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Nanostructures formed by phase separation improve the thermoelectric figure of merit in lead chalcogenide
semiconductor alloys, with coherent nanostructures giving larger improvements than incoherent nanostructures.
However, large coherency strains in these alloys drastically alter the thermodynamics of phase stability. Incoherent
phase stability can be easily inferred from an equilibrium phase diagram, but coherent phase stability is more
difficult to assess experimentally. Therefore, we use density functional theory calculations to investigate the
coherent and incoherent phase stability of the IV–VI rocksalt semiconductor alloy systems Pb(S,Te), Pb(Te,Se),
Pb(Se,S), (Pb,Sn)Te, (Sn,Ge)Te, and (Ge,Pb)Te. Here we use the term coherent to indicate that there is a common
and unbroken lattice between the phases under consideration, and we use the term incoherent to indicate that
the lattices of coexisting phases are unconstrained and allowed to take on equilibrium volumes. We find that the
thermodynamic ground state of all of the IV–VI pseudobinary systems studied is incoherent phase separation.
We also find that the coherency strain energy, previously neglected in studies of these IV–VI alloys, is lowest
along [111] (in contrast to most fcc metals) and is a large fraction of the thermodynamic driving force for
incoherent phase separation in all systems. The driving force for coherent phase separation is significantly
reduced, and we find that coherent nanostructures can only form at low temperatures where kinetics may prohibit
their precipitation. Furthermore, by calculating the energies of ordered structures for these systems we find that
the coherent phase stability of most IV–VI systems favors ordering over spinodal decomposition. Our results
suggest that experimental reports of spinodal decomposition in the IV–VI rocksalt alloys should be re-examined.
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I. INTRODUCTION

Chalcogenide semiconductors and semiconductor alloy
systems form a class of promising thermoelectric materials
with high figures of merit (ZT = S2σ

κ
).1–12 The prototypical

example is PbTe, with a ZT approaching 1.0.13 It has recently
been shown that alloying PbTe with other semiconductor
systems can increase the figure of merit through the formation
of nanoscale precipitates, which reduce the lattice thermal
conductivity, κ , of the system without significantly reducing
the electronic conductivity, σ .7,11 This lack of carrier scattering
has been attributed to coherent interfaces between PbS-rich
precipitates and the PbTe-rich matrix.7,14 A coherent interface
between two phases maintains a common (possibly strained)
lattice between the phases which is not broken by misfit
dislocations. Optimizing the effects of nanostructures on
thermoelectric transport properties in a bulk material requires
understanding and controlling the mechanisms by which
nanoscale precipitates form.

The PbS precipitates seen in Pb(S,Te) are a consequence of
the chemical thermodynamics of mixing in this system. The
temperature–composition phase diagram of Pb(S,Te) contains
a miscibility gap:15–18 a region where PbS and PbTe are not
soluble in one another, and a PbS-rich phase may precipitate
out of a PbTe-rich supersaturated solid solution. Within a
miscibility gap, the solid solution can either be unstable or
metastable with respect to phase separation; the boundary
between these two regions is called the spinodal line. Outside
of the spinodal, the solid solution is metastable, and phase
separation proceeds by a nucleation and growth mechanism.
Inside the spinodal, the solid solution is unstable, and phase
separation occurs by spinodal decomposition. A schematic
miscibility gap is plotted in Fig. 1.

The spinodal line itself is difficult to measure experimen-
tally, and so it is often approximated by the chemical spinodal,
which is given by the locus of points satisfying d2Gm

dx2 = 0,
where Gm is the free energy of mixing (fit to the miscibility
gap). While this chemical spinodal is applicable to immiscible
fluids, it ignores the (often large) effects of strain due to lattice
mismatch in a solid solution.19 The chemical spinodal is shown
as a dotted (red) line in Fig. 1. The chemical spinodal always
touches the incoherent miscibility gap at a temperature, Tc,
called the critical temperature. As will be subsequently shown,
this does not need to be the case when the effects of strain are
taken into account.

In addition to the equilibrium phase diagram, governed by
incoherent phase separation, coherency strains caused by large
lattice mismatches can lead to another metastable, coherent
phase diagram. Spinodal decomposition is, by definition,
a coherent decomposition pathway and thus is dictated by
this metastable coherent phase stability. Pb(S,Te) is such a
system with a large lattice mismatch between the constituent
compounds (aPbS = 5.936 Å, aPbTe = 6.454 Å, ∼8% lattice
mismatch20), and so it is the coherent spinodal which separates
the regions of different phase separation mechanisms.19,21,22

Here we use the term coherent to indicate that there is a
common and unbroken lattice (say, by misfit dislocations)
between the phases under consideration. The coherent spinodal
can be found by explicitly incorporating an elastic strain energy
term into the equation for the chemical spinodal,21

∂2Gm

∂x2
+ 2η2Y = 0, (1)

where η is the linear expansion per unit composition change,
and Y is the appropriate effective modulus ( E

[1−ν] in the
isotropic case and a linear combination of elastic constants
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FIG. 1. (Color online) Schematic phase diagram of a pseudo-
binary (A,B)C alloy system containing a miscibility gap (solid black
line). Outside the miscibility gap the solid solution (SS) is stable and
inside the gap phase separation occurs. The coherent spinodal (blue
dashed line) divides the miscibility gap into two regions. Outside
the coherent spinodal, the solid solution is metastable with respect
to phase separation, and phase separation proceeds by nucleation
and growth (NG). Inside the coherent spinodal the solid solution
is unstable with respect to phase separation, and phase separation
proceeds by spinodal decomposition (SD). The unphysical chemical
spinodal is also plotted for comparison (red dotted line).

in the anisotropic case). Thus, in any phase separating system
with elastic strain, the spinodal will be depressed from the
miscibility gap. The coherent spinodal is shown in Fig. 1 as a
dashed (blue) line.

The coherent spinodal is particularly difficult to determine
experimentally, as coherent phase separation is metastable
with respect to incoherent phase separation, and, given enough
time, any coherently phase-separated microstructure will
coarsen into an incoherent phase separated microstructure.
Likewise, there is no way to obtain the coherent spinodal
purely from the measured equilibrium phase diagram. So, what
is needed is an accurate and predictive method to calculate
the coherent spinodal. First-principles calculations are ideally
suited to study coherent phase stability in the IV–VI rocksalt
alloys. Density functional theory (DFT) calculations have been
applied to phase stability problems in metallic alloys,23–33

semiconductor alloys,34–41 and oxide systems42–47 with great
success. Lead chalcogenide compounds and alloys have also
been studied extensively with DFT, focusing mostly on either
the electronic structure48–62 or lattice dynamics41,63–69 of these
materials. In addition, several studies have looked at the phase
stability of these systems, calculating incoherent miscibility
gaps and chemical spinodals,61,62 as well as investigating
the relative energetics of ordered and disordered alloys.50

However, to the best of the authors’ knowledge, the effects
of coherency strain on the phase stability of IV–VI alloys have
not been investigated.

In this study, the coherent phase stability of a series
of IV–VI rocksalt semiconductor alloys are systematically
investigated through first-principles DFT calculations. Six
pseudobinary alloy systems are explored: Pb(S,Te), Pb(Te,Se),
Pb(Se,S), (Pb,Sn)Te, (Sn,Ge)Te, and (Ge,Pb)Te. There have
been numerous experimental studies of the equilibrium phase
stability of these systems.15–18,70–80 The first three systems
mix on the anion sublattice of rocksalt, and the last three
mix on the rocksalt cation sublattice. The model of coherent
phase stability used here consists of three parts. (i) Mixing
enthalpies of the rocksalt solid solution are found through

total energy calculations of special quasirandom structures
(SQS).81,82 (ii) The Gibbs free energy of mixing is obtained
by adding an ideal entropy term to the enthalpy of mixing.
(iii) Finally, coherency strain energy calculations provide
the energies of coherent phase separation. From these first-
principles energetic quantities, we extract the incoherent and
coherent Gibbs free energies (in the form of subregular solution
models), and we calculate the incoherent miscibility gaps and
coherent spinodals for each system.

From our first-principles calculations, we find that the
mixing enthalpies of all IV–VI systems studied are positive,
consistent with the phase separation experimentally observed
in most of these systems. In addition, we find that the
coherency strain energy is lowest along the [111] direction
and highest along the [100] direction for all of the systems
investigated. This strain anisotropy is contrary to many (fcc)
metallic systems, where the [100] and [111] directions are
often the elastically softest and hardest directions, respectively.
Furthermore, we find that the coherency strain energy is a
significant fraction of the enthalpy of mixing, indicating that
most of the energy required to mix the constituents of these
systems goes towards straining the constituents onto the same
lattice, and that the coherency strain energy cannot simply
be neglected in any analysis of coherent phase stability of
these systems. Indeed, when the systems are constrained to
phase separate coherently, we find that the coherent spinodal is
depressed significantly in temperature from both the chemical
spinodal and the incoherent miscibility gap. This depression
is large enough that spinodal decomposition can only occur
at very low temperatures, where it will likely be kinetically
unfeasible. In addition, we find that the incoherent miscibility
gap temperatures in these systems scale with the coherency
strain energy of the system, further evidence that the main
driving force for phase separation in the IV–VI rocksalt
semiconductor alloys is lattice mismatch strain.

II. FREE ENERGY MODEL

We begin with a description of the various terms in our
model for the free energy of mixing. We can define two
different Gibbs free energies of mixing, an incoherent free
energy of mixing, �Gincoh

mix (x,T ), and a coherent free energy
of mixing, �Gcoh

mix(x,T ), which describe the free energies of
the solid solution with respect to incoherent and coherent
phase separation, respectively. Both free energies of mixing
are functions of composition, x, and temperature, T . These
free energies can be expressed in terms of the incoherent,
�H incoh

mix (x), and coherent, �H coh
mix (x), enthalpies of mixing, as

well as the ideal entropy of mixing or ideal configurational
entropy, �S ideal

mix (x), as,

�Gincoh
mix (x,T ) = �H incoh

mix (x) − T �S ideal
mix (x),

(2)
�Gcoh

mix(x,T ) = �H coh
mix (x) − T �S ideal

mix (x).

The ideal mixing entropy is given by

�S ideal
mix (x) = −kB [x ln x + (1 − x) ln(1 − x)] . (3)

The incoherent and coherent enthalpies of mixing describe
the enthalpies of the solid solution with respect to incoherent
and coherent phase separation, respectively. The incoherent
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enthalpy of mixing is given by

�H incoh
mix (x) = Erandom(x) − (1 − x)EAC − xEBC, (4)

where Erandom is the energy of the solid solution, and EAC

and EBC are the energies of the constituent compounds. The
difference between the incoherent and coherent enthalpies of
mixing is the difference in energy between the coherent and
incoherent reference states. Thus, we can relate the coherent
enthalpy of mixing to the incoherent enthalpy of mixing by

�H coh
mix (x) = �H incoh

mix (x) − �Emin
CS (x), (5)

where �Emin
CS (x) is the minimum coherency strain energy, the

lowest energy possible for a system in a phase separated state
with both phases completely coherent with one another. In
the next sections we will describe how each of the terms in
Eqs. (2)–(5) will be calculated within DFT.

A. Incoherent enthalpies of mixing, �H incoh
mix (x)

Enthalpies of mixing of the random or disordered solid
solution are difficult to compute directly from DFT, since
these methods are typically used to compute properties of
ordered periodic arrangements of atoms. To overcome this
difficulty, we use the method of SQS.81,82 These SQSs are
small unit cell (32 atoms in this study) ordered structures, with
atoms placed on lattice sites in such a way as to mimic the
pair and multibody correlations of a perfectly random lattice.
This methodology allows for the accurate, DFT-level treatment
of random solid solutions, including the important physical
effects of local atomic relaxations, without the computational
cost of a large supercell, where A and B atoms are randomly
arranged on the lattice sites. Since mixing only occurs on one
fcc sublattice of the rocksalt lattice in any of the pseudobinary
systems considered here, previously generated fcc SQSs30

will be modified by adding atoms to the fcc octahedral sites,
creating rocksalt SQSs with mixing on only one fcc sublattice.
Two SQS supercells will be used, one with a composition
of A0.5B0.5C (e.g., Pb0.5Ge0.5Te and PbS0.5Te0.5 for cation
and anion mixing, respectively) and the other of A0.25B0.75C.
By switching the A and B atoms in the second case, a
stoichiometry of A0.75B0.25C can be obtained.

To model the thermodynamics of solid-solid mixing in these
systems, a subregular solution model,

�H incoh
mix (x) = αincohx(1 − x) + βincohx(1 − x)(1 − 2x), (6)

is fit to the formation energies of the three SQSs from each
pseudobinary system with fitting parameters αincoh and βincoh

(Table I contains these parameters for each pseudobinary sys-
tem considered). To model mixing with respect to incoherent
phase separation, the reference state for this enthalpy is the
energy of incoherent phase separation, i.e.,

EIPS(x) = (1 − x)EAC + xEBC, (7)

where EAC and EBC are the total energies of bulk rocksalt
pseudobinary constituents [e.g., PbS and PbTe in Pb(S,Te)],
each relaxed to their equilibrium bulk lattice parameters, and
x is the mole fraction of BC in the system.

TABLE I. Subregular solution model mixing enthalpy fitting
parameters for each pseudobinary system. Fitting parameters for both
the incoherent and coherent mixing enthalpies are provided [Eqs. (5)
and (10), respectively].

αincoh βincoh αcoh βcoh

(meV/cat) (meV/cat) (meV/cat) (meV/cat)

PbS1−xTex 289.5 47.07 74.62 41.79
PbTe1−xSex 107.4 −8.43 27.47 −6.06
PbSe1−xSx 47.36 −2.21 14.70 −2.03
Pb1−xSnxTe 25.66 −0.23 10.18 −0.18
Sn1−xGexTe 105.4 −11.80 −6.77 −23.88
Ge1−xPbxTe 173.5 −57.62 −39.77 −52.59

B. Coherency strain energies, �Emin
C S (x)

To model the coherent enthalpy of mixing, the reference
state must be changed from incoherent phase separation to
coherent phase separation via Eq. (5). This change in reference
state is accomplished by adding the minimum coherency
strain energy to the energy of incoherent phase separation,
or equivalently, subtracting the minimum coherency strain
energy from the incoherent enthalpy of mixing. The coherency
strain energy is the energy required to strain two phases onto
the same lattice parameter along a crystallographic direction
(with the minimum coherency strain energy occurring along
the elastically softest direction). The coherency strain energy,
�ECS(k̂,x) depends on both the direction, k̂, along which the
phases are strained and the amount of each phase present, x.
A method for calculating the coherency strain energy is given
below, following Refs. 27 and 83.

The energy required to strain a phase i to a lattice
parameter a⊥ in the plane normal to k̂ while allowing the
lattice parameter a‖ along k̂ to relax is defined as the epitaxial
strain energy, given by

�E
epi
i (k̂,a⊥) = min

a‖
[Ei(k̂,a⊥,a‖) − Ei(a0)], (8)

where Ei(a0) is the energy of phase i at its equilibrium lattice
parameter, and Ei(k̂,a⊥,a‖) is the energy of phase i strained
to a lattice parameter of a‖ along a direction k̂, and a lattice
parameter of a⊥ in the plane normal to the direction k̂. The
coherency strain energy of an alloy system can be obtained
from the epitaxial strain energies of the constituents (AC

and BC) by straining both AC and BC to the same lattice
parameter a⊥ normal to k̂, and minimizing the total strain
energy of the system with respect to this lattice parameter,

�ECS(k̂,x) = min
a⊥

[
(1 − x)�E

epi
AC(k̂,a⊥) + x�E

epi
BC(k̂,a⊥)

]
.

(9)

The minimum coherency strain energy is then the coherency
strain energy along the elastically softest direction,

�Emin
CS (x) = min

k̂

�ECS(k̂,x). (10)

The epitaxial strain energies in Eq. (7) can be obtained
from DFT static calculations at the specified lattice parameters.
The automated calculation of coherency strain energies for
cubic crystals can be performed using the Alloy Theoretic
Automated Toolkit (ATAT).84 By fitting the right-hand side
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FIG. 2. (Color online) Illustration of the incoherent (blue solid
line) and coherent (red dashed line) Gibbs free energies of mixing
(2) for the system Pb(S,Te) as a function of mole fraction PbTe at
T = 1000 K. The common tangent rule (solid black line) shows
the equilibrium concentrations of PbTe in the PbS- and PbTe-rich
incoherent phases. The intercepts of the tangent line with the xPbTe =
0 and 1 give the chemical potentials of PbS and PbTe, respectively.
At 1000 K, the coherent phase diagram exhibits complete solid
solubility, while the incoherent phase diagram contains a two-phase
miscibility gap. For illustrative purposes, the incoherent and coherent
free energies of mixing were made to coincide at a composition of
0.7 mole fraction PbTe.

of Eq. (5) to a subregular solution model form, we obtain an
analytical function for the coherent enthalpy of mixing,

�H coh
mix (x) = αcohx(1 − x) + βcohx(1 − x)(1 − 2x), (11)

where the αcoh and βcoh are fitting parameters, given in Table I
for each IV–VI rocksalt pseudobinary system. A comparison
of the coherent enthalpy of mixing model presented here with
previous work is provided in the Appendix.

C. Phase diagram calculations

The incoherent and coherent Gibbs free energies of mixing
for the system Pb(S,Te) (calculated as described in Sec. IV)
are illustrated in Fig. 2 for a temperature below the incoherent
miscibility gap but above the coherent miscibility gap. At
this temperature, the incoherent free energy of mixing has
two minima corresponding to the PbS- and PbTe-rich phases,
while the coherent free energy of mixing has only one
minima, corresponding to a solid-solution of PbS and PbTe.
Equilibrium between the two incoherent phases is found by
setting the chemical potentials of each compound (AC and
BC) in each phase (α and β) equal to each other,

μα
AC = μ

β

AC, μα
BC = μ

β

BC. (12)

This procedure is illustrated graphically in Fig. 2 as the
common-tangent rule. The chemical potentials of the binary
compounds can be found from the Gibbs free energy (coherent
or incoherent) via

μAC(x) = �Gmix(x) − x
∂�Gmix

∂x
,

(13)

μBC(x) = �Gmix(x) + (1 − x)
∂�Gmix

∂x
.

In addition to the miscibility gap, the coherent spinodal
line can be calculated by taking the second derivative of the
coherent Gibbs free energy and setting it to zero, which, for

the subregular solution model has the form,

∂2�Gcoh
mix

∂x2
= kBT

(
1

x
+ 1

1 − x

)
− 2αcoh − 6βcoh(1 − 2x),

(14)

and the resulting coherent spinodal temperature can be written
as a function of composition as

kBTsp(x) = 2αcohx(1 − x) + 6βcohx(1 − x)(1 − 2x). (15)

By utilizing these procedures, incoherent miscibility gaps
and coherent spinodals are constructed for each of the six
pseudobinary systems considered.

III. COMPUTATIONAL METHODOLOGY

DFT85,86 calculations were performed using the Vienna Ab
initio Simulation Package (VASP)87 with projector augmented
wave (PAW)88 pseudopotentials utilizing the generalized
gradient approximation (GGA) and exchange-correlation
functional of Perdew, Burke, and Ernzerhof (PBE).89 All
of the calculations were performed with a plane-wave basis
cutoff energy of 350 eV, a Monkhorst-Pack k-point mesh with
2400 k points per reciprocal atom, and a Gaussian smearing
of the electronic occupancy with a width of 0.1 eV. Formation
energies were converged to within 1 meV/cation with respect
to cutoff energies and k-point meshes. Unless explicitly noted,
total energies of all structures were minimized with respect
to unit cell shape and volume, as well as atomic internal
coordinates.

IV. RESULTS

A. Structure and geometry of IV–VI rocksalt alloys
and compounds

We begin by discussing the lattice parameters of all IV–VI
compounds and solutions. This quantity is easily compared
with experiment, helping to validate our DFT calculations,
and also defines the lattice mismatch of each system, which is
critical in evaluations of the coherency strain energy (shown
subsequently). We have calculated DFT total energies and
relaxed geometries for PbS, PbTe, PbSe, SnTe, and GeTe in
the rocksalt structure. In addition, we have calculated total
energies and relaxed geometries for 32 atom (16 mixing
atoms) rocksalt SQSs for the three anion-mixing pseudobinary
systems Pb(S,Te), Pb(Te,Se), and Pb(Se,S), and the three
cation-mixing pseudobinary systems (Pb,Sn)Te, (Sn,Ge)Te,
and (Ge,Pb)Te. From these calculations, we can determine the
lattice parameters of each system as a function of composition.
Because of the low symmetry of the SQSs, and, in particular,
the triclinic unit cells of these structures, an “average lattice
parameter” was calculated by taking the cube root of the
volume of eight atoms (the size of the conventional rocksalt
unit cell) for each structure, aSQS = 3

√
VSQS/4. This average

lattice parameter allows a direct comparison with Vegard’s
law90 as well as previous DFT calculations. Figures 3 and 4
show the lattice parameters for the anion- and cation-mixing
systems as functions of composition, respectively. There is
very little deviation from Vegard’s law90 in the random alloys
of these systems. The largest deviations occur in (Ge,Pb)Te,
where there is a slight upwards bowing of the lattice parameter
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FIG. 3. DFT lattice parameters of anion-mixing systems (a) Pb(S,Te), (b) Pb(Te,Se), and (c) Pb(Se,S), as functions of composition. We
give lattice parameters for the rocksalt compounds and three SQSs at x = 1/4,1/2,3/4 as models of the solid solution. Dashed lines show the
linear dependence of lattice parameter on composition (Vegard’s law) for each system. We find no appreciable deviation from Vegard’s law in
the solid solutions of these mixing systems.

from Vegard’s law. This deviation is related to the relaxation
of the (Ge,Pb)Te SQS away from the rocksalt structure and
towards the low temperature rhombohedral structure of GeTe,
as will be discussed in Sec. IV D. A comparison of our lattice
parameter calculations with previous DFT calculations, as well
as available experimental data, is shown in Table II.

B. Coherency strain and mixing energies for IV–VI rocksalt
alloys and compounds

Next, we will construct all of the contributions to the
free energy model of Sec. II. The resulting incoherent and
coherent free energies of mixing will be used to calculate phase
diagrams in Sec. IV C. We also calculate ordered structures in
each of the alloy systems to investigate the short-range order
of these systems.

1. Coherency strain energies

We calculate coherency strain energies for all of the
pseudobinary rocksalt systems along three high symmetry
directions: [100], [110], and [111]. In a cubic crystal with
harmonic elasticity, the strain energies will have extrema along
the [100] and [111] directions.83 For some systems [e.g.,
Pb(S,Te) and(Ge,Pb)Te], the lattice mismatch is large, and
anharmonic effects can be important. Our DFT calculations
do not rely on any harmonic approximations, and anharmonic
strain energies are directly incorporated in Eq. (8). For each
system along each direction, we have calculated the epitaxial
strain energy, �E

epi
i (k̂,a⊥) of each constituent at five values

of the lattice parameter a⊥ perpendicular to the direction
k̂ (epitaxial lattice parameter). For each value of a⊥, we
minimize the energy of the structure with respect to the

lattice parameter a‖ along the direction k̂, while keeping the
lattice parameter a⊥ fixed. Figures 5 and 6 show the resulting
coherency strain energies for all of the systems considered
along the [100] and [111] directions.

The thermal expansion coefficients of the IV–VI rocksalt
compounds are relatively large,67,118 and, in principle,
this thermal expansion could introduce large temperature
dependencies into the coherency strain energies. However,
the effect that is important for coherency strain energies is
not the absolute change in lattice parameter of a compound
with temperature but the change in lattice mismatch between
two compounds with temperature. For Pb(S,Te), the system
with the largest lattice mismatch considered here, the change
in mismatch with temperature is very small67,118 (8.98% at
zero Kelvin using our calculated lattice parameters and 9.03%
at 1000 K including the experimental thermal expansion
coefficients in Ref. 118), and we estimate the increase in the
coherency strain energy of Pb(S,Te) due to thermal expansion
to be less than 3 meV/cation at 1000 K using the thermal
expansion data of Ref. 67 or 118.

2. Mixing enthalpies

The formation enthalpies of pseudobinary SQSs relative
to pure rocksalt constituents (incoherent phase separation)
are shown in Fig. 5 (anion mixing systems) and Fig. 6
(cation mixing systems), along with a subregular solid solution
model mixing enthalpy curve (fit to the SQSs) and coherency
strain energies along [100] and [111]. Fitting parameters for
each system are included in Table I. In the anion mixing
systems, the coherency strain energies along [111] all lie
below both the coherency strain curves along [100] and the
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FIG. 4. DFT lattice parameters of cation-mixing systems (a) (Pb,Sn)Te, (b) (Sn,Ge)Te, and (c) (Ge,Pb)Te, as functions of composition. We
give lattice parameters for the rocksalt compounds and three SQSs at x = 1/4,1/2,3/4 as models of the solid solution. Dashed lines show the
linear dependence of lattice parameter on composition (Vegard’s law) for each system. We find no appreciable deviation from Vegard’s law in
the solid solutions of these mixing systems except in the system (Ge,Pb)Te, where there is some positive deviation at compositions of 0.25 and
0.75 mole fraction PbTe.
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TABLE II. Comparison of lattice parameter data for IV–VI pseudobinary rocksalt alloys. The lattice parameters calculated in this work are
presented, along with literature data for DFT calculations made within the generalized gradient approximation (GGA)53,57,59,61,62 and the local
density approximation (LDA),50,53,57,59 as well as experimental lattice parameters for each binary compound.20,91 The empirical trend of LDA
to overbind (smaller lattice parameter than experiment) and GGA to underbind (larger lattice parameter than experiment) is found for all the
binary compounds.

Lattice Parameter (Å)

Present DFT Previous DFT

x GGA GGA LDA Experiment

0 5.994 6.01061 6.01259 5.85459 5.90650 5.936291 5.93620

0.25 6.144 6.18861 6.14a,59 5.96a,59

PbS1−xTex 0.5 6.275 6.32561 6.29a,59 6.10a,59

0.75 6.442 6.45061 6.44a,59 6.23a,59

1 6.558 6.56061 6.57059 6.38359 6.43950 6.460391 6.45420

0 6.558 6.56061 6.57059 6.38359 6.43950 6.460391 6.45420

0.25 6.476 6.48761 6.50a,59 6.30a,59

PbTe1−xSex 0.5 6.380 6.40661 6.40a,59 6.22a,59

0.75 6.296 6.32061 6.31a,59 6.13a,59

1 6.206 6.21061 6.22259 6.04659 6.09850 6.124391 6.12420

0 6.206 6.210561 6.22462 6.22257 6.05357 6.09850 6.124391 6.12420

0.25 6.153 6.179561 6.17462 6.17457 5.99857

PbSe1−xSx 0.5 6.100 6.128561 6.12562 6.12257 5.95457

0.75 6.048 6.073561 6.07162 6.06957 5.90557

1 5.994 6.010561 6.01162 6.01257 5.85457 5.90650 5.936291 5.93620

0 6.558 6.57059 6.43950 6.460391 6.45420

0.25 6.526
Pb1−xSnxTe 0.5 6.484

0.75 6.446
1 6.403 6.40453 6.23153 6.31320

0 6.403 6.40453 6.23153 6.31320

0.25 6.311
Sn1−xGexTe 0.5 6.216

0.75 6.119
1 6.009 6.01153 5.85853 5.99620

0 6.009 6.01153 5.85853 5.99620

0.25 6.231
Ge1−xPbxTe 0.5 6.307

0.75 6.470
1 6.558 6.57059 6.43950 6.460391 6.45420

aData extracted from Fig. 1 of Ref. 59.
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FIG. 5. (Color online) Solid solution subregular mixing enthalpies (blue solid line), and coherency strain energy curves along [100] (red
dotted line) and [111] (green dashed line) for the anion mixing systems (a) Pb(S,Te), (b) Pb(Te,Se), and (c) Pb(Se,S). Subregular solution
models were fit to the formation enthalpies of SQSs at concentrations of 0.25, 0.5, and 0.75 mole fractions (black points). All enthalpies are
given with respect to incoherent phase separation.
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FIG. 6. (Color online) Solid solution subregular mixing enthalpies (blue solid line), and coherency strain energy curves along [100] (red
dotted line) and [111] (green dashed line) for the cation mixing systems (a) (Pb,Sn)Te, (b) (Sn,Ge)Te, and (c) (Ge,Pb)Te. Subregular solution
models were fit to the formation enthalpies of SQSs at concentrations of 0.25, 0.5, and 0.75 mole fractions (black points). All enthalpies are
given with respect to incoherent phase separation.

solid solution mixing enthalpy curves. However, in the cation
mixing systems, the solid solution mixing enthalpy curves
lie below the coherency strain energy curve along [111] for
a majority of the composition range in the (Sn,Ge)Te and
(Ge,Pb)Te systems. This is due to the fact that the SQSs can
locally relax towards the rhombohedral structure, while atomic
relaxations in the coherency strain calculations are constrained
by the inversion center of the rocksalt structure.

From the results of Figs. 5 and 6 we can make several
observations. First, the mixing enthalpies for every system
are positive, consistent with the observed phase separation
in these systems. Second, the thermodynamic driving force
for incoherent phase separation (�H incoh

mix )—the difference
between the solid solution curve and incoherent phase
separation curve (x axis)—is greater in all cases than the
thermodynamic driving force for coherent phase separation
(�H coh

mix ), which is the difference between the solid solution
curve and the coherent phase separation curve (along [111]).
This difference between the driving forces for incoherent
and coherent phase separation will impact the corresponding
incoherent miscibility gap and coherent spinodal temperatures
in the phase diagrams we calculate. Finally, the coherency
strain energies, even along the elastically softest direction
[111], are significant fractions of the total mixing enthalpies,
indicating that the coherency strain energies will greatly
impact the phase stability of the IV–VI alloys and ignoring
these energies will lead to unphysical estimates of coherent
spinodals.

3. Ordered structure formation enthalpies

The coherent phase diagram of a system can be quite
distinct from the equilibrium, incoherent phase diagram. Even
in (incoherently) phase separating systems, it is possible for the
coherent phase diagram to exhibit ordering.27 In such systems,
ordered structures exist which are higher in energy than
incoherent phase separation but lower in energy than coherent
phase separation. Many tetrahedral zinc-blende-based III–V
semiconductor alloys (e.g., GaxIn1−xP) exhibit this inco-
herent phase separating/coherent phase separating/ordering
tendency.35 But, coherent phase stability in octahedral rocksalt
IV–VI alloys has not been investigated. To investigate this
possibility of coherent ordering in the IV–VI rocksalt alloys,

formation enthalpies of rocksalt-based ordered structures were
calculated for each of the pseudobinary systems,

�H ord
F (�k,x) = Eord(�k,x) − (1 − x)EAC − xEBC, (16)

where Eord is the DFT energy per cation of the ordered
structure with concentration x and composition wavevector
�k. The formation enthalpies of these ordered structures
combined with the coherency strain energy at the same x

and k̂ can be used to investigate the incoherent and coherent
tendency toward ordering of the IV–VI systems. The formation
enthalpies of ordered structures can also be decomposed into
strain and chemical contributions, which give insight into the
physical contributions of mixing in a system.

The ordered structures considered here all have pseudobi-
nary mole fractions of 0.5 and composition wavevectors along
either [100] or [111]. That is to say, these ordered structures
are all (AC)p(BC)p superlattices of period p oriented along
k̂ = [100] or [111]. The formation enthalpies of these ordered
structures, SQSs, and coherency strain energies are listed for
each pseudobinary system in Table III. Figure 7 compares these
various formation and coherency strain energies at 0.5 mole
fraction for each pseudobinary system by normalizing energies
by the coherency strain energy along [111] at 0.5 atomic
fraction of each system. This normalization is done to allow a
more direct comparison of the relative ordering of the various
structures across each system.

The incoherent phase stability of a system is determined
by the lowest energy state accessible to the system out of
all possible states, including incoherent phase separation.27

On the other hand, the coherent phase stability of a system
is determined by the lowest energy state possible at a fixed
volume, i.e., excluding incoherent phase separation but includ-
ing coherent phase separation.27 Figure 7 shows the energetic
competition between ordered compounds, coherent phase sep-
aration, and incoherent phase separation in each system. From
Fig. 7 we can see that the lowest energy state for all of the IV–VI
systems is incoherent phase separation. However, for coherent
phase stability, we ignore incoherent phase separation and
consider the relative energies of all the other states in Fig. 7. We
see that the anion mixing systems and the Ge-containing cation
mixing systems [Pb(S,Te), Pb(Te,Se), Pb(Se,S), (Sn,Ge)Te,
and (Ge,Pb)Te] all have ordered structures as their lowest
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TABLE III. Formation energies of structures ordered along [100] and [111] for each of the pseudobinary systems. The formation energies
are all with respect to the rocksalt structures of each constituent binary compound in the pseudobinary system.

Formation Energy of Ordered Structures (meV/cation)

Pb(S,Te) Pb(Te,Se) Pb(Se,S) (Pb,Sn)Te (Sn,Ge)Te (Ge,Pb)Te

(AC)1(BC)1 [100] 174.8 66.3 26.3 11.2 61.7 134.2
(AC)2(BC)2 [100] 109.1 42.5 17.1 8.7 43.5 90.6
(AC)1(BC)1 [111] 45.7 14.7 7.9 6.3 14.2 36.6
(AC)2(BC)2 [111] 47.2 16.0 7.5 5.2 19.2 41.4
SQS-16 x = 0.25 61.5 21.0 9.1 5.1 20.5 23.2
SQS-16 x = 0.5 68.2 24.4 11.2 6.0 23.6 49.3
SQS-16 x = 0.75 52.7 22.6 9.5 5.1 22.71 34.0
�ECS ([100], x = 0.5) 96.4 37.4 15.6 8.3 50.2 94.2
�ECS ([111], x = 0.5) 54.0 20.0 8.2 3.9 28.3 53.7

energy coherent states. This behavior can be contrasted by
(Pb,Sn)Te, where the lowest energy coherent state (excluding
incoherent phase separation) is coherent phase separation.
Thus, all of the IV–VI systems except (Pb,Sn)Te have a
preference for metastable coherent ordering over coherent
phase separation (and hence spinodal decomposition) at low
temperatures. This competition between coherent ordering and
phase separation is explored more thoroughly for the system
Pb(S,Te) in ongoing work.92

In addition to determining the incoherent and coherent
phase stability of these systems, the ordered structures can
give us insight into the chemical and strain contributions to
the mixing enthalpies in each of the rocksalt systems. The
coherency strain energy along a specific direction, k̂, is the
strain energy of (AC)p(BC)p stacking along k̂ in the limit
as p → ∞. Thus the difference between an ordered structure
with finite stacking along k̂, Eq. (16), and the coherency strain
energy along k̂, Eq. (9), gives a quantity we define as the

chemical energy of the ordered structure,26

�Echem(�k,x) ≡ �H ord
F (�k,x) − �ECS(k̂,x). (17)

This chemical energy indicates whether, in the absence of
strain, the system prefers unlike A-B pairs (negative chemical
energy) or like A-A + B-B pairs (positive chemical energy).
From Fig. 7 we can see that the coherency strain energies
of both cation- and anion-mixing systems are lowest along
the [111] direction and highest along the [100] direction.
In the anion-mixing system the chemical energy is highly
direction dependent, with the [100] direction having a positive
chemical energy (difference between (AC)1(BC)1[100] or
(AC)2(BC)2[100] and C.P.S. [100]), and the [111] direction
having a negative chemical energy (difference between
(AC)1(BC)1[111] or (AC)2(BC)2[111] and C.P.S. [111]).
Thus there is a preference for A-B pairs along [111], but
A-A and B-B pairs along [100], which is highly unusual. The
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FIG. 7. (Color online) DFT energies of ordered structures of IV–VI systems, scaled by the coherency strain energy along [111] of each
system (C.P.S. [111]). Lines are provided as a guide to the eye. The stable long-range order for all systems is incoherent phase separation (IPS).
Ignoring IPS and considering the relative energetics of all other structures exposes the preferred coherent phase stability. Structures ordered
along [100] have the highest energies for all systems, while structures ordered along [111] have the lowest energies for all systems [except
(Pb,Sn)Te, which has coherent phase separation as its lowest], indicates that these systems [except (Pb,Sn)Te] should order before coherently
phase separating.
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FIG. 8. (Color online) Incoherent miscibility gaps (solid blue lines) and coherent spinodal lines (dashed green) for the anion sublattice
mixing systems.

anion-mixing system can be contrasted with the cation-mixing
system [except (Pb,Sn)Te, which has extremely low formation
enthalpies], where, along the [100] direction, the chemical
energy changes sign from positive to negative between one-
and two-period superlattices. In these cation-mixing systems,
the random mixing enthalpies also lie below the coherency
strain energies along both [111] and [100], indicating
that the mixing enthalpies also have negative chemical
energies.93

C. Phase diagrams of IV–VI rocksalt alloys

Now that we have assembled all of the energetic input to
our thermodynamic model, we combine this with the ideal
mixing entropy term to compute incoherent miscibility gaps
and coherent spinodals for each pseudobinary system. These
are shown in Figs. 8 and 9 for the anion mixing and cation
mixing systems, respectively.

1. Comparison with experiment for Pb(S,Te)

Comparing the calculated incoherent miscibility gap of
Pb(S,Te) in Fig. 8(a) with the experimental miscibility gap,17

we find that qualitatively the overall topology and asymmetry
of the experimental phase diagram is captured by our model.
However, quantitatively the maximum temperature of the
calculated miscibility gap is a factor of 1.7 higher than that
of the experimental gap. Overestimation of the temperature
scale of phase boundaries from DFT data is common,23–25,35,94

when not all of the sources of mixing entropy are accounted
for. In this model, the only temperature dependence in the
free energy of mixing comes from the ideal mixing entropy.

There are several additional sources of excess mixing entropy,
which can have large effects on the free energy and resulting
miscibility gap. These include the nonideal configurational
entropy,24,35,95 electronic entropy of mixing,32 and vibrational
entropy of mixing.33

Due to the semiconducting nature of these materials, the
electronic entropy is expected to be small, and the electronic
entropy of mixing small enough to be neglected. We expect
the vibrational entropy of mixing to be significant due to
the large lattice mismatch in Pb(S,Te) and the anharmonic
nature of phonons in PbTe.96 Preliminary DFT frozen phonon
calculations on the Pb(S,Te) SQS’s show that including the
vibrational entropy of mixing in the free energy of Pb(S,Te)
reduces the calculated incoherent miscibility gap, bringing
the calculation into better agreement with the experimental
miscibility gap. These vibrational entropy calculations will be
reported in a forthcoming paper.97

2. Depression of the coherent spinodal

We next examine the coherent spinodals. By comparing
the maximum temperature of the coherent spinodal with that
of the incoherent miscibility gap, we see the magnitude of
the depression of the spinodal due to coherency strain. From
Figs. 8 and 9 we can see that the requirement of coherent phase
separation does indeed significantly depress the maximum
spinodal temperature from the top of the incoherent miscibility
gap, in most cases by a factor of 3 or more. Table IV
shows the calculated incoherent miscibility gap and coherent
spinodal temperatures, as well as experimental miscibility gap
temperatures, where available.
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TABLE IV. Incoherent miscibility gap and coherent spinodal heights calculated with the subregular solution model are compared with
experimental miscibility gap heights, where available. We also compare with previous DFT work on Pb(Se,S), which uses a regular-solution
model. The previous DFT calculations of Boukhris et al.61 are not included due to an error in their calculation of miscibility gap temperatures.98

Tc Incoh (K) xc Incoh Tc coh (K) xc coh Tc Incoh − Tc coh (K)

Pb(S,Te) Exp.15,17,18 1070 0.4
Present Work 1770 0.40 610 0.30 1160

Pb(Te,Se) Exp.18 – –
Present work 630 0.56 170 0.63

Pb(Se,S) Exp.18,72 – –
Present work 275 0.53 90 0.60
Previous DFT 29062 0.5 – – –

(Pb,Sn)Te Exp.75 – –
Present work 150 0.51 60 0.51 90

(Sn,Ge)Te Exp.77 540 0.5
Present work 630 0.58 130 0.80 500

(Ge,Pb)Te Exp.77,78 845 0.6
Present work 1200 0.67 210 0.83 990

We find that the coherent spinodal of Pb(S,Te) is depressed
by 1160 K from the incoherent miscibility gap, meaning
spinodal decomposition is only possible at low temperatures
where it is kinetically inaccessible in Pb(S,Te). The same
conclusion can be made for (Ge,Pb)Te, where the spinodal
is depressed by 990 K from the miscibility gap. For the other
IV–VI systems, the coherent spinodals occur at low enough
temperatures that the solid solution should be (meta)stable at
any processing temperature. Furthermore, as indicated by the
formation enthalpies of ordered compounds in these systems,
the coherent diagrams of these systems should show ordering,
not decomposition.

3. Physical contributions to miscibility gap temperatures:
Dominant role of strain

We next illustrate trends in the calculated incoherent and
coherent miscibility gap heights to better understand the
physical contributions underlying phase separation in these
alloy systems. We find that the incoherent miscibility gap
temperature of the IV–VI pseudobinary systems scale with
the coherency strain energies of the systems, as shown in
Fig. 10. While we have used a subregular solution model
to calculate the miscibility gaps in these systems, the strain
energy dependence of the incoherent miscibility gap can be
shown analytically for a regular solution model.

In a regular solution model, there is one interaction
parameter in the excess mixing enthalpy,

�Hmix = ωx(1 − x), (18)

as well as the ideal mixing entropy from Eq. (8). The
miscibility gap height of a regular solution model can be
found analytically and is located at a composition of 0.5 mole
fraction, given by

Tc = 2�Hmix

kB

= ω

2kB

. (19)

If some fraction, γ , of the enthalpy of mixing is due to
strain energy,

�Hmix = γ�ECS, (20)

then there is a linear dependence of Tc on the strain energy,

Tc = 2γ�ECS

kB

, (21)

with a proportionality constant of 2γ

kB
. This line is plotted in

Fig. 10 for the case of γ = 1, which corresponds to a system
that interacts only through strain. The cation sublattice mixing
systems are almost perfectly described by this strain-only
model, whereas the anion sublattice mixing systems show
some deviation, indicating a (small) effect of chemical bonding
on Tc for these systems. For all systems, the strain energy is
the dominant contribution to mixing.

D. SQS bond lengths and distortions

In addition to energetics of solid solutions, our SQS
calculations provide a means to investigate the local atomic
environment in a disordered solid. Relaxation around each
atom in the alloy break the symmetry of the parent lattice
and can contribute to the energies and other properties of the
solid solution.82 Even in solid solutions obeying Vegard’s law,
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FIG. 10. (Color online) Plot of calculated incoherent miscibility
gap temperature, Tc, for each pseudobinary system versus the
coherency strain energy, �Emin

CS , in each system. A linear dependence
of Tc on �Emin

CS is found for the anion- (blue/medium gray) and
cation-sublattice (red/dark gray) mixing systems. The dashed line
shows how a regular solution model system consisting of only strain
interactions would behave.
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FIG. 11. (Color online) SQS average nearest-neighbor bond lengths for the anion-mixing system.

relaxations on the atomic scale can allow nearest neighbor
atoms to take on bond lengths close to those of the constituent
compounds.

1. SQS bond lengths

Figures 11 and 12 show the average nearest-neighbor bond
lengths of the anion and cation mixing systems, respectively.
Vertical bars show the standard deviations of these bond
lengths. From these plots, we can see that, generally speaking,
the nearest-neighbor bond lengths do not deviate much from
those of the constituent rocksalt compounds. Thus, even in
the solid solution, the local bond lengths of A-B and A-C
bonds deviate significantly from the average bond lengths;
there are significant local relaxations from the ideal rocksalt
structure in the solid solutions. We also note that large standard
deviations occur for two systems, Pb(S,Te) and (Ge,Pb)Te, the
two systems with the largest lattice mismatch.

In Fig. 13, the distribution of Pb-S nearest-neighbor bonds
are plotted as a function of bond length for all three of the
SQSs. The Pb-S bonds in the Te-rich SQS have a much
broader distribution, with some of the Pb-S bonds being forced
into a Pb-Te-like environment. Furthermore, in the 0.75 mole
fraction PbTe SQS, there is a single outlying Pb-S bond with
a length larger than the Pb-Te bond length in PbTe, which
creates the large standard deviation found in Fig. 11(a). This
bimodal distribution of Pb-S nearest-neighbor bonds found in
the Pb(S,Te) SQSs is consistent with the results of a previous
calculation of bonding in this system using SQS-8.50

The large standard deviations in the Ge-Te bond lengths
found in the (Ge,Pb)Te system occur because the Ge-Te bonds
relax towards the bond lengths of the rhombohedral GeTe
ground-state structure. This relaxation can be seen in Fig. 14,
where the distribution of Ge-Te nearest-neighbor bond lengths
are shown for each of the (Ge,Pb)Te SQSs. As the mole fraction
of GeTe increases, the distribution of Ge-Te bonds becomes
bi-modal and shifts towards the nearest-neighbor bond length

of Ge-Te in the rhombohedral GeTe structure. At 0.75 mole
fraction GeTe, the distribution of Ge-Te bonds has maxima
centered over the rhombohedral GeTe bond length and the
rocksalt PbTe bond length. As a test of these ideas, we replaced
the Pb atoms with Ge atoms in the relaxed Ge0.25Pb0.75Te SQS,
and rerelaxed it. This hypothetical Ge0.25Ge0.75Te structure
relaxed completely to the rhombohedral GeTe structure instead
of the initial rocksalt lattice, indicating that the energy barrier
between rocksalt and rhombohedral GeTe had been overcome
by the local relaxations in the SQS.

2. Distortions from rocksalt

Many of the compounds in the IV-VI rocksalt family
undergo ferroelectric distortions from rocksalt to a rhombo-
hedral structure at low temperatures. These systems include
GeTe,99,100 SnTe,101,102 (Ge,Pb)Te,103–105 (Sn,Ge)Te,106 and
(Pb,Sn)Te.105 Furthermore, PbTe has a near-ferroelectric
optical phonon mode, and both PbS and PbTe have been
shown to undergo an off-centering of Pb ions with increasing
temperature.107 It has been proposed that Pb(S,Te) undergoes
a ferroelectric distortion at low temperatures108 due to a
distribution of Pb-S bond lengths in the solid solution, though
it has been pointed out that this distribution of bond lengths
should be expected in the solid solution independent of any
ferroeletric behavior50 (as we have found in the current SQS
bond lengths).

In this work, we have come across several distortions
away from the rocksalt structure. In addition to the Ge-Te
distortions discussed previously, we have found that when
PbTe is coherently strained to the lattice parameter of PbS
along [100] it will undergo a buckling distortion where Pb
and Te atoms alternatingly move along [100] or [1̄00]. This
distortion lowers the energy of the PbTe cell by 92 meV/cation
relative to the coherently strained cell with atoms on their ideal
lattice sites. This highly strained state is still 437 meV/cat
higher in energy than the PbTe rocksalt ground state. A more
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FIG. 12. (Color online) SQS average nearest-neighbor bond lengths for the cation-mixing systems. The large range bars in the Ge-Te bond
lengths of the (Ge,Pb)Te system suggest that the system is trying to relax towards the rhombohedral GeTe structure.
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FIG. 13. (Color online) Pb-S bond lengths in Pb(S,Te) SQSs.
Vertical lines show the Pb-S bond length in PbS (3.00 Å) and Pb-Te
bond length in PbTe (3.25 Å). Solid (green), dashed (red), and dotted
(blue) lines show the density of Pb-S bond lengths in the 0.25, 0.5,
and 0.75 mole fraction PbTe SQSs, respectively. As the fraction of
PbTe increases, the Pb-S bond distribution shifts towards the Pb-Te
bond length. The large standard deviation in Fig. 11 can now be seen
to come from the outlying Pb-S bond in the 0.75 mole fraction PbTe
SQS.

in-depth analysis of this instability will be provided in a future
publication.

Despite the large decrease in energy upon relaxing atomic
positions, the distorted PbTe structure does not have a large
effect on the coherency strain energy of Pb(S,Te). Because the
distortion of PbTe sets in only at large strains corresponding to
small concentrations of PbTe, the weight given to the decreased
epitaxial strain energy according to Eq. (8) is very small, and
the effect on the coherency strain energy of Pb(S,Te) along
[100] is minimal and is neglected in the previous results.

V. DISCUSSION

Our results indicate that spinodal decomposition is not a
kinetically accessible decomposition mechanism in any of the
IV–VI rocksalt semiconductor alloys. In all cases, the largest
portion of the thermodynamic driving force for incoherent
phase separation comes from strain energy, which stabilizes
the solid solution with respect to infinitesimal composition
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FIG. 14. (Color online) Ge-Te bond lengths in (Ge,Pb)Te SQSs.
Vertical lines show the Ge-Te bond length in rhombohedral GeTe
(2.87 Å), rocksalt GeTe (3.00 Å), and the Pb-Te bond length in PbTe
(3.25 Å). Dotted (blue), dashed (red), and solid (green) lines show
the density of Ge-Te bond lengths in the 0.25, 0.5, and 0.75 mole
fraction GeTe SQSs, respectively. As the fraction of GeTe increases,
the Ge-Te bond-length distribution shifts from a broad spread around
the rocksalt bond lengths to a bimodal distribution with peaks centered
on the rhombohedral GeTe bond length and the rocksalt PbTe bond
length.

fluctuations, and is not part of the driving force for coherent
phase separation. However, there is experimental evidence
that spinodal decomposition occurs in the Pb(S,Te)7,16 and
(Ge,Pb)Te76,78,109 systems. To explore this disagreement, we
need to consider both the details of the experimental evidence
and the theoretical foundations on which our claims are made.

Evidence for spinodal decomposition in Pb(S,Te) was seen
by Darrow et al.16 in the form of micrographs of lamellar
phase separated structures with spacing on the order of 400–
1000 Å. Sidebands were also found in the x-ray diffraction
patterns of some of the quenched and aged samples.16 In
more recent studies of Pb(S,Te), striped and fringed structures
with spacings on the order of nanometers were observed in
transmission electron micrographs of slow-cooled Pb(S,Te)
alloys.7 In the system (Ge,Pb,Sn)Te, lamellar and fishbone
structures have been observed that coarsen over time.109 It
should be noted that while sidebands are evidence of a
modulated microstructure, these modulations do not need to be
caused by spinodal decomposition. For instance, nonspinodal
microstructures giving rise to sidebands have been found in
aged Ni-Al alloys.110

In classical nucleation theory (CNT), there is an energy
barrier to forming a precipitate, or nucleus, of a new phase
that remains finite until the spinodal line is crossed. At this
point, the energy barrier discontinuously drops to zero as the
system becomes unstable to the precipitation of a second phase.
This classical picture gives rise to the notion that nucleation
and growth and spinodal decomposition are separate mech-
anisms of phase separation which evolve into very different
microstructures. However, in the diffuse interface theory of
phase separation, this is not the case.95

In the theory of phase separation proposed by Cahn in
1958,111 precipitate geometry is not assumed a priori but is
instead found by minimizing a free energy functional, which
includes interfacial and strain effects.111–113 This approach
can be contrasted with the classical theory, which assumes
a spherical precipitate with a homogenous, bulk composition,
and infinitely sharp interface. In the diffuse interface theory,
it is found that as the spinodal is approached, precipitate
interfaces become much more diffuse, and the energy barrier
continuously decreases to zero at the spinodal.113 This more
accurate treatment shows that nucleation and growth and
spinodal decomposition are in fact two extremes of the same
phase separation mechanism, and that microstructure is not an
ideal way to distinguish between these two ends.

Despite the fact that the energy barrier to precipitation
is a continuous function of composition and temperature
throughout the miscibility gap, the existence or nonexistence
of this barrier (apart from the barrier to diffusion) allows for
a distinction between spinodal decomposition and nucleation
and growth on the basis of kinetics. As discussed in Ref. 22,
inside the spinodal the solid solution is unstable to infinitesimal
composition fluctuations. In particular, composition fluctua-
tions with some specific wavelength will grow faster than any
other wavelength.22 This microstructure evolution can be ob-
served by in situ small angle x-ray scattering experiments and
is a less ambiguous determination of spinodal decomposition
than microstructure alone.

The model employed herein assumes a perfect, nondefected
(albeit locally distorted) lattice for the solid solution and

144202-12



COHERENT AND INCOHERENT PHASE STABILITIES OF . . . PHYSICAL REVIEW B 86, 144202 (2012)

coherently phase separated microstructures, and two different,
noninteracting lattices for the incoherent phase separated
microstructures. Lattice defects, such as dislocations and
semicoherent interfaces, are not included in this model of
phase separation. However, it has been shown through phase
field modeling that dislocations can have large effects on
both the kinetics and thermodynamics of coherent phase
separation.114–117 The elastic stresses of a dislocation can
couple with the elastic stresses of composition change (in a
lattice mismatched alloy) to cause phase separation outside the
coherent miscibility gap114 and increase the coherent spinodal
temperature.117

In addition to ruling out spinodal decomposition as a
possibility for the coherent phase diagrams of the IV–VI rock-
salt alloys, our calculations suggest an alternative possibility:
coherent ordering. In most of the systems considered [all
except (Pb,Sn)Te], the ordered structure (AC)1(BC)1[111]
(L11 in Strukturbericht nomenclature, space group R3̄m,
number 166) is the lowest energy coherent phase at x = 0.5.
This energetic preference indicates that inside the incoherent
miscibility gap, there can exist a metastable coherent phase
ordered along [111].

Similar to phase separation, ordering processes can occur by
first- or second-order transformations. Symmetry can prevent
some ordered structures from forming by continuous, second
order processes, but the (AC)1(BC)1[111] structure found
lowest in energy in these systems is not one of them,95 and
the coherent phase diagram can show spinodal ordering from
the random alloy to the coherently ordered phase.95 The details
of this coherent ordered phase diagram will be investigated in
a future work.92

VI. CONCLUSIONS

In this study, we investigate the incoherent and coherent
phase stability of IV–VI rocksalt semiconductor pseudobinary
alloys using first-principles DFT calculations. We calculate
the thermodynamic driving forces for incoherent and coherent
phase separation using SQS and coherency strain energies,
from which we obtain incoherent miscibility gaps and coherent
spinodals. The large coherency strain energies of these systems
dominate the thermodynamics, providing both the driving
force for incoherent phase separation and suppressing coherent
phase separation. In particular, for the systems Pb(S,Te) and
(Ge,Pb)Te, the coherent spinodal is depressed in temperature
to such a degree that spinodal decomposition should not be
a kinetically accessible method of phase separation. In the
other systems considered, the incoherent miscibility gaps are
low enough in temperature that solid solutions are stable at
processing temperatures. We further investigate competing
types of coherent phase stability through calculations of
ordered, superlattice structures. Structures ordered along [111]
are found to have lower energies than the coherency strain
energies for all systems except (Pb,Sn)Te, indicating that
coherent ordering is more favorable than coherent phase
separation for these systems.

In addition to energetics, we use the SQSs to study
local atomic relaxations in the solid solutions of the IV–VI
alloys. In all of the systems, the nearest neighbor A-C and
B-C bond lengths of the solid solutions are close to those

of the constituent compounds, showing that there are large
deviations from the ideal rocksalt lattice in the solid solutions.
In particular, for Pb(S,Te) and (Ge,Pb)Te, the systems with the
largest lattice mismatch, a wide distribution of bond lengths
occurred in the solid solutions, with the bonds of (Ge,Pb)Te
showing distortions towards a rhombohedral GeTe structure.

Understanding the phase stability of the IV–VI rocksalt
thermoelectric alloys is an important step towards controlling
the thermoelectric efficiency of these alloys. To use coherent
precipitates to improve the thermoelectric figure of merit, it is
desirable to have an alloy system with two properties: (i) a high
miscibility gap temperature to increase the number density
of precipitates, and (ii) a small lattice mismatch between
constituent compounds to maintain coherency between the
precipitates and matrix. Our work here shows that, for the
IV–VI rocksalt alloys, these two properties are coupled—strain
between the constituent compounds is responsible for the inco-
herent phase separation but is also responsible for suppressing
the coherent phase stability. In the search for thermoelectric
alloy systems, our work shows that looking for systems where
chemical effects, and not coherency strains, contribute to the
immiscibility should constitute a promising strategy for finding
systems with coherent nanoscale precipitates.
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APPENDIX: COHERENT FREE-ENERGY
FORMALISM—COMPARISON WITH

CAHN112 FORMULATION

The coherent free-energy model constructed here can
be expressed in terms of the formalism used by Cahn.112

A coherent free-energy density, ϕ, is constructed from the
incoherent free energy density, f ′, by adding a strain-energy
term,112

ϕ(x,x0) = f ′(x) + η2E

1 − ν
(x − x0)2. (A1)

The free-energy densities are per unit volume (a3
0) of

the average composition, x0. The assumptions of this model
are that the two phases have different equilibrium lattice
parameters but the same elastic constants independent of
concentration. Introducing a concentration dependence in the
elastic constants would add higher order terms to Eq. (A1).

In analogy to Eq. (A1), we have our coherent free-energy
density (per cation instead of volume),

�Gcoh
mix(x) = �Gincoh

mix (x) − �Emin
CS (x), (A2)

with the coherency strain energy, �Emin
CS (x), given by Eq. (8). If

we know the functional form of the coherency strain energy, we
can fit Eq. (A2) into a form analogous to Eq. (A1). In this work,
a subregular solution model is used to fit both the incoherent
and coherent enthalpies of mixing, which is equivalent to the
coherency strain energy having a subregular solution model
functional form. We will examine the effects of using both
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regular and subregular solution models for the coherency strain
energy.

A regular solution model coherency strain energy (with
interaction coefficient ω) gives us,

�Gcoh
mix(x) = �Gincoh

mix (x) − ωx(1 − x), (A3)

which can be rewritten as,

�Gcoh
mix(x) = �Gincoh

mix (x) + ω (x − x0)2 + 1(x − x0) + 0,

(A4)

where 1 and 0 are functions of the average composition,
x0, and are given by

1 = 2ωx0 − 1, 0 = 2ωx0 − ωx2
0 − 1. (A5)

As the chemical potentials of compounds AC and BC in
a phase depend only on differences in the derivatives of the
free energy, terms linear and constant in composition have
no effect on the chemical potentials and correspond only to a
change in reference states of compounds AC and BC. Thus,
the last two terms in Eq. (A4) can be dropped to retain the
same reference states in the coherent free energy that we have
in the incoherent free energy. With this change, we recover the
same form as Eq. (A1), find that ω is equal to the strain energy
density, η2E

[1−ν] , and see that the regular solution model form for
the coherency strain energy corresponds to the model used by
Cahn.

Using a subregular solution model coherency strain energy,
we have

�Gcoh
mix = �Gincoh

mix − γ x(1 − x) − δx(1 − x)(1 − 2x), (A6)

which we can express as,

�Gcoh
mix = �Gincoh

mix + Y3(x − x0)3

+Y2(x − x0)2 + Y1(x − x0) + Y0, (A7)

with coefficients,

Y3 = 2δ,

Y2 = 6δx0 − γ − 3δ,
(A8)

Y1 = 6δx2
0 − 2γ x0 − 6δx0 + γ + δ,

Y0 = 2δx3
0 − γ x2

0 − 3δx2
0 + γ x0 + δx0.

Again, terms linear and constant in composition, x, can
be neglected (corresponding to a change in reference states).
This gives us an equation similar to Eq. (A1), with two
significant differences: (i) there is a term cubic in composition
difference and (ii) the coefficient of the quadratic term, Y2, is
dependent on the average composition, x0. These differences
are a result of elastic anharmonicity allowed in the coherency
strain calculations83 and have an effect on the coherent phase
diagram as noted by Cahn;112 the coherent phase boundaries
will depend on the average composition of the alloy.
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55K. Hummer, A. Grüneis, and G. Kresse, Phys. Rev. B 75, 195211

(2007).
56I. V. Slipukhina and D. M. Bercha, Phys. Status Solidi B 244, 650

(2007).
57S. Kacimi, A. Zaoui, B. Abbar, and B. Bouhafs, J. Alloys Compd.

462, 135 (2008).
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97J. W. Doak, V. Ozoliņš, and C. Wolverton (unpublished).
98Incoherent miscibility gap heights have been calculated in DFT

for Pb(S,Te), Pb(Te,Se), and Pb(Se,S) previously using a regular-
solution model fit to the formation enthalpies of the ordered
structure L10 [(AC)1(BC)1 [100] in Table III and Fig. 7].61,62

However, the authors of Ref. 61 either used an incorrect value
for the Boltzmann constant or made an arithmetic error, and the
miscibility gap temperatures reported therein are a factor of ∼14
too small. Using their reported regular-solution model parameters

144202-15

http://dx.doi.org/10.1103/PhysRevB.58.R5897
http://dx.doi.org/10.1103/PhysRevB.58.R5897
http://dx.doi.org/10.1103/PhysRevB.40.3197
http://dx.doi.org/10.1103/PhysRevB.40.3197
http://dx.doi.org/10.1103/PhysRevB.41.8240
http://dx.doi.org/10.1103/PhysRevB.41.8240
http://dx.doi.org/10.1088/0953-8984/7/6/018
http://dx.doi.org/10.1088/0953-8984/7/6/018
http://dx.doi.org/10.1103/PhysRevB.51.10795
http://dx.doi.org/10.1103/PhysRevB.51.10795
http://dx.doi.org/10.1103/PhysRevB.62.2475
http://dx.doi.org/10.1103/PhysRevB.73.235214
http://dx.doi.org/10.1103/PhysRevB.73.235214
http://dx.doi.org/10.1103/PhysRevB.77.205201
http://dx.doi.org/10.1103/PhysRevLett.101.155704
http://dx.doi.org/10.1103/PhysRevLett.101.155704
http://dx.doi.org/10.1103/PhysRevB.77.245209
http://dx.doi.org/10.1103/PhysRevB.77.144104
http://dx.doi.org/10.1103/PhysRevLett.74.2272
http://dx.doi.org/10.1103/PhysRevLett.74.2272
http://dx.doi.org/10.1103/PhysRevB.51.11257
http://dx.doi.org/10.1103/PhysRevB.51.11257
http://dx.doi.org/10.1021/cm030002t
http://dx.doi.org/10.1021/cm030002t
http://dx.doi.org/10.1038/nmat3065
http://dx.doi.org/10.1103/PhysRevB.11.651
http://dx.doi.org/10.1103/PhysRevB.11.651
http://dx.doi.org/10.1016/0022-3697(95)00031-3
http://dx.doi.org/10.1016/0022-3697(95)00031-3
http://dx.doi.org/10.1103/PhysRevB.55.13605
http://dx.doi.org/10.1103/PhysRevB.61.16589
http://dx.doi.org/10.1016/S0022-3697(01)00237-2
http://dx.doi.org/10.1016/S0022-3697(01)00237-2
http://dx.doi.org/10.1088/0953-8984/14/36/318
http://dx.doi.org/10.1002/pssb.200301583
http://dx.doi.org/10.1103/PhysRevB.75.195211
http://dx.doi.org/10.1103/PhysRevB.75.195211
http://dx.doi.org/10.1002/pssb.200642263
http://dx.doi.org/10.1002/pssb.200642263
http://dx.doi.org/10.1016/j.jallcom.2007.07.068
http://dx.doi.org/10.1016/j.jallcom.2007.07.068
http://dx.doi.org/10.1016/j.matchemphys.2008.10.020
http://dx.doi.org/10.1016/j.matchemphys.2008.10.020
http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1088/0031-8949/83/06/065701
http://dx.doi.org/10.1142/S0217984911025729
http://dx.doi.org/10.1103/PhysRevB.32.2302
http://dx.doi.org/10.1103/PhysRevB.76.075211
http://dx.doi.org/10.1103/PhysRevB.78.224302
http://dx.doi.org/10.1016/j.ssc.2008.09.027
http://dx.doi.org/10.1016/j.ssc.2008.09.027
http://dx.doi.org/10.1103/PhysRevB.80.024304
http://dx.doi.org/10.1103/PhysRevB.80.024304
http://dx.doi.org/10.1103/PhysRevB.82.195102
http://dx.doi.org/10.1016/j.infrared.2010.11.001
http://dx.doi.org/10.1016/j.infrared.2010.11.001
http://dx.doi.org/10.1134/S0020168506060045
http://dx.doi.org/10.1134/S0020168506060045
http://dx.doi.org/10.1063/1.1659286
http://dx.doi.org/10.1016/0022-0248(75)90070-6
http://dx.doi.org/10.1016/0022-0248(75)90070-6
http://dx.doi.org/10.1016/j.jallcom.2004.12.203
http://dx.doi.org/10.1016/S0925-8388(00)01172-5
http://dx.doi.org/10.1016/S0022-3697(72)80235-X
http://dx.doi.org/10.1016/S0022-3697(72)80235-X
http://dx.doi.org/10.1007/BF02654345
http://dx.doi.org/10.1007/BF00754472
http://dx.doi.org/10.1007/BF00754472
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.57.4816
http://dx.doi.org/10.1103/PhysRevB.57.4816
http://dx.doi.org/10.1016/S0364-5916(02)80006-2
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1007/BF01349680
http://dx.doi.org/10.1016/S0081-1947(08)60203-9
http://dx.doi.org/10.1209/epl/i2005-10462-x
http://dx.doi.org/10.1209/epl/i2005-10462-x
http://dx.doi.org/10.1016/S0081-1947(08)60360-4
http://dx.doi.org/10.1038/nmat3035


JEFF W. DOAK AND C. WOLVERTON PHYSICAL REVIEW B 86, 144202 (2012)
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much larger than the temperatures we calculate using a subregular
solution model fit to the SQS-16 formation enthalpies. This is
due to the fact that the formation enthalpies of (AC)1(BC)1 [100]
ordered structures are much larger than the formation enthalpies
of the SQSs (see Table III for our calculated values), and thus
(AC)1(BC)1 [100] is a poor approximation of the random alloy for
these systems.
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