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Magnetic vortex-antivortex crystals generated by spin-polarized current
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We study vortex pattern formation in thin ferromagnetic films under the action of strong spin-polarized
currents. Considering the currents which are polarized along the normal of the film plane, we determine the
critical current above which the film goes to a saturated state with all magnetic moments being perpendicular to
the film plane. We show that stable square vortex-antivortex superlattices (vortex crystals) appear slightly below
the critical current. The melting of the vortex crystal occurs with further decrease of current. A mechanism of
current-induced periodic vortex-antivortex lattice formation is proposed. Micromagnetic simulations confirm our

analytical results with a high accuracy.

DOI: 10.1103/PhysRevB.86.144401

I. INTRODUCTION

Use of the spin-polarized current is a convenient means to
handle magnetization states of nanomagnets without applica-
tion of an external magnetic field.! This is of high importance
for constructing purely current controlled devices.>® One
effective way to influence film magnetization by the spin-
polarized current is to use the pillar structure, where the
current flows perpendicularly to the magnetic film.* Special
efforts have been made to explore the possibility to control
the properties of a magnetic vortex'%2° because the latter is a
convenient carrier of bits of information. The theoretical study
of this is based on the Slonczewski-Berger model.?'~23

In this paper we focus on the problem of regular pattern
formation (vortex-antivortex superlattice) under the action
of strong spin-polarized currents, which precedes satura-
tion. Superstructures of vortices are known from Kelvin’s
fluid vortices.”* Nowadays, superlattices of vortices are
known in superconductivity,”> superfluidity,”® Bose-Einstein
condensates (rotating,?” nonrotating,?® optically dressing
condensate’®), and optics.>*3? Vortexlike superstructures
appear also in magnetism: Skyrmion crystals were pre-
dicted in chiral magnets,>* which is now well-confirmed
experimentally,**¢ and a vortex-antivortex lattice (chirality
waves) appears in the Kondo lattice model.*” Recently,
we found vortex-antivortex superlattices (vortex crystals)
in nanomagnets under the action of strong spin-polarized
currents.’® Using micromagnetic simulations, we found that
crystallization precedes saturation: Square superlattices were
observed for a range of current densities in the immediate
vicinity of J., which is the critical current which saturates
the magnetization along its direction.*® Here we prove the-
oretically the possibility of vortex-antivortex superlattices in
ordinary isotropic magnetic film. To this end, we build the full
theory of saturation of a thin ferromagnetic film by use of a
transverse spin-polarized current. In particular, we show that
loss of stability of the saturated state leads to the appearance
of stable square vortex crystals.

The paper is organized as follows: In Sec. II we describe
the model and our approach. The linear analysis (Sec. III)
enables us to obtain the value of the saturation current J. as
a function of the material parameters and film thickness. The
nonlinear analysis (Sec. IV) proves the possibility of stable
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square vortex-antivortex superlattices in a presaturated regime.
We verify the obtained analytical results with micromagnetic
simulations (Sec. V). In addition, using the simulations, we
describe the transition from crystal phase into fluid phase
which appears with a decrease of current density.

II. MODEL AND DISCRETE DESCRIPTION

We consider here a soft magnetic film with thickness # and
lateral size L >> h. We model magnetization of the film as a
three-dimensional cubic lattice of magnetic moments M, with
lattice spacing a < h, where v = a(vy,v,,v;) with v, v,,v, €
7Z is a three-dimensional index.* In the following, we use
the notations N, = h/a and N,, = L?/a? for the number of
magnetic moments along the thickness and within the film
plane, respectively. We assume also that the magnetization
of the film is uniform along the thickness. That enables us
to base our study on the two-dimensional discrete Landau-
Lifshitz-Slonczewski equation,ZI‘23

m, =m, x 0E/0m, — jem, X [m, X Z], (D)

which describes the magnetization dynamics under influence
of a spin-polarized current which flows perpendicularly to
the magnet plane, along the 2 axis. It is also assumed that
the current flow and its spin polarization are of the same
direction in (1). The two-dimensional index n = a(ny, n,)
with n,,n, € Z numerates the normalized magnetic mo-
ments m, = M,/|M,| within the film plane. The overdot
indicates the derivative with respect to the rescaled time
in units of (4myM,)~!, y is the gyromagnetic ratio, M,
is the saturation magnetization, and & = E /(47 M2a*\) is
dimensionless magnetic energy. The normalized electrical
current density j = J/Jo, where Jo = M?|e|h/h, with e being
the electron charge and % being the Planck constant. The
spin-transfer torque efficiency function ¢ has the form ¢ =
nA2/[(A% + 1) 4+ (A% — 1)(m - 2)], where 7 is the degree of
spin polarization and parameter A > 1 describes the mismatch
between the spacer and the ferromagnet resistance.”>* To
simplify representation, we omitted damping in the equation
of motion (1), since the role of damping is not essential for
crystallization of vortices; moreover, the saturation current
does not depend on the damping constant.®
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The total energy of the system E = E. + E4 consists
of two parts: exchange and dipole-dipole contributions. The
exchange energy has the form

Ee = _SZM Z s7lmn My, (2)

n,1£0

where n, I are two-dimensional indexes, S is value of spin of
a ferromagnetic atom, and J; denotes the exchange integral
between atoms distanced on /.

The energy of dipole-dipole interaction is

M?2a® (m, - my)
Eg= —2
d 2 Z|:|X—v|3
V£

-3

(my, - (A —v))(my - (X — v))} 3)

A =P

where A and v are three-dimensional indexes.
By introducing the complex variable

mf,—l—im;v,
JT+m5’

one can write the Eq. (1) in the form

Yn = “

85 . 1_‘|1//n|2
vy 1—§|wn|2'/’ ©)

il.bn:_

where s = jn/2 is the renormalized current, £ = 1 — A2,
and ¥* denotes the complex conjugation of ¥r.

It is well known that, in the absence of driving (3¢ = 0),
the spatially homogeneous state with all moments lying in the
xy plane (easy-plane magnetic state) is the most energetically
favorable state of a thin ferromagnetic film. On the other
hand, as seen from Egs. (2), (3), and (5), for large positive s
the stationary state of the system corresponds to i, = 0 or,
in other words, the system goes to the state when all magnetic
moments are oriented along the z axis (saturated state). This
means that there should exist a critical current 2z, below which
the saturated state loses its stability. Our goal is to study the
behavior of the system near the threshold of stability of the
saturated state. Near the threshold m? <1 and |y,| < 1,
hence, one can expand components of the magnetization
vector into a series in a way similar to the representation in
terms of the Bose operators,*!

* 2

* 2
my, = wlfw ( "/’j' )+O(|wn|5>, (©6)
mi = 1— |[Yl*.

Substituting (6) into (5), one obtains the equation of motion
accurate to terms of the third order,

e ,
5 —mwn( 2A2|¢n| ) %

For future analysis, it is convenient to proceed to the
wave-vector representation using the two-dimensional discrete

iwn =
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Fourier transform

Z ‘ (8a)

.Xy

etk (8b)

n

with the orthogonality condition
Z ol k=K)n
n

where k = (k,,ky) = 2—”(lx,l_\,) is a two-dimensional discrete
wave vector, [,,l, € Z, and A(k) is the Kronecker delta.
Applying (8) to Eq. (7) one obtains the equation of motion
in reciprocal space,

= Ny Alk — ), ©)

o€ oF
—”ﬂk — i = (10)
vy oYy

where the dimensionless energy of the system can be repre-
sented as a sum,

E=E+&+em e (11)
50 gnl

Here the term £° = &2 + &; 9 is the harmonic part of the energy.
It consists of the exchange contrlbutlon

£ =0 [nl’k (12a)
k

and the dipole-dipole contribution

kh N
=2 [—g(z - 1] 125
k

kh) [(k* —ik*)? . .
+g(4)[( . )wkx/f-k+c-0}- (12b)

The nonlinear part of the energy is described by the

term &M = &M + £V, which consists of nonlinear exchange
contribution,
£ =1 N > 1Ak k) e U T i,
- k]k2k3k4
x A(ky — ko + ks — k4) + c.c.], (13a)

and a dipole-dipole one,

1

&' =g 2o Bk i v,
YV kikoksks
x Alky — ko + k3 — k) + k)i, Vg, Vs Uik,
X A(ky — ko + k3 + k4) + c.c]. (13b)

The characteristic length

L= \/4an - Zn Tns (14)

144401-2



MAGNETIC VORTEX-ANTIVORTEX CRYSTALS GENERATED ...

which appears in (12) and (13), is the so-called exchange
length. We introduced also the following functions:

Ak, ko) = ki — 2(k; - k), (15a)

Bk1,ky) = g(lky — kalh) + g(";’” —1, (I5b)
k5 — k)

(k) = g(kh)%, (15¢)

gx) = “L%_l (15d)

Details describing how to derive the Hamiltonian (11)—(13)
in the wave-vector space are in Appendix A.

The function F represents an action of the spin-polarized
current. It consists of two parts,

F=F+7F" (16a)
with the harmonic contribution
FO =Y Y. (16b)
k
and the nonlinear part,
x T Tk Tk
fnl = —W Z [Wkl szwk_; wk4
WV ko ks ke
X A(ky + ky — k3 — kq)]. (16¢)

Note that we are interested in large-scale behavior of the
system and restrict our attention to long-wave excitations.
Therefore, Eqs. (12), (13), and (15) are written in the limit
ka < 1.

III. HARMONIC APPROXIMATION

First, we discuss the solutions of Egs. (10) in the harmonic
approximation, since they already capture many essential
aspects of the problem. By neglecting all nonlinear terms in
(10), equations for the complex amplitudes 1 and ¥* x can
be written in the form

0T hk IR
—iYy = k2£2—1+¥+i% Uk
g(hk) (k* — ik¥)? ..
Tt e Ve
R i hk 1.
i, =K1+ % —ix|Y*,

hk) (k* +ik”)* .
Jrg(z)( kzl )I/fk. a7

The solutions of Eq. (17) have the form
Pty = Wye® g = v W (18)

where W, (k) are time-independent amplitudes and the rate
constants z4 (k) are given by

2+(k) = —a £ 2(k), 19)
where the rate function (k) is given by
(k) = /(1 — kK202)(k22 + g(hk) — 1). (20)

First, it should be noted that since s > 0, in accordance with
(19), the current provides effective damping. That explains
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FIG. 1. (Color online) Diagram of stability of the uniform state
saturated transversally by spin current. The regions of instability are
shown by filling and they are determined by condition s¢ < 3, where
the the normalized current s is rescaled to the real current density J.
Thus, for the given current value J < J., one has the range [K’, K]
of the instable wave vectors. The parameters for material and spin
current were the same as for the simulations (see Sec. V). Points
show the maximums of dependencies J(k¢) and they determine the
saturation current for the given thickness.

why we omitted weak natural damping in Eq. (1). That also
explains the previous numerical results, where the saturation
and magnetization dynamics under the high spin-current
influence were independent of the damping coefficient.*®

Function 7z(k) is a nonmonotonic one which reaches its
maximum value 5. atk = K,

dx(K
Z(K ) 0. = max (k) = 4(K) . 1)
Typical shapes of the rate functions (20) are presented in

Fig. 1.

For strong currents, when s > 3., we have Rez4(k) < 0
for all values of the wave vector k. This means that the
stationary state of the system is the saturated state with
m, = 1. However, for s < s, the saturated state is linearly
unstable with respect to modes Vx, with wave vectors close
to the threshold wave vector K. The corresponding instability
domains for different thicknesses are shown in Fig. 1 as filled
regions.

For each thickness, the curve > = 3z(k), as well as the cor-
responding rescaled curve J(k), separates stable and unstable
regimes and has a maximum which determines the minimal
current J., at which the saturated state remains stable. So the
critical current at which the transition to saturation occurs can
be determined as

. ZMfe
=

As shown in Fig. 1, the saturation current J, increases with the
increase of thickness. This dependence is presented in detail
in Fig. 2.

Using (20) and (22), one can obtain the asymptotic J, &
h*e|M?/(2nht) for h < € and J. ~ hle|M?/(nh) for h > ¢,
although the last one is not achieved in Fig. 2 and it is beyond
the limits of applicability of the Slonczewski torque in (1). The

I, h.. (22)
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FIG. 2. (Color online) Dependence of the saturation current J. on
the film thickness. The solid line corresponds to the analytical solution
obtained from (22) and the results of micromagnetic simulations (see
Sec. V) for different disk diameters D are shown by markers. The
dashed line demonstrates the parabolic asymptotic for & < ¢; see
text.

critical currents obtained using the micromagnetic simulations
appears to be in very good agreement with the theoretical
curve. Since the present theory is constructed for a film of
infinite lateral size the agreement between simulations and the
theory is expectedly the best for samples whose thickness is
much smaller than the planar size: h < D.

IV. WEAKLY NONLINEAR ANALYSIS

In this section, we prove the stability of structures with
symmetry C4 which appear in the presaturation regime. We
also show that these stable structures are square vortex-
antivortex superlattices. Thus, our analysis is based on Eq. (10)
where the nonlinear terms in the Hamiltonian (11) and in the
driving function (16) are taken into account.

The simplest way to describe the necessary symmetry
is to restrict ourselves only with four wave vectors k €

E=8"4¢&M,

where the linear part reads

g0 — [£2K2 1+ %}(1\% N2 — g1ly/ Ny cos(®y) — /N cos(@..)],

and the fourth-order nonlinearity has the following form:

5n1= 2
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{Ky,K_.,K,, K_} in the wave-vector space. Here we use
the following notations:

K, =K(©,1),

K., =K(1,0),

K, =K(©, — 1),
K _=K(-1,0),

(23)

where the amplitude K is determined for given thickness
from the linear analysis as follows: s, = #(K), i.e., K is
the wave-vector length which maximizes the dependence
3¢ = (k). It should be noted that, since the Hamiltonian £
contains Y, as well as ¥/_, then our model must contain
pairs of vectors (K, — K). It means that only structures with
even symmetry C,, are possible. We focus here on structures
with symmetry C, in order to explain the results of the recent
numerical experiments.*®

For future analysis it is convenient to proceed to the
following notation:

Uk, = v Nee'®, (24)

where @ € {1, — , | , <}. The value N, in (24) has the
meaning of the number of magnons with the corresponding
wave vector. Substituting (24) into the equation of motion
(10), we obtain a set of eight equations,

ag ZaNOl_%N'T
i

2
+A2—J\/;W‘/NTNlN*>N<;COS(CD¢ — CI><_>), (253)

o, _ Of % NN N o o) (25b)
= — sin — b)),
PTON, T AN, N, i

where the other three pairs of equations can be obtained by
three time-successive rotations of all subscripts by the angle
/2, and we introduced the notations ®4 = ®4 + ¢ and
D, =D, + & for the sake of simplicity. The Hamiltonian
in “N — ®” notation is presented as a sum of linear and
nonlinear parts as follows:

(26a)

(26b)

1 g1 g1+ & g1
——| Pk -1+ § N2+ | K>+ 1—>—2“[(Ny, + N 201 2K%+1— — 2 |/NyN
J\fxy{ 4[ + 2} Mo + 7 | Mot Ne)+ timsn— 5 [viele

+ 3 3
x cos(@y — D) + [1 _ M] NiNo + g_‘[, /Ny (—N$ + N9> cos®; —/No <5N9 + N¢> cos <1>9} }

2 4

Here we used the analogous notations Ny = Ny + N,
No=N_,+N_, Ny=N;N,, No =N_N_, and g =
g(€ K h) to shorten the expressions.

2
(26¢)
[
Using (25a) and (26), one can show that
d N¢+2N<_>
—(Ny = N)) = -2x(Ny —N)) |l - ———— 27
5Ny = Ny = =25 o[ AN } @7
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with the corresponding equation for the subscripts rotated by
/2. Taking into account that s > 0 we conclude from the
Eq. (27) that after period of time At = 1/(2s) the system
achieves a stationary regime with Ny = N, and N_, = N_.
Consideration of these conditions in the stationary form of
system (25) leads to the possibility of a solution which satisfies
the following conditions:

Ny=N,=N_.=N_=N,
(I)T+q)¢=ﬂ+(b_>+q)<_=q>

(28)

Under condition (28), all four pairs of stationary equations of
motion (25) become identical and they obtain the following
form:

sind (124 ) g = 2 (1-222).
2 2 A2

cos @ (1 —5.4) 8L s
2 2

(29a)
=PK*— 1+

5
- <€2K2—5+ 581 +g2>,
(29b)

where .#" = N /N,, is the density of the magnons, and the
energy density obtained from the Hamiltonian (26) reads
£
Ny

=2/ [2(6*°K? — 1)+ g1(1 — cos )]

5
+2JV2|:—£2K2 +5—g,— Egl(l —cos@)].
(30)

Excluding @ from (29) and taking into account that A4~ <
1, one obtains

~ - (31a)
BF + 52 (1— %)
and then, using (29b), one can estimate
5 (5]
cosd~ ——— [1+4—1. (31b)
g(Kh) 5

Here we introduced the following thickness-dependent
functions § = 2[K2¢> — 1+ 1g(Kh)] and & = [4K>(* —
g(2K h)]. Magnon density (31a) as well as the corresponding
exact solutions of Egs. (29) are shown in Fig. 3. As one can
see, the approximation (31a) is satisfactory near the instability
threshold.

Thus, we have proved the possibility of a stationary
structure which is described by the four-wave ansatz (23) and
(24) in the presaturated regime. At the same time, one can
see that the parameter A does not influence considerably the
system behavior; see the inset in the Fig. 3.

The linear stability analysis for the system (25) shows that
the stationary solution (31) is stable in the close vicinity of the
critical current

M —

”
0< <1

M

(see Appendix A for details).
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FIG. 3. (Color online) Magnons density as function of the
normalized current for different thicknesses (in units of £): I, 0.5; 11, 1;
III, 2; IV, 4; and A = 2 for all thicknesses. Solid lines show the exact
numerical solutions of the system (29) and dashed lines correspond
to the approximation (31). (Inset) The weakness of the influence of
parameter A on the exact solution, and the data correspond to the
thickness & = 4¢. Each of the plots is built for the range [, /2, ».].

Let us now see how this structure looks. From (8a), one can
obtain the following expression for the i function:

n \/7el(¢' o+ Ky n) (32)
\/ Xy Z

Varying parameters N, and ®,, one can obtain a wide range of
different structures from (32) but under the conditions of (28)
the expression (32) results exactly in a square vortex-antivortex
superlattice. Indeed, substituting (32) into (6), taking into
account the conditions of (28), we obtain, in the linear
approximation,

[} [
xR 22N [COS(K)E) sin > + cos(K¥) cos 3] ,

(O] (O]
my X 2V2N [cos(K)E)cos 3 + cos(K ¥) sin 5:| , (33
m, ~ 1,

where the following shift of the coordinate origin was
performed: ¥ = x + (&, — ®)/(2K) and j =y + (P4 —
®,)/(2K). Magnetization distribution which corresponds to
(33) for certain parameters is shown in Fig. 4 by arrows. The
topological properties of the system can be characterized by
the topological density*’ (or scalar chirality density’’) v =
[0,m x 0,m] - m. The topological density which corresponds
to (33) reads

v = —8K2.A cos ® sin(K X) sin(K 7). (34)

The distribution of (34) is shown in Fig. 4 by gray tones. It
resembles chirality waves in Kondo magnets.?’

Although the model (23) and (24) results in a superlattice
that is very similar to the one which is observed in the
numerical experiment, one should point out the domain of
applicability of this model. In (23) and (24) we use only the
critical value of the wave vector K instead of all possible wave
vectors in the range [K’, K”], where K’ and K” bound the
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T 27

0
xK

FIG. 4. (Color online) The analytically obtained vortex-
antivortex superlattice. Arrows show distribution of magnetization
(33) and the corresponding topological density (34) is shown by gray
tones. The figure is built for the case & = 4¢ and s = 0.65s, and
A =2 (the required value of & was determined from (29) for the
noted parameters).

instability domain for the given current value; see Fig. 1. We
can restrict ourselves with the single K if the size of the system
is small enough,

/L > K" — K. (35)

Since the domain AK = K” — K’ increases with a decrease
in current (see Fig. 1), condition (35) is equivalent to Jyin, <
J < J., where Jy, is the minimal current at which condition
(35) exists. For each of the values of thickness ~ and radius
L, one can calculate the value of Jy;, using (20) and (35);
the resulting diagram is shown in Fig. 5. Since, for small
thicknesses, AK < 1, the model (23) and (24) can be used for
a wide range of currents.

V. MICROMAGNETIC SIMULATIONS

To investigate numerically the process of magnetic film
saturation under the influence of spin-polarized current, we
used full-scale OOMMF* micromagnetic simulations. All
simulations were performed for disk-shaped nanoparticles
with material parameters of permalloy as follows: saturation
magnetization Mg = 8.6 x 10 A/m and exchange constant
A =13 x 107'? J/m and the anisotropy was neglected. The
damping was neglected, because, as shown in Sec. III, the
spin-polarized current provides effective damping. The mesh
cell was chosen to be 3 x 3 x & nm. The current parameters
n = 0.4 and A = 2 were the same for all simulations, except
for in some cases mentioned in the text below.

In the first stage, we obtained the dependence of saturation
current J. on the sample thickness. For this numerical
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FIG. 5. (Color online) The diagram which determines the range
J € [Juin, J.] for the given geometry sizes (i, L), where the model
(23) and (24) is applicable. In the shaded region the model works
for any currents J < J.. Points correspond to the disks, where the
superlattices were observed via micromagnetic simulations.

experiment, we chose nanodisks with three different diameters,
D =100, 250, and 450 nm, respectively, and the thickness of
each of the particles was varied from 0.5 to 20 nm. Ground
state of the particle was used as initial state for the simulations:
uniform magnetization within the sample plane for thin disks
(h < 5nm) and a vortex state for thicker ones. The spin-current
was increased until saturation was achieved. As a criterion
of saturation we used the relation M,/ M, > 0.9999, where
M., is the total magnetization along the current direction. The
resulting dependence J.(h) is shown in Fig. 2 by markers.
As one can see, for disks with a small aspect ratio, the
micromagnetic simulations confirm the analytical results with
a high accuracy. The slight deviation from the theoretically
predicted curve is observed for the case of small disks (see
D =100 nm in the Fig. 2). This is because the presented
theory is built for the case of an infinite film that corresponds
to a zero aspect ratio.

To study the magnetization dynamics in regime J < J,
we used a disk with diameter D = 350 nm and thickness
h =20 nm. A spin current of a certain density was sharply
applied to this nanodisk, which initially was in the vortex
ground state. After a few nanoseconds, a slowly rotating
superlattice was formed for the case where the current value
was close to saturation (see Fig. 6) or fluidlike dynamics of
the locally ordered vortex-antivortex media was observed for
the cases with lower currents (see Fig. 2 in Ref. 38). The
Fourier spectrums of the typical crystal and fluid structures
are compared in Fig. 7. As shown in Fig. 7(a), the superlattice
is square one.

To separate the crystal and fluid phases and to study their
properties, we performed a series of simulations for a range
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FIG. 6. (Color online) The superlattice structure obtained using
simulations in a disk with diameter D = 350 nm and thickness 7 =
20 nm under the influence of the current J =32 x 102 A/m?.
(a) The out-of-plane structure of the superlattice. (b) Detailed
depiction of the magnetization of the central part of the the disk;
arrows correspond to the in-plane magnetization distribution and the
out-of-plane component m, is shown by color tone: dark regions
correspond to the cores of vortices and antivortices and light regions
show the interparticle area. (c) The positions of the vortices and
antivortices are shown by disks and rhombuses, respectively.

of currents J € [J./2, J.] with the current step AJ = 0.5 x
10'2A / m?. For a certain value of the current, the magnetization
dynamics was simulated for 30 ns. Starting from 2 ns, we
saved the magnetization distribution with the time step 0.2 ns.
For each of the 0.2-ns magnetization snapshots, we found
coordinates of all the particles (vortices and antivortices),
using the method* of intersection of isolines m, = 0 and
my = 0. To distinguish the vortices from the antivortices,
the winding number of each of the particles was calculated
as the circulation of a small circumference centered on the
particle position. For each of the vortices, the distances to
the nearest four antivortices then were found (at this stage, to
avoid a boundary influence, we consider only those vortices
that were distanced from the disk center by less then half

0.4 (a) crystal phase { 0.4 (b) fluid phase -
- 0.2 » 0.2
R -
0.0 0.0

202 . 02

-0.4 -0.4

04 02 00 02 04 04
ke (2n/])

02 00 02 04
ke (22/])

FIG. 7. (Color online) Two-dimensional Fourier spectrums of the
crystal (a) and fluid (b) structures. (a) The Fourier transform of the
function m (x,y) — (m,) for the case of the crystal structure shown
in the Fig. 6(b), where (m,) is the averaged m, component. (b) A
fluid structure obtained for current J = 25 x 10'> A/m?; the other
parameters are the same as in Fig. 9.
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FIG. 8. (Color online) Dependence of the superlattice constant
as on the applied current for permalloy disk with diameter D =
350 nm and thickness 20 nm. Data were obtained using micromag-
netic simulations.

of the disk radius). The histogram of the distribution of all
obtained vortex-antivortex distances then was built for a certain
magnetization snapshot, and, finally, we built the averaged
histogram based on all magnetization snapshots for a certain
current value. Two examples of these averaged histograms are
shown in the left column of Fig. 9. The obtained histograms can
be well fitted by the Gaussian f(x) oc exp[—(x — x¢)*/c ],
where f(x) is number of the vortex-antivortex distances which
are in the interval [x, x + Ax], with Ax = 1 nm being the
width of the histogram bin.

For the crystal phase, the superlattice constant was consid-
ered to be a; = 2xy. We found that the superlattice constant
slightly decreases with the increase of current; this dependence

- 12 2
RS0 ()

crystal

10

Frequency

]_ y u:il”‘

T0 20 30 40 50 60
J=32x10" (A/m?)

W B
oS O

Frequency
S

—_
(=3

35 40 45
J (102 A/m?)

10 20 30 40 50 60
V-Av distance (nm)

FIG. 9. (Color online) The criterium of separation of fluid
and crystal phases. In the left column, the distributions of the
distances between the nearest vortices and antivortices are presented;
the solid line shows the Gaussian approximation. The upper and
lower histograms correspond to the typical fluidlike and crystallike
structures, respectively. The right plot demonstrates dependence of
the half-width of the mentioned distributions on the applied current.
All data are obtained from simulations for disk with D = 350 nm,
h =20nm, and A = 2.
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FIG. 10. (Color online) Phase diagram of the presaturated mag-
netic film with thickness & = 20 nm. The transition current J,
obtained from the simulation data (see Sec. V and Fig. 9), is shown
by points and the corresponding fitting (36) is shown by the solid
line.

is shown in Fig. 8. However, we were not able to determine
a, close to the saturation current because the components of
magnetization, m, and m,, become vanishingly small. The
obtained dependence a,(J) appears to be not very smooth
because of the stress in the superlattice due to presence of the
boundary.

An important characteristic which can be extracted from
histograms is the o(J) dependence. It gives a possibility
quantitatively separates fluid phase and crystal one: In crystals,
the value of ¢ is small (about a few nanometers) and is weakly
dependent on the current J; in the fluid phase, the value of
o increases fast with the decrease of current. To determine
the critical current J. of the transition between the fluid and
crystal phases, we fit the numerically obtained dependence
o(J) by the function o = (aJ +b)0(—=J + Jyc) + (ad e +
b)o(J — Jy.), with 6(x) being the Heaviside step function and
a and b being the fitting parameters (see Fig. 9).

According to the linear analysis (Sec. III), the parameter
A does not influence the saturation current J,, and, according
to the weakly nonlinear analysis of the presaturated regime
(Sec. 1V), the parameter A influences very weakly on the
dynamics of the vortex-antivortex superlattice. Our theory is
not able to describe the transition between the fluid and crystal
phases, but, using the simulations and the methods described
above, we found that the current J;. and, consequently, the
current range [Jy., J.] of the crystal phase existence depend
on parameter A (see the Fig. 10). We found that Js.(A)
dependence can be well fitted by the function

g
VAT -1

with B~ 7.78 x 10'> A/m? and J}’C ~ 2592 x 102 A/m?
being the critical current of the phase transition for case A —
oo. For the case A = 1 the superlattice is not formed, only the
fluid-like dynamics is observed. Moreover, the current region
of the crystal phase quickly shortens when the parameter
A is reduced to 1, but, for A > 4, the the crystal region is
approximately constant. It should be stressed that we do not

Jre = + s (36)
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consider here the “gas” phase and the rarefied patterns which
were observed in Ref. 38 at lower currents J < J..

It is important to note that the current density required for
the pattern formation is high. This is why Joule heating of the
sample can be essential. Thermal effects during large current
density applied to the nanowires were reported for domain
wall motion:*#¢ The rise in temperature estimated from the
resistance increase does not affect the magnetization process.
Influence of the temperature was found to be nonessential
for current-induced vortex nucleation and annihilation in the
vortex domain walls*’ and for the current-induced motion of
individual vortex in Py nanodisks.*® While magnetic vortices
are stable up to very high temperatures,*® the heating can
influence the typical magnetization reversal parameters. In
particular, there exists the temperature dependence of the
critical fields for vortex nucleation and annihilation.>® In order
to estimate the influence of temperature on the process of
vortex-antivortex pattern formation, we model the thermal
effects by including the noise field in the Landau-Lifshitz-
Slonczewski equation (1) in the same way as was used to
study the switching phenomena in Ref. 51. We used a disk
with diameter D = 350 nm and thickness & = 20 nm with
noise fields of different intensities. We found that the vortex
crystal formed by current J =36 x 10'2 A/m? is stable
up to the field intensity of about 0.5 T, with At =1 ps
being the the characteristic time of the noise field variation.
These simulations demonstrate the stability of the vortex-
antivortex lattice with respect to the random noise. It is worth
noting that the relationship between the noise field and the
temperature in the presence of the spin-polarized current is
an open question and it is beyond the scope of the current
paper.>?

VI. CONCLUSIONS

We studied theoretically the process of vortex-antivortex
pattern formation in thin ferromagnetic films under the action
of a strong transversally spin-polarized current. We show that
there exists a critical (or saturation) current J. above which
the film goes to a saturated state with all magnetic moments
directed perpendicularly to the film plane. The critical current
strongly depends on the sample thickness and it is practically
independent of the lateral size of the magnet. The saturation
current increases with increasing thickness, following the
squared law for thin samples and a linear one for thick
samples. We demonstrate that the stable regular structures
with symmetry C4 can appear in the presaturated regime and
we show that these structures are square vortex-antivortex
superlattices. The spatial period of the superlattice slightly
decreases with an increase of current. The micromagnetic
simulations confirm our analytical results with a high accuracy.
Using the simulations, we describe the melting of the vortex
crystal with the current decrease.

‘We show that parameter A, which controls the spin-transfer
torque efficiency, does not modify significantly either the
saturation current J,. or the dynamics of the vortex-antivortex
superlattice. In contrast to this, the critical current Js., which
gives the boundary between the fluid phase and the crystal one,
is very sensitive to the spin-torque efficiency parameter A: The
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interval of the crystal phase existence [J¢., J.] contracts when
A — 1 and it is constant for A > 1.

APPENDIX A: HAMILTONIAN IN
THE RECIPROCAL SPACE

Here we calculate the magnetic energy in the wave-vector
space, limiting ourselves to fourth-order nonlinearity.

1. Exchange energy
Let us consider, first, the exchange energy. Substituting
the magnetization (6) written in terms of i into the general
expression (2), one can write the total exchange energy in the
form Ee ~ E, 0 .+ E nl where the linear part reads

1
Ey=-8N. ) m[wnw;+, = Sl + W) + c.c]
n,l#0
and the corresponding nonlinear part takes the form

a SN
Ep =

> Tl (Yl + [Ynsa)

n,l#0
— 2| ¥npal* +cc.l.

Let us perform the Fourier transform (8a) taking into account
the orthogonality condition (9), which results in

E =28°N, Z Ji Z [alP(1 = ™),

B =7 N ZJ, > Wiy, iy e
Xy g

kikyksky

x (e7Hel 4 okl _ )A(ky — ko + k3 — kq) + c.C.].

We now use the assumption that the magnons whose
wavelength is of the same order with a are not essential for
the considered phenomenon; in other words, we assume that
ak < 1. In this case, we can expand the exponents in the
exchange energy into a series on ak, and then, performing
the normalization, we finally obtain the expressions (12a) and
(13a) for the exchange energy.

2. Dipole-dipole energy

In case of the dipole-dipole energy, we start from the general
expression (3). Taking into account that the magnetization is
uniform along the z coordinate, one can write the energy (3)
in the form>”

MZ Cl6 i
S2 Z [A,,l (m,,ml - 3m;,m§)

n,l

Eq=—

+ B (mj;m;‘ — mﬁm;’) + Cu (mf,mlv + mf,m;‘) ],

where the coefficients A, B, and C are as follows:

Anl — % Z ()\x - Ux)z + ()\y - Vy); - 2()“1 - Vz)2’
i A — |
v#EA
B, = § Z (Ax — Vx)z — Ay — Vy)2
"2 = A — )’ ’

v;él
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- Vx)()‘«y - Vy)
A =P '

Cnl -3 Z ()‘x
VoA
v#EL

Herev = (v,,vy,v;)and A = (Ay,A,,A;) are three-dimensional
indexes while n = (v,,v,) andl = (A,,A,) are the correspond-
ing two-dimensional ones. Substituting (6) into the dipolar
energy and taking into account that A,; = A;,, Bu = B,
and C, = Cj,, one obtains the following expression for
dipole-dipole energy Eq = EJ + EY, where

2.6
0 __ Msa
E; =—

> TAwQIYal® + ¥aut))

n,l

+Dniynhn +c.c.], (Ala)

2.6

M? 1
Egl = 3261 Z |:Anl|1//n|2 <|wl|2 + El/fnwl*>

n,l

+ 1Dnl|wn|2wm + c.c.]. (Alb)

2

Here the notation D,; = B,; — iC,; was introduced. Now
we substitute (8a) into (A1) and perform the summation over
n with taking into account (9) and, finally, we obtain

2 6
E§ = Zwu [24(0) + A(h)]
+ D(k) e _i + c.c.}, (A2a)
Ej = Z {241 — ko) + Aky)]
Vklkzk;k4

X Yo, Uit Uiy Ve, Akt — ky + k3 — k)
+ D) e, U Vi Uiy Akt — iy + K3 + k) + c.c.).
(A2b)

where functions A(k) and ﬁ(k) are determined as follows:

2z, = 2,)° ilk

A x? +yl

Aty = Z Z ! ', (A3a)
oo [xF A+ (2, — )] /

A - Zixlyl itk

D(k) = ZZ ek (A3b)
[TV x1+yl+(zv _Zk)z]/

The form of the functions A(k) and D(k) is not convenient
for an analysis, therefore, we perform an approximate transi-
tion from summation to integration in (A3). Let us start from
the function A(k),

A 1 x2+ y2 —272
A(k — lim Erh — )—2— 2 =% ik yk )’
o= a* ro—0 /w(rn) (h—2) [x2 + y2 + 2252

(A4)

where we picked out the coordinate origin from the domain of
integration w(ry) (see the Fig. 11) and we also used the relation

A h h
/ dz/ d7 F(lz — 7)) = 2/ (h—2)F(z)dz. (A5)
0 0 0

Separating the region of integration w(r¢) into parts I and II
(see Fig. 11) and performing the change of variables (x, y) =
p(cos x, sin x), we can represent the function A as a sum,
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FIG. 11. (Color online) Cross section of the film. The filling
shows domain of integration w(ry) used in the calculation of function
A(k) in (A4).

A(k) = (A; + A;p)/a*, where
AI h 00 2 2

— = lim dz(h — z d —J k
27 = o), ( ) ; PPT T 2 o(pk),
(A6a)
ﬂ— 11m dz(h—f Jo(pk).
2T p—0 \/_p,o 2]5/2 otp
(A6b)

Here we performed integration over yx € [0, 2] using
the relation fozn e!PK" cos )k sin 0 g — 271 Jo(kp), where Jo(x)
denotes a zero-order Bessel function of the first kind. Direct in-
tegration in (A6a) with the consequent limit calculation results
A1/2n = —hg(kh), where g(x) = (e* + x — 1)/x. Change of
variables p — pop and z — ppz allows us to get rid of the py
in the integration limits,

2 2

p-—2z
77572 Jo(Ppok).

[p% + z2]

A ] 1 [e's)
20 fim dz(h — zpo)/ dpp
2m p—0Jg V122

(AT)

We then calculate the limit in (A7) with the subsequent
integration results Ay /27 = h2/3, so, finally,

Atk = 2mh [

— == g(kh)] . (A8)

3

Performing the same transition to the polar coordinates
(p, x), we represent (A3b) as follows:

2
Dk = — / dz(h — 2) [ - HZ]W / dye-itoki20),
(A9)

where pk = p(k* cos x + k” sin x). The direct integration

(A9) using the relation fozn dye'xeosx+nx) = 27" J.(x) re-

sults in

(k* —ik” )2
k2

Substituting now (AS) and (A10) into (A 2), we obtain the
expressions (12b) and (13b) for the dipole-dipole energy.

D(k) = —2— g(kh) (A10)

APPENDIX B: STABILITY OF THE
VORTEX-ANTIVORTEX LATTICE SOLUTION

Here we consider the stability of the stationary solution (28)
and (31) of the system (25). As shown in the main text, after a

PHYSICAL REVIEW B 86, 144401 (2012)

period of time T = 1/(2¢), the solutions of Egs. (25) satisfy the
conditions Ny = N, and N_, = N_. Using these conditions
and introducing the variables Ny = Ny = N, N, = N_, =
N, ® =&, + @, and &, = ®_, + &, one can reduce
the system of eight equations (25) to a system of four equations,

o0&

Ni=—5g, ~ 1

. (B1)
b, =——-F% i=1,2

IN;

Here the forces of the acting spin-current has the form

3N; + 4N; N;N; cos(®; — B
202Ny AN, S

l

FN = 2%{1\@ [1 —
F® = 2 — N;sin(®; — ;)
PN, v

where the notation 1 = 2 and 2 = 1 is used. Hamiltonian (26)
in terms of the new variables takes the form

(B2)

E=¢&"4+¢&", (B3a)
where the linear part (26b) reads
&= 2N, + N2)<K2£2 + % - 1)
— g1 (Nycos®; — Npcos ©,) (B3b)

and the corresponding nonlinear part (26c) is
1 3
e = ( {N12<3+K2€2——g1—g2>
Ny izZl,:Z 2

+2NN|:cos(d> <I>)<1+K 62—?—gf>

3
+2—-g —gﬁ]} + 8 (NIZCOSCD] - N2zcosd>2)

+ g1 N1 Ny(cos @ — cos @2)). (B3c¢)

Now we linearize the system (B1) against a stationary
solution v = {N?, NY, @9, @9}:
v =My, (B4)

where ¥ is small deviation from the solution v° and 4 x 4
matrix M can be presented in the following block form:

M ( MNN MN(D )
= ON o ’
Moy oMot )

where the components are the following 2 x 2 matrices:

(B5a)

MNN _ 325 aFlN

BT 9NN; AN’
MNCD _ 825 BEN

BOTTOINAD; 9D (B5b)
MCDN _ 825 8E®

bJ 3d>i8Nj 8Nj

M(I><I> _ 825 BE(I)
BT D00 90
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A necessary and sufficient condition for the stability of the
solution v° is negativity of the real parts of all eigenvalues
A, A2, A3, Aq of the matrix M. After the straightforward
calculation of (B5b) we substitute the solution N; = N, =
N, &, =&, and &, = & — &, which corresponds to the
conditions (28). Then, after the straightforward calculation
of the eigenvalues of M, we exclude ® using (29) and, finally,

we obtain
i 1
36 + 5 <3+F>]

N
—x— /252 — 2 + -
A = —sc+ /232 — 3% — 4 8’®+3%2.<1—L>],
¢ s | e A2
24T ) 1
_ - _g®+5%c (1—F>j|,
N
- +

2
A
2

Ay = —sc4 /252 — 52
2

—— [252 — 52 [S@ +5%§],
4,

where only the terms linear with respect to .4~ are saved. It
should be noted that for .4 = 0 (what corresponds to the

A4 (B6)
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saturated state) the condition A; < 0 in (B6) is equivalent
to the condition of stability of the saturated state s > .
Substituting (31a) into (B6) and considering the indefinitely
small deviation from the saturation current >z = . + §, one
obtains the following linear approximation of (B6) with
respect to deviation §:

56 432 (3+ 1)
F6+52(1—5) |

2 1_L
o = 45| S0 H3= Af)—l :
F6+52(1- L) 2

rAo=-=2 |:%C + 26

B7
Az =26, ®7

32
Mz_z[wza 50 + 5 }

56 +5:2(1- 1)
Taking into account that §& > Oand A > 1, one can conclude
that all A; < O only for § < 0. This means that the obtained

lattice solution (28) and (31) is stable for an infinitely small
decrease in current from the critical value.
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