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Microstructural design and experimental validation of elastic metamaterial plates
with anisotropic mass density
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A microstructure design of anisotropic resonant inclusions is investigated for the elastic metamaterial plate
with the aid of the numerically based effective medium model. Experimental validation is then conducted in the
anisotropic metamaterial plate through both harmonic and transient wave testing, from which the anisotropic
effective dynamic mass density, group, and phase velocities are determined as functions of frequency. The
strongly anisotropic mass density along two principal orientations is observed experimentally and the prediction
from the experimental measurements agrees well with that from the numerical simulation. Finally, based on the
numerically obtained effective dynamic properties, a continuum theory is developed to simulate different guided
wave modes in the elastic metamaterial plate. Particularly, high-order guided wave coupling and repulsion as
well as the preferential energy flow in the anisotropic elastic metamaterial plate are discussed.
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I. INTRODUCTION

Recently, elastic metamaterials (EMMs) have gained much
attention due to their potential to possess unique effective
material properties while maintaining reasonable sample size.
Because of the vector characteristics of elastic waves and
the possible coupling between longitudinal and transverse
modes, richer wave propagation phenomena are expected in
the EMMs. Various novel concepts and engineering appli-
cations of EMMs have been successfully demonstrated, for
example, mechanical filters, sound and vibration isolators,
elastic waveguides, and energy harvesters.1–7 Most of these
approaches rely on resonant inclusions and the resulting EMM
parameters vary strongly with frequency. In the previous
work, the anisotropic effective mass density tensor of an
EMM made of lead cylinders coated with elliptical rubber
in an epoxy matrix was numerically determined.8 However,
its practical design and experimental validation have not yet
been systematically investigated.

The quest for the anisotropic effective mass density of
EMMs has been partly inspired by the success obtained
from the acoustic metamaterials (AMMs), in which only the
longitudinal wave mode exists. Cummer and Schurig9 have
numerically presented the possibility of acoustic cloaking by
means of AMMs with the anisotropic mass density; however,
engineering the AMM was still a challenge at the time. Based
on Schoenberg and Sen’s work,10 Cheng et al.11 designed an
AMM with anisotropic mass density by using a concentric
alternating homogeneous isotropic layered fluid. A feasible
method to build and characterize fluidlike cylinders with cylin-
drically anisotropic mass density has been presented based on
the idea that a corrugated structure with radial symmetry can be
described by a fluid-fluid multilayered structure.12 In addition,
another new class of AMMs with a dynamical anisotropic
effective mass density was numerically designed through two-
dimensional anisotropic arrangements of full elastic cylinders
embedded in a nonviscous fluid.13 A similar anisotropic design
was suggested in AMMs composed of perforated solid plates

in a fluidlike background.14 Zigoneanu et al.15 presented the
experimental realization and characterization of an AMM with
strongly anisotropic effective mass density. The metamaterial
is composed of arrays of solid inclusions in a background of air,
and the anisotropy is controlled by the rotational asymmetry
of these inclusions. Most of these approaches do not rely on
resonant inclusions; therefore, the resulting AMM anisotropic
parameters vary strongly in a broad frequency range.

Different from AMMs, anisotropy of the effective mass
density of EMMs can only be engineered by using anisotropic
resonant inclusions instead of anisotropic lattices. Microstruc-
ture design of EMMs by embedding rubber-coated lead
spheres in an epoxy matrix can be traced back to 2000.1

The resulting band gap was later explained by negative
effective mass density.16 Milton and Willis17 first proposed
a two-dimensional (2D) spring-mass locally resonant model
which shows that the effective mass density could become
anisotropic. In order to fabricate the EMM with effective
anisotropic mass density, Milton18 suggested a soft-layer-
coated elliptic lead core in the solid model, which is modified
from the original model proposed by Sheng et al. 19 Gu et al.20

investigated local resonance modes of elliptic cylinders coated
with silicon rubber in a rigid matrix to obtain the anisotropic
effective mass density. To explain the physical mechanism
of the anisotropic mass density, a 2D lattice model that is
composed of anisotropic resonators was studied analytically
to obtain a second-order anisotropic effective mass density
tensor.21 However, few EMMs have been fabricated and
demonstrated experimentally at structural levels because of the
lack of systematic analysis of feasible microstructure designs.

In the paper, we expand upon the previous work8 and
demonstrate experimentally that relatively complex resonant
inclusions in a solid plate can create a strongly anisotropic
effective mass density. First, the numerically based effective
method is employed to calculate the anisotropic effective
mass density tensor of the EMM plate. Thus, a design of the
EMM plate with strongly anisotropic mass density is proposed
in the continuum manner. The experimental validation is
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then conducted on the proposed microstructure design of the
EMM plate through both harmonic and transient wave testing.
Strong anisotropy of the effective mass densities along two
principal orientations is obtained and found to be in excellent
agreement with the prediction of the numerical simulation.
Specifically, the phase and group velocities of the EMM plate
are experimentally determined through the transient elastic
wave transmission measurements, and its effective dynamic
mass density is experimentally determined from the measured
phase velocity as a function of frequency. Finally, to analyze
different wave modes in the EMM plate a continuum model of
the EMM plate is developed, and the wave phenomena such
as the wave coupling and repulsion as well as the preferential
energy flow are discussed.

II. DESIGN OF EMMs WITH ANISOTROPIC
EFFECTIVE MASS DENSITY

Knowing the effective dynamic properties of the EMM is
a necessary condition for the microstructure design and its
wave propagation characteristics. For isotropic EMMs, the
three independent effective parameters can be determined:
effective bulk modulus, effective shear modulus, and effective
mass density.22,23 For the EMM with simple microstructures,
such as circular-coated spheres or cylinders, analytically based
effective medium theories have been developed.16,24 However,
in order to design such artificial materials for the desired
properties such as anisotropic effective mass density, EMMs
must have complex microstructures. For the EMM with gen-
eral complex microstructures, a numerically based effective
medium model has been recently proposed to determine the
effective dynamic properties based on the micromechanics
approach.8,25 A similar numerical approach was also suggested
for EMMs with multiresonator systems.26,27 In this section,
the numerically based effective medium model is adopted for
determination of the anisotropic effective mass density of the
EMM and its microstructure design.

A. The numerically based effective medium model

In this subsection, the numerically based effective medium
model is briefly reviewed. Figure 1 shows a representative
volume element (RVE) of the three-dimensional (3D) EMM,
in which the general soft-coated elastic core is embedded in the
matrix. The lattice size is denoted as a. The key of this method

FIG. 1. (Color online) Representation of EMM lattice cell with
arbitrary microstructure by a homogeneous solid.

is to replace the EMM with an equivalent continuous medium
under dynamic harmonic loadings. At the macroscopic scale,
it is assumed that the composite material will behave as the
medium under the applied global deformation. The difficulty
of the numerical study is that most standard finite-element
software does not have a feature to directly deal with the
problem with complex variables in the harmonic analysis. This
difficulty can be overcome by solving problems with real and
imaginary parts of the constraint conditions separately.25

The applied local displacement on the boundary of the unit
cell can be described as

uα(x,t) = ûα(x)eiωt , (1)

where ûα(x) = u0
α + Eαβxβ (α,β = 1,2,3), and ûα is the dis-

placement field compatible with a preassumed macrostrain
Eαβ plus a rigid translation u0

α; xβ is the local position
vector in the unit cell. The effective medium parameters
can then be calculated considering the boundary response
of the metamaterial unit cell that “feels” and “responds to”
the stimulation exerted by the outside elastic waves. Under
the long-wavelength assumption, the effective stress, strain,
resultant force, and acceleration of the unit cell with the
complex microstructure can be obtained by averaging local
quantities on the external boundary as

�αβ = 1

V

∫
∂V

σαγ xβdsγ , Eαβ = 1

2V

∫
∂V

(uαdsβ + uβdsα),

Fα = 1

V

∫
∂V

σαβdsβ, Üα = 1

S

∫
∂V

üαds, (2)

where σαβ , uα , and üα are the local stress, displacement, and
acceleration fields, respectively, dsα = nαds with nα being the
boundary unit normal, V and ∂V denote unit cell’s volume and
external boundary. Specifically, the anisotropic effective mass
density of the EMM can be determined based on the following
relation:⎡

⎣F1

F2

F3

⎤
⎦ = −ω2V

⎡
⎣ρ11 ρ12 ρ13

ρ12 ρ22 ρ23

ρ13 ρ23 ρ33

⎤
⎦
⎡
⎣ Û1

Û2

Û3

⎤
⎦ , (3)

where Ûα is the global displacement field. For example, to
calculate the anisotropic effective mass density components
ρ11, ρ12, and ρ13, the dynamic displacement constraints on the
boundary of the RVE are applied as Û1 = Aeiwt and Û2 =
Û3 = 0. In the principal coordinate system, we have ραβ = 0
when α �= β. For arbitrary x-y-z coordinate system, it can be
numerically proved that the in-plane (x-y plane) anisotropic
effective mass density follows the coordinate transformation
law as⎡
⎣ρxx ρxy ρxz

ρxy ρyy ρyz

ρxz ρyz ρzz

⎤
⎦ =

⎡
⎣ C S 0

−S C 0
0 0 1

⎤
⎦
⎡
⎣ρ11 0 0

0 ρ22 0
0 0 ρ33

⎤
⎦

×
⎡
⎣ C S 0

−S C 0
0 0 1

⎤
⎦

−1

, (4)

where C = cos δ, S = sin δ, δ is the angle between the x

axis in the arbitrary coordinate system and the x1 axis
in the principal coordinate system. Therefore, the effective
mass density admits the second-order tensorial property. For
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FIG. 2. (Color online) (a) Unit cell of the EMM plate with elliptical coating layer. (b) Normalized effective mass densities as functions of
the normalized frequency along different principal directions.

the determination of the effective moduli of the EMM, the
anisotropic moduli can be similarly obtained based on the
constitutive relations. For example, for a 2D orthogonal EMM,
the stiffness tensor can be simplified as only four effective
parameters. After obtaining the three effective stresses and
three effective strains on the boundary, the effective stiffness
parameters can be calculated from the constitutive relations.

B. Design of the EMM plate with anisotropic
dynamic mass density

The working mechanism of the EMM with anisotropic
effective mass density is fully dependent on the inner mi-
crostructure design, which was clearly explained by analyzing
the 2D mass-in-mass lattice model.21 Based on the mass-
in-mass system, the effective mass densities along the two
principal directions can be analytically expressed as

ρeff,1 = 1

V

(
m1 + ω2

0,1

ω2
0,1 − ω2

m2

)
, (5)

ρeff,2 = 1

V

(
m1 + ω2

0,2

ω2
0,2 − ω2

m2

)
, (6)

where V is the volume of the unit cell, m1 and m2 are
outer and inner masses, respectively, and ω0,1 = √

k1/m2 and
ω0,2 = √

k2/m2 are the locally resonant frequencies of the
inner mass along the x1 and x2 directions, respectively. From

Eqs. (5) and (6), it can be found that the anisotropy between
ρeff,1 and ρeff,2 is mainly caused by the difference between
the locally resonant frequencies ω0,1 and ω0,2, which can
be tuned through the design of the internal springs k1 and
k2 along the x1 and x2 directions, respectively. Specifically,
design of the local stiffness anisotropy in the coating layer is
the key to achieving the anisotropic effective mass density of
the EMM. In this study, efforts on the microstructure design
of the EMM plate with in-plane anisotropic effective mass
density will be focused on modification of the well-known
three-component sonic crystal, soft-layer-coated heavy core
embedded in a matrix. A coating layer with an elliptical
shape is suggested to achieve the anisotropic effective mass
density of the EMM plate with the x3 axis normal to the plate
and the in-plane x1 and x2 axes are parallel to the elliptical
semimajor axis and the semiminor axis, respectively, as shown
in Fig. 2(a). The microstructure geometrical and constituent
material parameters are given in Table I.

The normalized effective mass densities along the x1 and x2

directions as functions of the normalized frequency are calcu-
lated based on the numerically based effective medium model,
which is shown in Fig. 2(b). In the figure, ρavg is the average
static mass density for the composite and f0 is the locally res-
onant frequency of the microstructure along the x1 direction.
It is noticed that ρeff,1 and ρeff,2 have different values in the
normalized frequency range from f/f0 = 0.4 to f/f0 = 1.8.
However, the anisotropic design is quite limited to the ratio

TABLE I. Microstructure geometrical and material parameters.

Geometrical parameters Material parameters

a 11 mm Matrix: Aluminum Coating: Epoxy Core: Lead
b1 4.95 mm Mass density 2700 kg/m3 1033 kg/m3 11 310 kg/m3

b2 3.5 mm Young’s modulus 71 GPa 0.595 GPa 13 GPa
� 3.175 mm Poisson’s ratio 0.32 0.38 0.435
t 3.175 mm
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FIG. 3. (Color online) (a) Unit cell of the EMM plate with micropores in the coating layer. (b) Normalized effective mass densities as
functions of the normalized frequency along different principal directions.

of the semimajor axis to the semiminor axis of the coating
ellipse. To achieve a more strongly anisotropic effective mass
density, a more modified microstructure design is needed.

Figure 3(a) shows a microstructure design in the elliptical
coating layer with four symmetric micropores for the greater
anisotropy in mass density. The same geometrical and material
parameters in Table I are used. The diameter of the micropore
is D = 2.15 mm and the centers of the four symmetric micro-
pores are located at r = 3.13 mm with the orientation angles
(θ ) being 25◦, 155◦, 205◦, and 335◦, respectively. Figure 3(b)
shows the in-plane normalized effective mass density of the
EMM plate with the micro-pores as a function of the normal-
ized frequency. Comparing with the results in Fig. 2(b), it can
be observed that the lower-frequency band of the of ρeff,1 and
ρeff,2 stays the same; however, the upper band is dramatically
increased from f/f0 = 1.8 to f/f0 = 3.0, which shows that
stronger anisotropy of the effective mass density can be
achieved through the current microstructure design. The same
lower-frequency band is expected because of the frequency
normalization with respect to the static average mass density.
It is also interesting to note that the effective mass density
becomes isotropic (ρeff,1 = ρeff,2) when the frequency is close
to the static case or much larger than the resonant frequencies.
The different constant values of the effective mass den-
sity in static (f/f0 < 0.1) and high-frequency (f/f0 > 4.0)
cases can be explained by Eqs. (5) and (6). It should be
mentioned that the anisotropy can be further tuned through the
change of the positions, shapes, and sizes of the micropores in
the coating layer and the inner mass.

III. EXPERIEMENTAL VALIDATION

The experimental testing was conducted on the proposed
microstructure design of the EMM plate in Fig. 3(a). The
EMM plates were manufactured with the aid of a computer
numerical control (CNC) machine. First, the tests of the
harmonic lowest symmetric guided waves along the two
in-plane principal directions were performed to demonstrate

different band gaps due to the anisotropic effective mass
density of the EMM plate. The group and phase velocity
dispersion relations were experimentally determined from
measurements of the transmitted transient wave signals with
the aid of the wavelet technology, from which the anisotropic
effective mass densities of the EMM plate along the principal
directions were obtained.

A. The experimental setup

Two anisotropic EMM plates with the proposed mi-
crostructure pattern were manufactured for the guided wave
propagation tests along the two principal directions. Figure 4
schematically shows the fabrication procedure of the EMM
plate. First, elliptical holes in a rectangular array (10 × 3)
were drilled in the host aluminum (Al) plate (Type 6061)

FIG. 4. (Color online) Schematic diagram of the EMM plate
fabrication.
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FIG. 5. (Color online) The experimental setup for harmonic testing of guided wave propagation in the EMM plate.

using the CNC machine. Second, pure lead rods (ESPI Metals)
and liquid epoxy (Crystal Clear 202, Smooth-On, Inc.) were
implanted into the holes. A guiding plate was used to precisely
locate the lead rods. After curing, micropores in the epoxy
coating were formed with the CNC machine. The material
properties of the Al plate, cured epoxy, and the lead rods are
listed in Table I. The epoxy properties were measured by the
simple tension testing of the epoxy samples.

To qualitatively investigate the anisotropic dynamic be-
havior of the EMM plate, the transmission characterizations
of the lowest symmetric guided waves propagating in the
EMM plates along the two principal directions were first
performed experimentally. The experimental setup, shown in
Fig. 5, includes the following components: (1) arbitrary wave-
form generator (Tektronix AFG 3021) and power amplifier
(Krohn-Hite 7602M); (2) two symmetrically surface-bonded
rectangular piezoelectric actuators (P-33.00 mm-4.00 mm-
0.76 mm-850 WFB, APC International, Ltd), as shown in
the left inset. The same voltage input is applied on the two
actuators to generate the harmonic lowest symmetric guided
wave; (3) two circular piezoelectric disks (P-6.36 mm-0.76
mm-850, WFB, APC International, LTD), as shown in the right
inset, which are symmetrically surface bonded on the other side
of the EMM plate and function as sensors; (4) a digital data
acquisition system including a digital oscilloscope (Tektronix
DPO4034) and a personal computer for the measurement,
storage, and analysis of the received sensor signals. By using
the summation of the outputs of both sensors, we can get a
purely symmetric guided wave signal and efficiently eliminate
the unwanted asymmetric wave signal which may come from
the slight position mismatch of the two actuators.

B. Wave transmission measurements

Harmonic wave analysis was performed, and the transmit-
ted wave signal of the EMM plate at each harmonic frequency
was measured and recorded. By sweeping the frequency of
the input harmonic signal, transmitted signals in the frequency
regime of interest can be secured. Figure 6 shows the lowest

symmetric guided wave transmission of the EMM plates
along the two principal directions. For validation purposes, the
transmission results of the infinite EMM plates predicted by
the numerical simulations are compared with the experimental
results. For wave propagation along x1 direction, a wave band
gap can be found at the frequency range from 18.2 to 21.8 kHz;
however, the wave band gap is found at the frequency range
from 24.8 to 30.4 kHz for wave propagation along the x2

direction. For the current microstructure design, the observed
band gaps can be explained by the negative effective mass
density.16 Therefore, the strong anisotropy of the effective
mass density is clearly revealed through the difference of
the experimentally measured band gaps along different wave
propagation directions. Very good agreements between the
experimental measurement and the numerical prediction also
validate the experimental testing.

C. Experimental determination of the effective mass density

The effective mass density of the EMM has been analyzed
numerically and analytically by numerous methods. However,
to the best of our knowledge, experimental determination of
the effective mass density of the EMM plate as a function
of frequency has not yet been investigated. In order to do
that, a transient wave propagation testing in the EMM plate
should be conducted to find the group and phase velocities
instead of the harmonic wave testing. The main difficulty of the
transient wave testing in the solid EMM plate is the wave signal
complexity due to the interference by the reflected waves from
the two free ends. In this study, the boundary reflection was
eliminated by welding two extended Al plates with the same
width and thickness to both ends of the EMM plate. In the
experiment, the group and phase velocities cannot be obtained
directly from cg = dω

dk
and cp = ω

k
, because the time origins of

the practical collected signals are simultaneously delayed to
the time when the physical waves were excited. Moreover, not
all frequency components appear at the same time; a so-called
“time lag” exists between different frequency components.
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FIG. 6. (Color online) Comparisons of numerical and experimental transmission measurements of the lowest symmetric guided wave
propagation in the anisotropic EMM plate along (a) x1 direction and (b) x2 direction. The shaded regions indicate the corresponding band gaps
predicted by the numerical simulations.

Therefore, using two sensors to measure the response waves at
the same time can effectively eliminate these side effects. In the
study, two symmetrically bonded piezoelectric sensor pairs on
both sides of the EMM plate were used to receive the transient
wave signals, as shown in Fig. 7. In the figure, d = 225 mm
is the distance between two sensor pairs and d0 = 110 mm is
the length of the EMM.

A tune-burst broadband wave signal with the mathematical
expression of V (t) = A0[1 − cos(2πfct)]sin(2πfct) was cho-
sen, where A0 is the amplitude and fc is the central frequency.
Different central frequencies in the passing band were selected
to cover the frequency regime of interest. Figure 8 shows
the received sensor signals before and after the EMM plate
shown in Fig. 7 at the central frequency fc = 13.6 kHz,
which is within the frequency regime of the passing band.
As shown in Fig. 8(a), the sensor signal collected from sensor
pair 1 is the direct propagating wave signal followed by the
strongly reflected wave from the heterogeneous EMM plate.
The significant wave dispersion can be found in the transmitted
signal collected from sensor pair 2, as shown in Fig. 8(b), which
makes it very difficult to interpret directly.

1. Determination of group velocity

The continuous wavelet transform (CWT) based on the
Gabor wavelets, which has been demonstrated as a useful time-
frequency analysis tool of wave signals in structural health

monitoring (SHM),28 is used to obtain the group and phase
velocity dispersion curves of the EMM plate. The CWT of a
given signal s(t) can be mathematically expressed as follows:

WT (â,b̂) = 1√
â

∫ +∞

−∞
s(t)ψ

(
t − b̂

â

)
dt, (7)

where ψ(t) is the mother wavelet function and the overline
indicates the complex conjugate; â and b̂ are known as the
scale and translation parameters, respectively. The reciprocal
of â is associated with the frequency and b̂ is related to the time.
The Gabor function is chosen as the mother wavelet function
in the analysis since it can provide better resolutions both in
the time and frequency domains than any other wavelets. The
Gabor function is expressed as29

ψ(t) = 1
4
√

π

√
ω̂0

γ
exp

[
− (ω̂0/γ )2

2
t2

]
exp (iω̂0t) , (8)

where γ and ω̂0 are positive constants chosen as π
√

2/ln2 ≈
5.336 and 2π , respectively. The Gabor function may be
considered as a Gaussian window function centered at t =
0 and its Fourier transform centered at ω = ω̂0. Therefore, the
CWT using the Gabor wavelet represents the time-frequency
component of s(t) around time t = b̂ and frequency ω = ω̂0/â.
For example, Figs. 9(a) and 9(b) show the 2D plots of the
magnitudes of CWT coefficients of the measured sensor

FIG. 7. (Color online) Schematic diagram of the experimental setup for the group and phase velocity determinations in the EMM plate.
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FIG. 8. The transient wave signals collected from (a) sensor pair 1 and (b) sensor pair 2 at the central frequency fc = 13.6 kHz.

signals in Figs. 8(a) and 8(b), respectively, for a scale with the
central frequency fc = 13.6 kHz. Physically, the magnitude
of CWT reaches its maximum at the wavelet ridge point;
the corresponding time b̂ of the ridge point is the group
delay which equals the delay of the propagating wave signal
envelope; therefore, it can be used in the calculation of the
dispersive group velocity at the frequency. The group delays
at the two sensor pairs at the frequency are determined by the
peak locations of the magnitudes of CWT coefficients of the
sensor signals. The difference in the group delays of the waves
at two sensor pairs, �t, is then obtained for the group velocity
calculation without side effects.

In the current sensor deployment, the group velocity as a
function of frequency can then be determined with the change
of scale as

Cg(f ) = d0

/[
�t(f ) − d − d0

CM
g

]
, (9)

where CM
g = 5400 m/s is the group velocity in the host Al

plate. Figure 10 shows the measured group velocity of the
lowest symmetric guided wave mode in the EMM plate along

the x1 direction. For comparison, the group velocity calculated
from the theoretical analysis via the relationship cg = dω

dk

is also plotted in the figure. The geometrical and material
properties used in the calculation are listed in Table I. Good
agreement between the theoretical result and the experimental
measurement can be found in both the first and second passing
bands.

2. Determination of phase velocity and effective mass density

Determination of the phase velocity of the EMM plate needs
the information of the phase angle of the CWT coefficient. At
a given scale â (frequency), the phase angle of the sensor
signal corresponding to certain group delay b̂ can be directly
determined from the complex CWT coefficient as φ(â,b̂),
which is in the range of −π to π . In order to calculate the
exact phase difference �φ between the two sensor signals,
the branch number m of the inverse trigonometric function
needs to be considered. By using the continuity of the phase
spectrum, the proper branch number for each scale can be
selected; therefore �φ can be determined at each frequency.
Finally the phase velocity of the EMM plate as a function of

FIG. 9. (Color online) The magnitudes of CWT coefficients of the sensor signals collected from (a) sensor pair 1 and (b) sensor pair 2 at
fc = 13.6 kHz.
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FIG. 10. (Color online) Experimentally measured group velocity
of the lowest symmetric guided wave mode along the x1 direction as
a function of frequency.

frequency can be obtained using the following relation:

Cp(f ) = d0[
�t(f ) + �φ(f )

2πf
− d−d0

CM
p

] , (10)

where �t is the difference of the arrival time, and CM
p is the

phase velocity in the host plate. With the change of scale, the
dispersive phase velocity versus the frequency can be finally
obtained. Figure 11 shows the phase velocity of the EMM plate
from the measured sensor signals. For comparison, the phase
velocity predicted from the theoretical dispersion relation of
the EMM plate is also added. In general, the measured phase
velocity matches well with that from the theoretical prediction
in the frequency range of the two lowest passing bands. Good
agreement can be found in the frequency range of weak
dispersion; however, a small discrepancy can be observed in

FIG. 11. (Color online) Experimentally measured phase velocity
of the lowest symmetric guided wave mode along the x1 direction as
a function of frequency.

the range of strong dispersion, such as the frequency range
close to the band gap.

Finally, the anisotropic effective mass density of the EMM
plate can be determined by the experimentally measured
phase velocity and the effective stiffness predicted by the
numerically based effective medium model. For example,
for the lowest symmetric guided wave propagating along the
principal x1 direction, the effective mass density of the EMM
plate along the wave propagating direction can be determined
by ρ1(f ) = C

eff

11 /[Cp1(f )]2. Figure 12 shows the obtained
effective mass densities as functions of the frequency for
wave propagation along two principal directions based on
the experimental data. For comparison, the corresponding
effective mass densities from the numerical solutions are also
plotted. Excellent agreement can be observed even for the
frequency range with strong wave dispersion. It should be
noticed that the distribution of the locally resonant elements
in the EMM plate will not affect its effective dynamic
mass density, which is different from the AMM, because
the anisotropic effective mass density of the EMM plate is
mainly caused by the anisotropic resonant motion of the locally
resonant element.

IV. CONTINUUM MODELING OF THE EMM PLATE

The dynamic behavior presented in the previous sections
can be further modeled by using analytical approaches which
provide more insight into the behavior of the system when
undergoing internal resonance. The investigation developed
here aims at developing an effective continuum model for
different guided wave modes in the EMM plate, which are
difficult to measure experimentally. The analytical results are
compared with the experimental measurements and the numer-
ical simulations in different EMM plates. Some interesting
dynamic phenomena will be discussed such as high-order
guided wave coupling and repulsion in the anisotropic EMM
plate. The developed effective continuum model can be applied
to problems of time-dependent vibration and transient wave
propagation in the EMM plate, which is important for its
potential engineering applications.

In general, based on the numerically determined effective
stiffness, the 3D stress-strain relation of the EMM plate in the
principal coordinate system can be expressed as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (11)

In an arbitrary x-y-z coordinate system (in-plane: x-y plane,
out-of-plane: z axis), the constitutive equations can be derived
using coordinate transformation and written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σx

σy

σz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= [C̄ij ]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx

εy

εz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (12)
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FIG. 12. (Color online) Effective dynamic mass densities of the anisotropic EMM plate along the two principal directions: (a) x1 direction;
(b) x2 direction.

where C̄ij , i,j = 1 to 6, are the transformed elastic constants.
The equations of motion for the continuum plate with
anisotropic mass density tensor can be written as

σx,x + τxy,y + τxz,z = ρxxü + ρxyv̈ + ρxzẅ,

τxy,x + σy,y + τyz,z = ρxyü + ρyyv̈ + ρyzẅ, (13)

τxz,x + τyz,y + σz,z = ρxzü + ρyzv̈ + ρzzẅ.

For the proposed metamaterial plate, the traction-free bound-
ary conditions on the top and bottom surfaces are

σz = τxz = τyz = 0, z = ±h/2. (14)

For a guided wave along the x direction, the displacements
can be assumed as the form

u = Aeikpzei[kxx−ωt], v = Beikpzei[kxx−ωt],
(15)

w = Ceikpzei[kxx−ωt],

where kx = ω
cp

is the wave number, ω is the angular frequency,
cp is the phase velocity, and p is an unknown variable to be
determined. Substituting Eqs. (12) and (15) into Eq. (13), we
have the following matrix form:

⎡
⎣�11 �12 �13

�12 �22 �23

�13 �23 �33

⎤
⎦
⎧⎨
⎩

A

B

C

⎫⎬
⎭ = 0, (16)

where

�11 = C̄11 + C̄55p
2 − ρxxc

2
p,

�12 = C̄16 + C̄45p
2 − ρxyc

2
p,

�13 = (C̄13 + C̄55)p − ρxzc
2
p,

�22 = C̄66 + C̄44p
2 − ρyyc

2
p,

�23 = (C̄36 + C̄45)p − ρyzc
2
p,

�33 = C̄55 + C̄33p
2 − ρzzc

2
p.

In order to obtain a nontrivial solution of Eq. (16), the following
sixth-order polynomial needs to be satisfied:

p6 + α1p
4 + α2p

2 + α3 = 0, (17)

where αl(l = 1,2,3) are functions of the stiffness matrix
C̄ij (i,j = 1 to 6), the effective mass density ρrs(r,s = x,y,z),
and the phase velocity cp.

By solving Eq. (17), the displacements can take the
following summation forms as

u =
⎛
⎝ 6∑

j=1

Aje
ikpj z

⎞
⎠ ei[kxx−ωt],

v =
⎛
⎝ 6∑

j=1

Bje
ikpj z

⎞
⎠ ei[kxx−ωt], (18)

w =
⎛
⎝ 6∑

j=1

Cje
ikpj z

⎞
⎠ ei[kxx−ωt],

where for each pj (j = 1 to 6),

B = RA,R = �11�23 − �12�13

�13�22 − �12�23
,

C = SA,S = �11�23 − �12�13

�12�33 − �23�13
.

Substituting Eq. (18) into Eq. (14), we have

6∑
j=1

(H1j ,H2j ,H3j )Aje
±ikpj h/2 = 0, (19)

where

H1j = C̄13 + C̄33pjSj + C̄36Rj ,

H2j = C̄44pjRj + C̄45(pj + Sj ),

H3j = C̄45pjRj + C̄55(pj + Sj ).
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The existence of a nontrivial solution of Eq. (19) leads to two
independent dispersion relations:

H11 (H23H35 − H25H33) cot

(
kp1h

2

)
+ H13(H25H31

−H21H35) cot

(
kp3h

2

)
+ H15 (H21H33 − H23H31)

× cot

(
kp5h

2

)
= 0, (20)

H11 (H23H35 − H25H33) tan

(
kp1h

2

)
+ H13(H25H31

−H21H35) tan

(
kp3h

2

)
+ H15 (H21H33 − H23H31)

× tan

(
kp5h

2

)
= 0, (21)

which correspond to symmetric and antisymmetric wave
modes, respectively.

To validate the continuum model, dispersion relations
obtained from the current model will be compared with those
from the FE simulation based on the detailed microstructures.
We consider the EMM plate with the unit cell shown in
Fig. 3(a). In the first example, the microstructure geometrical
and material parameters are given in Table I and wave
propagation along the principal x1 direction is considered. The
effective stiffness matrix of the EMM plate can be obtained by
using the numerically based effective medium model, which
is listed in Table II.

Figure 13 shows the dispersion relation in the first Brillouin
zone of guided wave propagation along the principal x1 direc-
tion in the EMM plate obtained from the continuum model,
which includes the lowest symmetric (S0) and antisymmetric
(A0) guided wave modes and shear horizontal (SH0) wave
mode. For comparison, the dispersion relations predicted by
the FE simulation based on the exact microstructure and
the experimental measurement are also plotted in the figure.
The band gap for the lowest symmetric guided wave can be
found in the frequency range of 17.7–22.8 kHz, which has
very good agreement with that from the experimental results.
For the lowest antisymmetric guided wave and the shear
horizontal wave, excellent agreement between the predictions
of the current model and the exact FE simulation is found at
low-frequency range but there is a small discrepancy at the
higher-frequency regime.

To understand wave behavior of different guided wave
modes in the EMM plate, a guided wave propagating
along a 45◦ with respect to the principal x1 direction is
studied. In the example, to demonstrate an engineering
application of the metamaterial plate in the low-frequency
band-gap range, the rubber-coated lead cores are embed-
ded in the epoxy matrix, with material properties for
lead (ρC = 11310 kg/m3, EC = 13 GPa, νC = 0.435), epoxy

TABLE II. Effective stiffness matrix of the EMM plate (in GPa).

C11 C12 C13 C22 C23 C33 C44 C55 C66

36.64 5.57 13.53 18.83 7.84 48.38 12.41 6.69 2.272

FIG. 13. (Color online) Comparison of the dispersion curves
obtained by the continuum model, FE simulation, and experimental
measurement for the guided wave along the principal x1 direction.

(ρM = 1110 kg/m3, EM = 4.4 GPa, νM = 0.38) and rubber
(ρCT = 1300 kg/m3, ECT = 10 MPa, νCT = 0.499); the geo-
metrical parameters of the microstructure are the same as those
in Table I. The anisotropic effective mass density tensor and
the effective stiffness matrix are similarly obtained by using
the numerically based effective medium model. Figure 14(a)
shows the comparison of dispersion relations in the first
Brillouin zone from the continuum model and the numerical
simulation based on the exact microstructure, where ω0 is the
locally resonant angular frequency of the microstructure along
the x1 direction and k∗ = (k1a + k2a)/2. Excellent agreement
can be observed in the two lowest-order modes because the
coupling of the different wave modes does not occur.

More complicated wave repulsions can be observed in the
high-order wave mode diagram from the dispersion prediction
by the exact numerical simulation; however, they cannot be
predicted by the current continuum model. To give more in-
tuitive understanding of the wave repulsion, the displacement
fields of eigenmodes at several gap-edge frequencies marked
in Fig. 14(a) (points 1–10) are plotted in Fig. 14(b) to show the
physical mechanism of the wave repulsion. From Fig. 14(b),
it can be found that the dispersion curve containing points
1, 7, and 9, which can also be predicted by the continuum
model, describes the out-of-plane dominant motion. The wave
repulsion, which is reflected at points 2 and 6, is caused by
the local rotation resonance (x-z plane) in the core. Therefore,
it is understandable that the continuum model cannot capture
this motion. As a result of the repulsion, the mode coupling
can also be observed. For example, the displacement field in
the lowest antisymmetric guided wave mode is dominated by
the out-of-plane plate motion, as shown in Fig. 14(b1), below
the local rotation resonant frequency which is dominated by a
coupling motion between the plate motion and local resonance
motion above the local rotation resonant frequency, as shown
in Figs. 14(b7) and 14(b9). An additional flat band is found
from the exact numerical simulation, which cannot be reflected
from the continuum model at the frequency ω/ω0 = 1.6. From
the displacement fields at points 3 and 8, it can be found that the
narrow passing band is caused by the local rotation resonance
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FIG. 14. (Color online) (a) Comparison of the dispersion curves obtained by the continuum model and the FE simulation for the guided
wave propagation along 45◦ with respect to the principal x1 direction; (b) the displacement fields around several gap-edge modes in points 1–10.

(x-y plane) in the coating medium, which cannot be captured
by the current continuum model. The difference between the
current model and the exact numerical simulation is found for
the high-order wave modes; the corresponding displacement
fields are plotted in Fig. 14(b) at points 4, 5, and 10. From the
displacement fields at points 4, 5, and 10, it can be seen that
the high-order wave modes are also the coupling modes of the
plate motions and local rotation resonant motion. Therefore,
the difference between the two models is due to the coupling
behavior, which cannot be captured by the continuum model.

Based on the developed continuum model, we will further
study the wave behavior of the anisotropic EMM plate, such
as existence of preferential directions of effective velocities
and energy flow. Figures 15(a) and 15(b) show the slowness
curves of both symmetric and antisymmetric waves in the

metamaterial plate at three different frequencies, respectively.
In the figures, ω0 is the locally resonant angular frequency of
the microstructure along the x1 direction, c0

T =
√

C66/ρ0 is the
in-plane bulk transverse wave velocity, and ρ0 is the static mass
density of the plate. In the example, the microstructure design
proposed in Fig. 3(a) is chosen with lead, rubber, and epoxy
as the core, coating, and matrix materials, respectively. From
Fig. 15(a), we notice that the anisotropy of effective velocities
is obvious; the effective velocity along the x1 direction is higher
than that along the x2 direction. For the frequencies at ω/ω0 =
0.14 and 0.7, the shapes of the slowness curves indicate strong
energy focusing along specific x1 and x2 directions. For the
frequency at ω/ω0 = 2.0, the anisotropy increases and most
energy will propagate along the x1 direction. However, for the
antisymmetric wave, as shown in Fig. 15(b), few changes in the
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FIG. 15. (Color online) Slowness curves of symmetric and antisymmetric wave at different frequencies.

shapes of slowness curves can be found at the three different
frequencies.

In order to further evaluate the difference between the
phase direction and energy direction quantitatively at different
frequencies, the energy flow direction as a function of phase
direction angle is plotted in Fig. 16. For simplicity but
without loss of generality, we assume that the guided wave is
propagating along the x axis which has an angle δ with respect
to the principal x1 axis and θ = tan−1( ∂ω/∂ky

∂ω/∂kx
) is the difference

between the group velocity direction and the phase velocity
direction. It can be noticed that the relation between the direc-
tions of phase velocity and group velocity is almost invariable
for the antisymmetric wave at different frequencies, which
explains the consistency of the shapes of the slowness curves
in Fig. 15(b). In contrast with the results of the antisymmetric
wave, the relations between the directions of phase velocity and
group velocity for different symmetric wave modes change
obviously at different frequencies in Fig. 16, which is also

FIG. 16. (Color online) Energy direction θ with respect to the
phase direction δ for symmetric and antisymmetric wave propagations
at various frequencies.

consistent with the result shown in Fig. 15(a). It should also
be noticed that except for the two principal directions, the
zero value of θ , which represents that the energy propagation
direction is parallel to the phase direction, also occurs when the
first symmetric wave (black circle and red triangle) propagates
along the direction that deviates at 50◦ to 60◦ from the principal
x1 axis. However, no energy flow propagates parallel to the
phase direction when the propagation direction of the second
symmetric wave mode (blue square) does not coincide with
either principal direction of the EMM plate.

V. CONCLUSION

This paper presented a microstructure design and conducted
an experimental validation of wave propagation in an EMM
plate with anisotropic effective mass density. The design was
achieved via a numerically based effective medium model.
The experimental validation was conducted in the EMM
plate through the analysis of the harmonic and transient wave
propagation. The group and phase velocities as functions of
frequency were obtained from transmission measurements
of the transient wave signals with the aid of the wavelet
technology, from which the effective mass densities along the
two principal directions of the proposed EMM plate were then
experimentally demonstrated. Excellent agreements between
the experimental results and those from the numerically based
effective medium model were observed. Finally, a continuum
model of guided wave propagation in the anisotropic EMM
plate has been developed. The continuum model can correctly
predict different guided wave modes in the EMM plate,
which are difficult to measure experimentally. Particularly,
the high-order guided wave coupling and repulsion as well as
the preferential energy flow direction in the anisotropic EMM
plate were discussed.
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