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Calibrated real-time detection of nonlinearly propagating strain waves
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Epitaxially grown metallic oxide transducers support the generation of ultrashort strain pulses in SrTiO3 (STO)
with high amplitudes up to 0.5%. The strain amplitudes are calibrated by real-time measurements of the lattice
deformation using ultrafast x-ray diffraction. We determine the speed at which the strain fronts propagate by
broadband picosecond ultrasonics and conclude that, above a strain level of approx. 0.2%, the compressive and
tensile strain components travel at considerably different sound velocities, indicating nonlinear wave behavior.
Simulations based on an anharmonic linear-chain model are in excellent accord with the experimental findings
and show how the spectrum of coherent phonon modes changes with time.
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Acoustic wave propagation and the deformation of solids
are usually analyzed within the approximation of harmonic
interatomic potentials leading to the concept of decoupled
acoustic phonons including their dispersion relation which is
nearly linear for small wave vectors kP . An anharmonicity
must be introduced into the interaction potential in order
to describe deformation under very high stress. But also
small-phonon-amplitude phenomena are connected to phonon-
phonon interaction processes, such as heat expansion and
heat conduction.1 For the material investigated in this paper,
SrTiO3 (STO), all these properties have been studied in detail,
since STO is the generic dielectric (quantum paraelectric)
perovskite oxide with a variety of interesting properties near
its structural phase transition at 105 K. The elastic constants
were determined by ultrasound measurements,2 the damping
of acoustic phonons was investigated by the linewidth of
Brillouin scattering3 and apparent deviations of the acoustic
dispersion were discussed in the context of picosecond
ultrasonics measurements.4 Recently ultrafast x-ray diffraction
(UXRD) was used to accurately measure the propagation
and decay of quasimonochromatic strain pulses in STO.5 In
general, UXRD data yield unambiguous information on the
ultrafast lattice response, which is helpful for the interpretation
of optical pump-probe investigations concerning complex
problems in solids.6–8

In theory, the changes in the occupation of phonon modes
are described as phonon damping due to scattering from
defects or anharmonic interaction with thermally activated
phonons.9–12 For high strain amplitudes also interactions
among coherent phonons are possible, which leads to a
shape change of coherent phonon pulses. In particular, the
self-steepening of strain pulses in sapphire giving rise to
N-waves, shock waves, and soliton pulse trains were measured
after a long propagation length of more than one hundred
microns.13–16 These solitons were observed at low tempera-
tures where phonon damping is weak and were discussed by
nonlinear wave equations.16–18

In this paper we investigate the nonlinear propagation
of giant longitudinal acoustic (LA) bipolar strain pulses in
SrTiO3. We calibrate the strain amplitude by UXRD and
show how the mode spectrum constituting the wave changes

as a function of time. Simulations based on an anharmonic
linear-chain model yield excellent agreement with ultrashort
broadband optical reflectivity measurements and show that
compressive strain components propagate faster than tensile
strain components. The dependence of the sound velocity on
the strain gives rise to a self-steepening of the strain fronts. We
analyze the experiments in a linear-chain model with atomic
resolution, although for the presented results a continuum
model would also be applicable. There are several advantages
of this approach and the discussion of sound waves in terms
of phonons. First we anticipate experiments for very high
wave vectors approaching the Brillouin zone boundary. At
a temperature of 110 K, STO undergoes an antiferrodistortive
phase transition connected to an optical phonon mode which
softens near the zone boundary.19 For connecting the nonlinear
parameters derived in the present paper with the physics near
the phase transition our approach will be very helpful. Finally,
ultrafast x-ray diffraction naturally supports simulations with
unit cell accuracy, and we show in Eq. (1) that in our
picosecond ultrasonics experiments the different wavelengths
of the reflected photons are sensitive to particular wave vectors
of phonons.

We use an epitaxially grown La0.7Sr0.3MnO3 (LSMO)
transducer film on a SrTiO3 (001) substrate, fabricated by
pulsed-laser deposition. The red symbols in Fig. 1(a) show
a θ -2θ scan of the sample recorded at the energy dispersive
reflectometer (EDR) beamline of the synchrotron BESSYII
of the Helmholtz-Zentrum-Berlin. The bright substrate peak
at θ = 23.25◦ is cut off to show the less intense layer peak
(LSMO) at 23.58◦ more clearly. The excellent agreement
with the simulation (black solid line) confirms the crystalline
perfection of the epitaxial film with a thickness of dLSMO =
36 nm, which is very robust against high excitation densities
and supports high strain amplitudes. To calibrate the amplitude
of the strain wave we measure the expansion of the metallic
layer via the shift of the x-ray diffraction signal [Figs. 1(b)
and 1(c)] after optical excitation by 50 fs laser pulses around
800 nm wavelength with a fluence of 20 mJ/cm2. To probe
the structural dynamics we use an x-ray plasma source
which provides jitter-free x-ray pulses with a duration of
approximately 200 fs.20 The transient angular shift �θ of the
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FIG. 1. (Color online) (a) Static θ -2θ scan of the (002) peaks of
the LSMO-STO sample showing a weak and broad layer (LSMO)
peak and a much brighter and narrower STO substrate peak.
(b) Transient UXRD signal after pumping with a laser pulse. The
layer peak shifts to smaller angles indicating the expansion of LSMO
within 6 ps (logarithmic color code). (c) Two cuts of panel (b) with
pump-probe delays −2 ps (before pumping) and 12 ps (when the
strain pulse has left the layer).

LSMO Bragg peak can be read from Fig. 1(b) for time delays
up to 15 ps. The shift is connected to the layer strain ε by
Bragg’s law. Figure 1(c) shows the diffraction curve for a time
delay of 12 ps yielding an induced LSMO strain of ε = 0.2%.

The observed time dependence of the LSMO Bragg
peak can be understood as follows:21,22 The absorbed pump
pulse induces a quasi-instantaneous thermal stress which
is unbalanced at the layer boundaries. This leads to two
strain fronts which propagate away from the air-LSMO and
LSMO-STO interfaces eventually building up a bipolar strain
pulse in the STO substrate.23 The maximum expansion occurs
at T = dLSMO/vLSMO = 6 ps after the excitation, when the
expansion waves starting from the surface and the interface
have traveled through the film at the velocity of sound in
LSMO, vLSMO.24 After 12 ps the coherent strain wave has
completely left the LSMO layer and entered the STO substrate.
Reflections of the sound wave at the interface with good
acoustic impedance matching can be neglected.21,24,25

In previous experiments we confirmed that the layer
strain depends linearly on the excitation fluence26 and
that the corresponding bipolar strain wave propagates
into the STO substrate.21 Hence we conclude a cal-
ibration factor of 0.01% LSMO strain per 1 mJ/cm2

fluence. The strain amplitude of the bipolar pulse in
the STO is half of the LSMO strain after 12 ps
weighted with the ratio of the layer and substrate sound

velocities which considers the bipolar pulse stretching in the
STO.21,24,25

Having calibrated the amplitude of the lattice response,
we follow the propagation of the bipolar strain pulse by
optical pump-probe measurements. The setup is very similar
to the broadband picosecond ultrasonics setup reported by
Pontecorvo et al.27 We split the 800 nm laser light into two
parts. The intense part is used to pump the sample with fluences
ranging from 14 to 47 mJ/cm2 and the smaller part is focused
into a sapphire plate to generate a white light supercontinuum
pulse. This spectrally broad light pulse ranging from 470 to
700 nm is reflected from the sample under an angle α = 45◦
with respect to the surface normal. We measured the relative
transient reflectivity change �R/R0 of the sample for four
different fluences at pump-probe delays up to 1 ns with
a resolution of 1 ps. Figure 2 shows the response of the
sample after correction for the chirp of the white light probe
pulse and after subtraction of the slowly varying background
which is associated with the transient heat in the LSMO film.
Figure 2(a) shows the relative change of reflectivity for the
lowest fluence (14 mJ/cm2) and Fig. 2(b) shows the same for
the highest fluence (47 mJ/cm2).

All measurements show pronounced oscillations which
exhibit a period increasing with the probe wavelength λ.
At high fluences we additionally observe a wavelength-
dependent beating of these oscillations. The oscillations can
be understood as an interference of the light wave reflected
by the sample surface with the light wave reflected due to
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FIG. 2. (Color) Relative optical reflectivity change of the LSMO-
STO sample for a pump fluence of (a) 14 mJ/cm2 and (b)
47 mJ/cm2. The low-frequency background was subtracted by high
pass filtering. The probe pulse wavelength is given by λ (left
axis). Both measurements show oscillations which are attributed to
Brillouin backscattering of a photon from a phonon with wave vector
kP (right axis). For strong excitation conditions (b) we observe a
beating in these oscillations.
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the refractive index change induced by the propagating strain
wave.23

In order to explain how a photon with wave vector kL is
selectively probing a certain phonon with wave vector kP ,
we describe the propagating wave front as a superposition
of longitudinal acoustic (LA) phonons with wave vector kP .
Then the “reflection” of the probe light from the strain pulse
can be understood as Brillouin backscattering of optical light
with wave vector kL. Therefore, such oscillations are often
denoted as “Brillouin oscillations” in the literature.28 The
observed frequency ωP of the signal oscillation corresponds
to the eigenfrequency of the LA phonon with wavevector
kP . According to energy and momentum conservation the
latter is related to the probe wavelength λ by the Brillouin
backscattering condition

kP = 2k⊥
L = 4π

λ
n(λ) cos(β), (1)

where k⊥
L is the internal optical wave vector component along

the surface normal and n(λ) is the refractive index of STO
which is taken from the literature.29 The internal angle β is
related to α by Snell’s law. Equation (1) implies that the probe
wavelength is specific for a certain wave vector of LA phonons.
The amplitude of oscillations at each wavelength λ and time
interval is a measure of the phonon amplitude of a specific
phonon wave vector kP . The beating observed in Fig. 2(b) is
therefore interpreted as a change of the phonon spectrum in
time. In particular, the beat node indicates the absence of a
certain wave vector kP at a certain time delay after excitation.
This will be discussed in the context of Fig. 4.

Now we discuss how to derive the sound velocity from
the measured data shown in Figs. 2(a) and 2(b). The linear
dispersion relation of acoustic phonons near the Brillouin
zone center is given by ωP (λ)/kP = vs and thus relates the
observed oscillation frequency ωP (λ) to the speed of sound
vs for the LA phonons in STO:

vs = ωP (λ)λ

4πn(λ) cos(β)
. (2)

We then calculate the fast Fourier transform I (ωP ,λ) along
the time axis for each probe wavelength λ. This yields a
relation between λ and the related oscillation frequencies
ωP (λ), which implies a dependence of the sound velocity
vs on the phonon wave vector kP according to the Brillouin
backscattering condition. We use Eq. (2) as a coordinate
transformation vs(ωP (λ),λ) which transforms our Fourier-
transformed data into a wavelength-dependent sound velocity
distribution I (vs,λ). By integration of the calculated result over
all wavelengths we obtain Fig. 3, which shows the measured
sound velocity distributions for different photoinduced LSMO
strains calibrated by the results of the UXRD measurement.
At low strain (0.14%) we observe a single peak around 8
nm/ps which is in a good agreement with the known sound
velocity of the LA phonons in STO.25 This peak validates
the linear dispersion at low fluence. A nonlinear dispersion
(kP -dependent sound velocity) would lead to a broadened
distribution.

However, with increasing strain amplitude we find a
splitting in the sound velocity distribution. This implies that,
for large strains, the speed of sound depends on the strain
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FIG. 3. (Color online) Measured sound velocity distribution of
the induced strain pulse in STO. The different pump fluences were
calibrated with the UXRD measurement to the resulting induced
strains of the LSMO layer which is directly linked to the strain ampli-
tude of the bipolar strain pulse in the STO. The narrow distribution for
0.14% strain implies that the entire strain pulse essentially propagates
with a speed around 8 nm/ps. With increasing strain amplitude the
sound velocity distribution gets broader and eventually a double-peak
distribution is established. At high excitation levels different parts of
the strain pulse propagate with different velocities. The stars indicate
the sound velocities of the self-steepened sound pulses simulated in
Fig. 4(a).

amplitude. The strain amplitude itself modulates the sound
velocity of the medium.

To verify these assignments and to understand the un-
derlying excited phonon spectrum, we simulate the lattice
dynamics in a linear-chain model which was successfully
tested against UXRD data in several cases.21,30 In addition
to the model proposed in Ref. 21, we introduce an anharmonic
potential between adjacent oscillators in order to describe the
nonlinear wave propagation. Moreover, we add an empirical
phonon damping term proportional to the velocity difference
of adjacent oscillators. Mathematically the system is described
by N coupled oscillators where each oscillator describes one
lattice plane (half unit cell) of the LSMO thin film or the
STO substrate. The set of N coupled second-order ordinary
differential equations is

miẍi = kM (�i − �i−1) + aM

(
�2

i − �2
i−1

)

+ miγM (�̇i − �̇i−1) + Fi(t), (3)

where �i = xi+1 − xi and i = 2, . . . ,N − 1. The potential
is nearly harmonic with a small cubic term. This leads to
the linear and parabolic force terms in the coupling force of
Eq. (3), where mi is the mass of the oscillator, kM is the
spring constant, aM is the anharmonicity parameter, and γM

is a material specific damping constant.31,32 At the interface
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of LSMO and STO the differential equation is asymmetric,
since kM , aM , and γM cannot be factored out as in Eq. (3). The
first and the last oscillator have no opponent. This defines the
boundary condition. We used N = 48182 oscillators, i.e., the
first 9.4 μm of the STO substrate are included in the lattice
dynamics simulations.

The elastic properties of LSMO and STO were taken from
the literature.24,25 For the anharmonicity of STO we made a
first approximation from the hydrostatic pressure dependence
of the elastic constants, which leads directly to a qualitative
agreement.2 We then varied the anharmonicity of STO and
LSMO to find quantitative agreement of the theory with the
experimental data. The final value of the anharmonicity of STO
reads 1.8 × 1013 kg s−2 m−1, which is only 10% smaller than
the first guess. The anharmonicity in the LSMO transducer
film has only little influence on the dynamics because of the
short propagation length. For this we finally used a value of
3 × 1013 kg s−2 m−1. For the damping parameter γi we used
a value which yields good agreement for phonon damping in
STO observed by UXRD.5

Fi(t) describes the driving force of the oscillators due to
the optical excitation process. We assume an instantaneous
force step Fi(t) at time zero according to the strong electron-
phonon coupling in the metallic oxides.8 The spatial excitation
profile Fi(t) follows an exponential decay determined by the
penetration depth of the optical pump light. Accordingly,
deeper-lying unit cells exhibit less expansion.21

Figure 4(a) shows the simulated strain profile for different
times after excitation of the sample with the smallest
(black line) and largest (blue line) strain amplitude in the
copropagating frame of reference. The center of the bipolar
pulse which has a strain level close to zero propagates with the
normal speed of sound, which is only valid in the harmonic
approximation. In the regions with high amplitude the strain
modulates the elastic constants. This nonlinear interaction
between the masses changes the shape of the bipolar pulse, in
particular leading to a self-steepening pulse front and tail. The
tensile part is slower and the compressive part is faster than
the sound velocity vs of the harmonic linear chain. The speed
of the pulse front propagation is read from the simulation and
indicated in Fig. 3 as stars. The good agreement verifies the
interpretation of the measured splitting of the sound velocity
distribution.

For further comparison to the measurement and to interpret
the impact of the anharmonic interaction on the classical
decoupled oscillators called phonons, we analyze the simu-
lated strain profiles in Fig. 4(a) by calculating the Fourier
amplitudes A(kP ,t) of sinusoidal waves composing the wave
packet for each time delay t . This is essentially an amplitude
of phonons (decoupled modes) which describes the wave
packet. For better comparison to the experimental observable
we plot A/λ in Fig. 4(c), because for a transparent medium
the reflectivity modulations scale inversely with λ according
to equations (35–38) in the seminal paper of Thomsen et al.23

The distribution of coherently excited phonons rapidly shifts
to smaller kP vectors.

Figure 4(b) shows the amplitude of the measured Brillouin
oscillations [Fig. 2(b)], which is proportional to the phonon
amplitude of the phonon with wave vector kP .23 During the
time sequence 240, 320, and 410 ps the first minimum of
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FIG. 4. (Color) (a) Spatial profile of the bipolar strain pulse in
the STO for different propagation times in a frame of reference
propagating with the speed of sound vs for high amplitude (blue
line, 0.47% strain) and low amplitude (black line, 0.14% strain).
For large amplitude, the tensile part of the pulse propagates with
subsonic speed and the compressive part propagates with supersonic
speed indicated by the stars in Fig. 3. (b) Measured amplitude of
oscillations for each wavelength connected to the wave vectors by the
Brillouin backscattering condition. The region between the vertical
black lines indicates the wave vectors that can be accessed by the
optical white light. (c) Phonon amplitude divided by the wavelength
λ (see text) as a function of wave vector calculated from Fourier
transforms of the simulated strain profile, showing good agreement
with the measurement in panel (b).

the phonon amplitude is moving through the experimental
window of observation given by the Brillouin backscattering
condition [Eq. (2)]. These minima represent the fact that,
at a certain point in time, these phonons are not occupied.
This is the fundamental interpretation of the beating of the
measured oscillations. The simulation reproduces also the
second measured amplitude minimum [Fig. 2(b)], which
moves into the observed wavelength range about 700 ps after
excitation (not shown).

We now discuss the physics behind the anharmonic linear-
chain model leading to the excellent agreement of theory
and experiment. Deformations are only reversible if they
are infinitely slow and if the thermodynamic system is in
equilibrium at any time. This is not the case for phonons
which have a finite oscillation period. The phonon has to damp
out because of the intrinsic irreversibility of the oscillation.
In other words, the coherent phonon amplitude goes down
by dissipating energy to the heat bath.5,9–12 In our model we
consider this fact by the hydrodynamic damping term γM in
the second line of Eq. (3).

The force term to second order in strain [aM in Eq. (3)]
is given by the anharmonic interactions of atoms which
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contribute only for large strain amplitudes. The set of differen-
tial equations [Eq. (3)] can be approximated by a Korteweg–de
Vries–Burgers equation (KdVB) if the phonon wavelength is
much larger than the lattice constant.33 This is advantageous
to find asymptotic solutions such as solitons. Our approach is
useful for the calculation of solutions with certain excitation
conditions and for considering acoustic mismatches of differ-
ent materials. We can account for dispersion higher than third
order and compute solutions with phonon wavelengths close
to the lattice constant.

In conclusion, we determined the transient phonon spectra
of nonlinearly propagating strain pulses in strontium titanate

by transient reflectivity measurements for different fluences,
which are experimentally calibrated by time-resolved x-ray
diffraction. An anharmonic linear-chain model with phonon
damping reproduces the measured spectra in a quantitative
way and verifies the interpretation of the transient reflectivity
measurements. The anharmonicity thus changes the phonon
occupation in time and leads to compressive and tensile strain
fronts traveling at 1% faster and slower speed, respectively.

We thank the DFG for supporting the project via BA 2281/3-
1 and SFB 762.
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