basis of Ref. 9.

18.5 nm (mFT crystal as prepared) and 14 nm (dehydrated mFT
crystal), respectively. The spectra were calculated along the
high-symmetry path in the first Brillouin zone (FBZ) shown in
Fig. 1(d). The introduction of the iron matrix in which the mFT
NPs are embedded is seen to generate a complete magnonic
band gap for both lattice constant values. In the first case, a =
18.5 nm, the gap width is 73 GHz, and its central frequency
106 GHz [Fig. 1(a)]. For the other lattice constant value, a =
14 nm, the band gap has a width of 290 GHz and is centered at
250 GHz [Fig. 1(b)]. Thus, the decrease in the lattice constant
by approximately 24% results in a nearly fourfold increase in
the gap width and a substantially higher forbidden frequency
range. Similar results were obtained for the Co matrix (gap
width 79 GHz for a = 18.5 nm and 246 GHz for a = 14 nm)
and the Py matrix (gap width 28 GHz for a = 18.5 nm and
136 GHz for a = 14 nm). For the Ni and YIG matrices no
magnonic band gap was found to occur.

A frequency step is seen to occur at point � in the
spin-wave spectra presented in Fig. 1. At this point the
direction of propagation of the spin wave changes from parallel
(segment X′-�) to perpendicular (segment �-X) with respect
to the applied field. The frequency step is due to the dipolar
interactions and occurs also in homogeneous materials.85 In an
infinite homogeneous medium with saturation magnetization
MS and exchange length λex the dependence of the spin-wave
frequency on the wave vector magnitude k is85

ωθ (k) =
√(

ω0 + ωMλ2
exk

2
)[

ω0 + ωM

(
λ2

exk
2 + sin θ2

)]
,

(12)

where ω0 = |γ |μ0H0 is the ferromagnetic resonance fre-
quency in the external field H0, ωM = |γ |μ0MS , and θ is the
angle between the direction of propagation of the spin wave
and that of the external field. Hence, for k = 0, that is, at point
� of the Brillouin zone, the reorientation of the direction of
propagation from parallel to perpendicular to H0 results in the
frequency shift

ω ≡ ω90 − ω0 = ω0

(√
1 + MS

H0
− 1

)
. (13)

If we replace the MC by a homogeneous medium the
effective value of saturation magnetization (in the simplest
model) can be found from the weighted mean:

Meff
S = MA

S ff + MB
S (ff − 1). (14)

For the lattice constant 18.5 nm from (13) and (14) we
obtain the step ω/2π = 9.73 GHz for the effective medium,
against ω/2π = 10.95 GHz obtained by the PWM for a
magnonic crystal. For the lattice constant 14 nm the step
calculated on the basis of the effective parameters is ω/2π =
8.44 GHz, against the composite value ω/2π = 8.36 GHz.
This agreement between the numerical results obtained for a
composite with a large contrast of magnetic parameters and
the analytical data for a homogeneous material with effective
(averaged) parameters is indicative of a highly uniform lowest
mode in the long-wave end of the spin-wave spectrum. [This
conclusion is confirmed by the dynamic magnetization profiles
obtained by the PWM, cf. Figs. 4(a)–4(c).] However, the
specific values of ω0 and ω90 for the magnonic crystal are
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much higher than those for the homogeneous material with
averaged parameters. For example, for the lattice constant
values 18.5 and 14 nm we have ω0/2π = 7.54 GHz and
ω0/2π = 8.48 GHz, respectively, against ω0/2π = 2.80 GHz
for the homogeneous medium. These differences may result
from taking into account in the PWM the static demagnetizing
field, which strongly depends on the lattice constant. Thus,
the demagnetization effects can have a substantial impact on
the spin-wave spectrum, especially in the range of small wave
vectors, and should be taken into account in the model with
the effective homogeneous medium, for example, by including
a correction term corresponding to the effective (average)
impact of the demagnetizing field86 and correcting the value
of the external field accordingly. In the cases discussed above
the values of this additional magnetic field are 0.17 T for
a = 18.5 nm and 0.2 T for a = 14 nm.

Another question is: Why no band gap occurs for Ni and
YIG matrices? This topic is discussed in detail in Sec. VI.

IV. MAGNONIC BAND GAP VS LATTICE CONSTANT

We have also examined the lattice-constant dependence of
the width of the complete magnonic band gap. The results are
presented in Fig. 2(a). For spheres with a diameter of 8 nm
(the diameter of the ferromagnetic core of a magnetoferritin
particle) arranged in an fcc lattice the minimal lattice constant
is 11.5 nm, approximately. As the lattice constant grows from
this minimal value to approximately 13 nm, the gap width
increases steeply, to decrease, at first very rapidly, as the
lattice constant increases still further. Thus, for all the three
matrix materials for which the band gap opens a pronounced
maximum of the gap width occurs for a lattice constant value
close to 13 nm, namely 13.02 nm for Co, 12.77 nm for Fe, and
12.82 nm for Py. The band gap proves to close at the largest
lattice constant value amax = 27 nm in the structure with a
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FIG. 2. (Color online) (a) The width and (b) the central fre-
quency of the complete magnonic band gap vs lattice constant for
magnetoferritin-based magnonic crystals with an iron, cobalt, and
permalloy matrix.
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FIG. 3. (Color online) The top of the first band (n1) and the bottom
of the second band (n2) vs the lattice constant for mFT NPs in Fe.
Points a–f correspond to the dynamic magnetization profiles shown
in Fig. 4.

cobalt matrix. For the iron matrix the maximal lattice constant
value corresponding to a nonzero band gap is amax = 26 nm,
and for permalloy amax = 22.5 nm. Figure 2(b) shows the
central frequency of the complete magnonic band gap versus
the lattice constant. For Fe and Py matrices the central
frequencies are nearly equal, only differing by a few percent.
For cobalt the central frequency is substantially higher. In all
three cases the gap center lowers monotonically as the lattice
constant grows. These dependencies offer a way to model the
complete magnonic band gap in a wide range.

Let us explain the occurrence of a maximum in the
lattice-constant dependence of the gap width. This maximum
is related to changes in the character of the dynamic mag-
netization profile for the two lowest modes at points L and
W ′ in the FBZ, corresponding to the wave vectors for which
these modes delimit the band gap. Figure 3 shows the top of
the first band (the bottom of the magnonic band gap) and the
bottom of the second band (the top of the band gap) versus the
lattice constant for mFT NPs embedded in Fe. In the lattice
constant range from 11.5 to approximately 13 nm the top of
the first band (n1) drops very rapidly. The bottom frequency
of the second band (n2) decreases as well, but at a much
slower rate. As a result the band gap widens. For the lattice
constant of approximately 13 nm the slope of both curves is
significantly different. First of all, the frequency of the lowest
mode diminishes much more slowly than that of the second
mode, which results in a shrinkage of the band gap.

To explain this behavior of the two lowest modes we
determined their spin-wave profiles (dynamic magnetization
profiles) for three lattice constant values, indicated in the plot
shown in Fig. 3 (points a–f). The profiles are presented in
Fig. 4. We also introduced a concentration coefficient of the
dynamic component of magnetization. For scattering centers
the concentration coefficient is defined:

CA = m̃A

m̃A + m̃B

, (15)

where m̃X = 1
VX

∫
VX

|m|2dv is the mean value of squared
amplitude of the dynamic magnetization in volume VX, that
is, in the scattering centers (for X = A) or in the matrix
(X = B). By this definition a concentration coefficient
value above 0.5 means that the concentration of dynamic
magnetization is higher in the mFT NPs than in the matrix.

144402-6



LARGE MAGNONIC BAND GAPS AND SPECTRA . . . PHYSICAL REVIEW B 86, 144402 (2012)

0

0

3

1. 5

1. 5
(a) n a=1 1. 51 (b) n a=13. 01 (c) n a=15. 01

(d) n a=1 1. 52 (e) n a=13. 02 (f) n a=15. 02

0

3

0

ar
b.

 u
ni

ts
ar

b.
 u

ni
ts

FIG. 4. (Color online) Profiles of dynamic magnetization for the
two lowest spin-wave modes (n1 and n2) in an mFT/Fe MC in a plane
perpendicular to the external field and passing through the centers of
mFT NPs (the contours of which are represented by circles). Profiles
labeled a–f correspond to the respective points indicated in Fig. 3.
Section along the dotted lines is shown above each profile.

For the lowest mode [Figs. 4(a)–4(c)] the dynamic
magnetization determined at point W ′ of the FBZ is strongly
concentrated in the mFT NPs and the lattice-constant
dependence of the concentration coefficient is very weak
(CA = 0.69 for a = 11.5 nm, 0.70 for 13 nm, and 0.73 for
15 nm). In the case of touching mFT NPs [Fig. 4(a)] the profile
has a bulk character (a sinusoidal shape), manifest along
the path between adjacent mFT NPs. This is due to strong
interactions between excitations concentrated in adjacent
NPs. An increase in the lattice constant to 13 nm brings about
significant changes in the profile of the lowest mode, which
becomes flat in the NPs and vanishes rapidly in the matrix
[Fig. 4(b)]. This is because the role of the exchange interactions
between adjacent NPs, strongly dependent on the interparticle
distance, diminishes. As a result the excitations are strongly
isolated and limited to the NPs. A further increase in the
lattice constant does not change the character of the profiles
[Fig. 4(c)], but only strengthens the isolation of the excitations
in the NPs. Since also the size of the NPs remains unchanged,
the excitations are concentrated in the same volume regardless
of the lattice constant. Thus, the frequency of the lowest mode
only depends on the lattice constant by the magnetostatic in-
teractions between excitations in adjacent NPs; for sufficiently
large lattice constant values this dependence is weak.

The profiles of the second mode [Figs. 4(d)–4(f)] were
determined at point L in the FBZ, or for the direction of
propagation [111]. This is reflected in the general shape
of the profiles: Node planes, passing through NP centers,
and planes of strong concentration of dynamic magnetization

alternate perpendicularly to the direction of propagation. For
all three lattice constant values the dynamic magnetization
is mainly concentrated in the matrix, with a maximum in
the middle of interparticle areas. In this case, however, for
small lattice constants (a = 11.5 nm), also in the NPs the
amplitude of dynamic magnetization is significantly different
from zero [CA = 0.38, Fig. 4(d)]. As the lattice constant
increases to 13 nm the dynamic magnetization leaves the
NPs for the matrix (CA = 0.23), which implies its increased
concentration in the matrix material [Fig. 4(e)]. This increase
in the concentration of dynamic magnetization in the relatively
small interparticle space compensates to some extent the rapid
decrease in the spin-wave frequency with growing lattice
constant. This effect is manifest in the behavior of n2 in
Fig. 3 for lattice constant values between 11.5 and 13 nm.
For lattice constants above 13 nm the dynamic magnetization
is concentrated almost solely in the matrix (CA = 0.08 for
a = 15 nm). Further increase in the lattice constant does not
result in significant changes in the character of the spin-wave
profile; only the volume of matrix material, in which the
dynamic magnetization is concentrated, grows with lattice
constant in this range [Fig. 4(f)]. The increase in volume
available for the considered excitation results directly from
the change in filling fraction, as reflected in the character of
the n2 curve in Fig. 3 for lattice constant values above 13 nm.

V. MAGNONIC BAND GAP VS MATRIX MATERIAL

In the lattice constant range from 11.5 to 15 nm the largest
band gap occurs for the iron matrix; the gap is much narrower
for the cobalt matrix, and the narrowest for the permalloy
matrix (in the lattice constant range above 15 nm the band gap
width for Co is similar to that for Fe). In this range of lattice
constant the distance between the centers of adjacent mFT
NPs ranges from 8.1 to 10.6 nm and the exchange interactions
predominate.

The values of material parameters: The saturation magneti-
zation MS , the exchange constant A, and the exchange length
λex, in the materials considered in this paper, are specified in
Table I. Figure 5 visualizes the contrasts of these parameters,
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FIG. 5. (Color online) Contrast of saturation magnetization MS ,
exchange constant A, and exchange length λ in magnonic crystals
with mFT NPs and different matrix materials. The contrast of each
parameter is the ratio of its value in the NPs to its value in the matrix
material. The plotted values are as calculated on the basis of Table I.
The matrix materials are ordered by decreasing gap width (except for
the last two, for which the band gap does not occur).
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FIG. 6. (Color online) Color map of the complete magnonic band
gap width vs material parameter contrasts for a magnetoferritin-based
magnonic crystal with the lattice constant a = 13.0 nm. The material
parameter values in the scattering centers (mFT) are fixed. The
contrast of each parameter is the ratio of its value in the scattering
centers to its value in the matrix (Table I). Open circles indicate points
corresponding to the matrix materials considered in this study.

that is, the ratio of the parameter value in mFT to its value in
the matrix. The matrix materials are ordered by decreasing gap
width (except for the last two, for which the band gap does not
occur). The MS contrast grows monotonically with decreasing
gap width; moreover, its inverse is, in a good approximation,
proportional to the gap width (for the lattice constant of 13 nm,
corresponding to the maximum gap width, the product of the
MS contrast and the gap width in GHz is 69.5 for Fe, 67.2 for
Co, and 70.2 for Py). Also the exchange length contrast varies
monotonically with the gap width; however, the difference
between the values of λex contrast for Co and Py is slight,
while the gap widths for these two matrix materials differ
significantly.

The occurrence of a critical material parameter contrast
value to be reached for a complete magnonic gap to open is
clearly seen in Fig. 6, showing a color map of the complete
magnonic band gap width vs the contrasts of saturation
magnetization and exchange length. The lattice constant is
13 nm and the material parameters of the mFT NPs are fixed.
The contrast of each parameter is calculated as the ratio of its
value in the scattering centers (mFT) to its matrix value (see
Table I). The graph corresponds to a situation in which the
saturation magnetization is higher in the matrix than in the
NPs (the contrast value is below 1) while the exchange length
is lower in the NPs than in the matrix; this occurs in MCs with
four matrix materials considered in this paper: Co, Fe, Py, and
Ni (marked with open circles). No complete magnonic gap
will occur if both contrasts are too weak (too close to 1). The
corresponding region is shown as white in Fig. 6; the MC with
a nickel matrix is seen to lie in this region.

This result is similar to the data reported in Ref. 57. In
Fig. 7 in this reference paper the critical value of saturation
magnetization contrast, below which the band gap does not
occur, is 2.8 for the fcc lattice.87 This value was obtained for the
situation in which the saturation magnetization in the matrix
material is lower than in the scattering centers. In the case of
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FIG. 7. Spin-wave spectra of MC with magnetoferritin (mFT)
nanoparticles arranged in an fcc lattice with lattice constant 13.0 nm
and embedded in an (a) nickel and (b) YIG matrix. The spectra are
plotted along the high-symmetry path in the FBZ shown in Fig. 1(d).
Shaded area in (a) represents overlapping of two lowest bands.

the mFT NPs considered in our study this situation only occurs
for the YIG matrix; the corresponding MS contrast is 1.78. For
the other matrix materials the situation is reversed, that is,
this contrast is lower than 1. Qualitatively, the conclusion is
exactly as in Ref. 57: In the range of predominating exchange
interactions the width of the magnonic band gap grows with
increasing MS contrast above some threshold that must be
reached for the band gap to open.

This interpretation, relating the gap width with the satu-
ration magnetization contrast, does not apply to the lattice
constant range above 15 nm. The band gaps obtained for the
iron and cobalt matrices are of almost equal width in this
lattice-constant range; the band gap obtained for Co is slightly
larger [Fig. 2(a)].

VI. DISCUSSION

Two fundamental questions arise in relation to the results
presented above. What is the origin of the contrast threshold? Is
it by coincidence, or rather because of an intrinsic property of
the considered structures that for every three matrix materials
in which the band gap opens its maximum occurs around
the lattice constant of 13 nm? In an attempt to answer these
questions let us remember the basic results obtained for 1D
MCs.88 There is no critical magnetic contrast in this case: Any
contrast will result in a gap in the spin-wave spectrum at the
border of the FBZ. In the 3D case a similar effect is observed
for any particular direction of spin-wave propagation; however,
in general, the FBZ border for different directions stands for
different lengths of the wave vector. This results in an indirect
band gap, whose bottom and top correspond to different lattice
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directions. Moreover, if the directional gaps are too narrow,
the overlapping of neighboring bands can destroy a complete
magnonic gap. A perfect example of such a situation is the
spectrum obtained for the Ni matrix, shown in Fig. 7(a). The
general shape of this spectrum is similar to that obtained for
the Fe matrix [cf. Fig. 1(b)], except for the fact that in the case
of Ni the distance between the first and second bands is much
smaller. Because of this close vicinity a frequency margin at
the top of the first band overlaps with the bottom frequencies of
the second band around the point L. The contrast of saturation
magnetization is 0.72 in this MC, much smaller (i.e., closer to
1) than in the three cases in which a complete gap occurs. This
is indicative of a certain threshold to be surpassed for the two
lowest bands to disjoin and a complete magnonic gap to open.
A similar rule was found in photonic crystals, in which the
opening of a complete photonic gap necessitates a dielectric
constant contrast above some critical value.89

Shown in Fig. 7(b), the spin-wave spectrum obtained for
the YIG matrix is substantially different from the spectra
for Ni or Fe matrices; the difference is the overlapping of
the two lowest bands. According to Fig. 5, only for YIG the
saturation magnetization contrast is greater than one, that is,
MS in the matrix is lower than in the scattering centers. As a
consequence the lowest modes are concentrated in the matrix.
The concentration coefficient (15) for the matrix material,
calculated at different points in the FBZ, varies from 0.51 to
0.74 for the lowest mode and from 0.58 to 0.76 for the second
one. It is this concentration of two neighboring modes in the
same material that allows their crossing and, consequently,
prevents the opening of the band gap between them. Similar
cases are studied in Ref. 57, which considers MCs with a
magnetization contrast greater than 1; a complete magnonic
gap is found to open above a certain level of this contrast. In
the case of an fcc lattice with a lattice constant of 10 nm
and a filling fraction of 0.2 the critical value of magneti-
zation contrast is found to be 2.8. In the case considered
here, with mFT NPs in a YIG matrix, the MS contrast is
1.784. Thus, our result agrees with the findings presented in
Ref. 57.

One more conclusion can be drawn from the above
discussion. In all the cases with a magnetization contrast
lower than 1 (i.e., with Fe, Co, Py, and Ni matrices) the
magnonic band gap has a lower bound (the top of the first
band) at the point W ′, which is the limit of the FBZ for the
direction [201], and an upper bound (the bottom of the second
band) at the point L, the FBZ limit for the direction [111].
A common characteristic of these two points at the boundary
of the FBZ is an extreme distance from its center: L is the
closest, and W ′ is the farthest.90 Hence we conclude that in the
case of an indirect band gap a minimized difference between
the longest and shortest wave vectors at the boundary of the
FBZ is conducive to the opening of a band gap. This reasoning
explains well the numerical results reported in Ref. 57,
where the largest complete magnonic band gap is obtained for
the fcc lattice, and the narrowest one for the sc structure. In
the fcc structure the difference in the distance of the extreme
FBZ boundary points from the zone center is the smallest
(as small as 0.504 π/a). For the bcc lattice the difference is
0.586 π/a, and for the sc structure has the highest value of
0.732 π/a.

Let us get back to the 1D case. If the contrast of material
parameters is small it can be regarded as a perturbation. In this
case the maximal value of the gap width occurs for the filling
fraction ff = 0.5. This would apply also to the 3D case if the
FBZ had a spherical shape. For an fcc lattice of mFT NPs of
the radius of 4 nm the filling fraction of 0.5 corresponds to the
lattice constant of 12.896 nm, pretty close to our results for
the Co, Fe, and Py matrices. Since in the considered material
compositions the contrasts are rather large and the FBZ of the
fcc lattice is not spherical, such a good agreement might be
due to a counterbalance of effects of different factors. Full
elucidation of this issue requires extensive research and the
consideration of a wide range of material parameters, which
goes far beyond the main topic of this paper.

VII. CONCLUSIONS

In this paper we have presented the results of our theoretical
study of the spin-wave spectrum of 3D magnonic crystals
based on magnetoferritin nanoparticles arranged in an fcc
lattice. As demonstrated by our results, the introduction
of a ferromagnetic matrix filling in the interparticle space
may lead to the opening of a complete band gap in the
magnonic spectrum. As indicated by our findings, cobalt,
iron, and permalloy should be of use as matrix materials in
magnetoferritin-based magnonic crystals with well defined
band gap in the spin-wave spectrum.

Another very important factor in the modeling of a
magnonic band gap is the lattice constant. In the crystals
considered in this study the gap width as a function of the
lattice constant has a maximum for a lattice constant of
approximately 13 nm. The occurrence of this maximum is
related to the character of the lattice-constant evolution of the
dynamic magnetization profiles for the lowest excitations in
the spin-wave spectrum. Also, for lattice constants of ten-odd
nanometers both the width of the band gap and its central
frequency change very rapidly. On the one hand, this opens
the prospect of producing 3D magnonic crystals with an
intentionally modeled band gap; on the other hand, the methods
of magnonic crystal production must meet higher requirements
in terms of tuning the lattice constant to allow such modeling
of the band gap. Our considerations lead us also to conclude
that among the cubic structures the fcc lattice provide the
best conditions for the occurrence of a magnonic band
gap.

In light of the results presented above we conclude that
dehydrated magnetoferritin-based crystals produced by the
protein crystallization technique have both the crystal structure
and the lattice constant close to optimal for the occurrence of
a magnonic band gap.
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88M. Krawczyk, J.-C. Lévy, D. Mercier, and H. Puszkarski, Phys.
Lett. A 282, 186 (2001).

89See, e.g., Ref. 72, p. 251.
90Actually, points W , W ′, and W ′′ are equidistant from the center;

however, they are not equivalent because of the external field; the
lowest band has a maximum at point W ′.

144402-11

http://dx.doi.org/10.1109/TMAG.2010.2098857
http://dx.doi.org/10.1109/TMAG.2010.2098857
http://dx.doi.org/10.1103/PhysRevLett.107.127204
http://dx.doi.org/10.1103/PhysRevB.81.224415
http://dx.doi.org/10.1088/0022-3727/41/17/175005
http://dx.doi.org/10.1088/0022-3727/41/17/175005
http://dx.doi.org/10.1103/PhysRevB.78.024441
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.84.140405
http://dx.doi.org/10.1088/0022-3727/45/1/015001
http://dx.doi.org/10.1088/0022-3727/45/1/015001
http://dx.doi.org/10.1103/PhysRevB.77.085415
http://dx.doi.org/10.1103/PhysRevE.71.036607
http://dx.doi.org/10.1103/PhysRevE.71.036607
http://dx.doi.org/10.1103/PhysRevB.81.220403
http://dx.doi.org/10.1103/PhysRevLett.104.087401
http://dx.doi.org/10.1007/s11051-011-0303-5
http://dx.doi.org/10.1007/s11051-011-0303-5
http://dx.doi.org/10.1063/1.3536534
http://dx.doi.org/10.1063/1.3536534
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.84.184411
http://dx.doi.org/10.1103/PhysRevB.84.184411
http://dx.doi.org/10.1063/1.3673333
http://dx.doi.org/10.1103/PhysRevB.64.104421
http://dx.doi.org/10.1103/PhysRevB.85.012403
http://dx.doi.org/10.1016/S0375-9601(01)00172-4
http://dx.doi.org/10.1016/S0375-9601(01)00172-4



