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Estimation of coherence properties of an undulator-generated x-ray beam from near-field
and far-field slit diffraction visibilities
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We report on the study of hard x-ray diffraction by slits from the Fresnel to the Fraunhofer regime. The dark
spot, i.e., the position where a minimum of intensity is found in the center of the diffraction pattern, is clearly
observed. By progressively tuning the degree of coherence of the incident beam, the effect of partial coherence
on the diffraction patterns is studied. We show that the transverse coherence length can be deduced with a good
accuracy from the visibility of fringes in the Fraunhofer regime. We also show that a good estimation of the
transverse coherence length can be obtained from measurements in the Fresnel regime. The measurements are
discussed in the framework of the Gaussian Schell-model. A high degree of coherence is reached at the sample
position for a beam size of a few micrometers and allows high-quality coherence experiments.
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I. DIFFRACTION FROM A PARTIALLY COHERENT
BEAM: HOW TO MEASURE THE DEGREE OF

COHERENCE FROM SLIT DIFFRACTION?

Coherent x-rays experiments are used in synchrotrons to
address many scientific issues ranging from biology to hard
and soft matter physics. This technique allows for instance
one to perform imaging and strain mapping in materials using
phase retrieval algorithms,1–4 or to study slow dynamics in
soft5 and hard condensed matter.6,7 This approach also allows
to get unique information about the topology of isolated phase
defects embedded in the probed volume as already shown in
charge density wave systems,8 in magnetic systems,9 or in
semiconductors.10

All such experiments require a good degree of coherence
but synchrotron sources are hardly coherent themselves. How-
ever, micrometric transverse coherence lengths are obtained
by letting the beam propagate over long distances and by
using slits to collimate the beam far away from the sample
position. As the partial coherence induces strong effects on
the diffraction patterns, it is crucial to characterize it at the
sample position.

One of the easiest experiments from which it is possible
to estimate the transverse coherence length of the incident
beam is Young’s interference experiment using two holes.
When the holes are infinitely small, the visibility of fringes
is directly related to the degree of coherence of the incident
beam. Several measurements and calculations11 of spatial
coherence properties have already been performed using dual
apertures12,13 or other interferometry methods.14–17 However,
Young’s experiment is hard to perform in the x-ray regime.
It requires a plate drilled with two very small and well
defined holes (�1 μm) located less than ≈10 μm apart,
i.e., the typical coherence length obtained in synchrotrons.
By contrast, it is much easier to measure the single slit
diffraction pattern in the Fraunhofer regime. We show here
that it is possible to estimate the transverse coherence
length from slit diffraction if few corrections are taken into
account.

In the first part, we derive the formalism of partial coherence
propagation to express the expected visibility as a function of
coherence length in the far-field diffraction regime. Then we
present measured diffraction patterns of hard x-rays by a slit,
from the Fresnel to the Fraunhofer regime, and show that the
evolution of the visibility is consistent with our calculations.
The dark spot, i.e., the position where a minimum of intensity
is measured at the center of the diffraction pattern, is clearly
observed. By tuning the degree of coherence of the incident
beam, the effect of partial coherence on the diffraction patterns
is studied.

A. Propagation of a partially coherent beam

Getting a coherent beam at the sample position requires to
fulfill a certain number of conditions. The volume of coherence
is defined by three lengths: the temporal (or longitudinal)
coherence length ξL, along the beam propagation vector k,
and two spatial (or transverse) coherence lengths ξT , in the
two directions perpendicular to the direction of k.18,19 ξL is
directly related to the monochromaticity of the beam and to
the wavelength λ:

ξL = λ2

2�λ
. (1)

This parameter is difficult to adjust in a real experiment as
it is fixed by the monochromator. It has to be compared
to the maximum path length difference �l between two
beams. Interferences are possible if �l � ξL. In a symmetric
Bragg diffraction experiment, �l = 2 μ−1 sin2 θ , where θ is
the Bragg angle, and μ the linear absorption coefficient
for a given material at a given energy. Working at small
angles is then better to keep within the longitudinal coherence
condition. The longitudinal coherence length can be measured
by analyzing the contrast of fringes at several Bragg positions,
as demonstrated recently.20

Contrary to ξL, the transverse coherence length ξT is an
adjustable parameter. If one considers an incoherent source
emitting homogeneously across a size S, ξT is inversely
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proportional to the angular aperture of the source seen from a
distance x:

ξT (x) = λx

S
. (2)

In practice, it is more appropriate to take a gaussian distribution
of intensity for the source, with a standard deviation σ :

G(ys) = 1√
2πσ

e
− y2

s

2σ2 , (3)

where ys is the coordinate indexing the 1D source. In that case,
the spatial coherence length at the distance x from the source
reads

ξT (x) = λx

2πσ
. (4)

The source is small enough at synchrotrons to get a
reasonable coherence length at sample position. However,
focusing optics such as mirrors are generally used in the
optical setup. This introduces optical aberrations that affect
the beam wavefront. To counterbalance this effect, secondary
slits are used after the optical elements. If one considers these
secondary slits as the new source, S is the secondary slits
aperture in Eq. (2). As the two coherence lengths scale with λ,
working at low energy increases the coherence volume.

Once a partially coherent beam is generated, either using the
real or a secondary source, one has to select the coherent part
of the beam with another set of slits just before the sample (the
typical setup used for coherent x-rays experiments is displayed
in Fig. 3). The important value to consider is the degree of
coherence of the beam β, which represents the coherent part
of the beam. It is defined at every distance x from the source
as

β(x) = ξT (x)

φ(x)
, (5)

where φ(x) is the beam size at position x. The degree of
coherence of the x-ray beam can be tuned by changing the
apertures of the two sets of slits.

More generally, the propagation of a beam from a partially
coherent source can be described within the Gaussian Schell-
model (GSM).21 The mutual coherence function 
(yD1 ,yD2 )
at two positions yD1 and yD2 on a plane perpendicular to the
propagation direction and located at a distance D from the
source is defined as



(
yD1 ,yD2

) =
∫∫

e
− y2

1 +y2
2

2σ2 e
− (y1−y2)2

2ξ2
T ei(ϕ1−ϕ2)dy1dy2, (6)

where yj denotes a position on the source plane and ϕj is the
path length of the beam j (j = 1,2):

ϕj = 2π

λ

[(
yDj

− yj

)2 + D2]1/2
. (7)

In this paper, only the transverse coherence length is taken
into account through the term exp[−(y1 − y2)2/2ξ 2

T ] in the
integral of Eq. (6). The intensity calculated at a position yD of
the detector is then given by

I (yD) = 
(yD,yD). (8)

It is interesting to note that in the GSM the degree of coherence
β is constant for a free propagation: the beam size φ and ξT

continuously increase with the same ratio.

B. Slit diffraction pattern from a partially coherent x-ray beam

From a theoretical point of view, Young’s experiment is
perfectly suited for the study of partial coherence. However,
experimentally, in the x-ray regime, the diffraction by a rect-
angular aperture closed at a few micrometers and adjustable
in size is much easier to perform. In the following, a detailed
study of the slit diffraction phenomenon in condition of partial
coherence is made.

The single slit diffraction is an atypical experiment.
When slits are inserted in the path of a coherent beam, the
phenomenon of diffraction is visible if the slit aperture a is of
the same order of magnitude as ξT .18,22 In that case, different
diffraction regimes are observed depending on the wavelength,
the slits aperture, and the distance D between the slits and the
observation plane (see Fig. 1). The crossover distance between
the Fresnel (near-field) and the Fraunhofer (far-field) regime
is defined here as23

Db ∼ a2/(2πλ). (9)

The distance Db corresponds to the distance where a minimum
of intensity is observed at the center of the diffraction pattern
[see Fig. 1(b)]. In the following, this position is called the
dark spot position and it is equivalent to the Poisson bright
spot observed for opaque objects.24,25 In the near-field regime
(D � Db), the beam is quasiparallel, so that the distribution of

FIG. 1. (Color online) Distribution of intensity after diffracting
slits. The image in the back illustrates this distribution along the
beam propagation vector. The logarithmic color scale goes from
dark blue for lowest intensities to dark red for highest intensities.
(a)–(c) Measured distribution of intensity perpendicular to the beam
propagation vector at different distances from the diffracting slits:
(a) in the near-field regime, (b) at the dark spot position, and (c) in
the far-field regime. The color scale for the maps goes from purple
for lowest intensities to yellow for highest intensities. The distances
as well as the sizes of the diffraction patterns are not to scale.
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intensity is essentially limited by the slit aperture. In addition,
some oscillations are visible on top of the slit profile, due
to interferences between beams coming from each elemental
surface of the diffracting slit. In the far-field regime (D � Db),
the beam diverges with an angle λ/a, and the intensity profile
is given by the well-known cardinal sine squared function,
i.e., the squared Fourier transform of a gate function: I (x) ∝
[ sin(αx)

αx
]2, with α = πa

λD
.

The fact that the beams effectively generated are not fully
but only partially coherent affects the diffraction patterns.
The degree of coherence of the x-ray beam can be tuned by
changing the secondary slits aperture, for instance, and there
are several ways to estimate the corresponding ξT . It can be
estimated from the speckle pattern visibility in the small angle
scattering obtained with disordered systems. In that case, β

is related to the normalized variance of the speckle pattern
intensity at a given wave vector.26 ξT can also be measured
from Young’s experiment. The degree of coherence is related to
the contrast of fringes V measured on the interference patterns
and defined as27

V = Imax − Imin

Imax + Imin
, (10)

where Imax and Imin are adjacent local maxima and minima,
respectively. As expressed by the Van Cittert-Zernike theorem,
the visibility follows the Fourier transform of the Gaussian
source distribution and is thus related to ξT and to the distance
a between the holes as

V (ξT ) = e
− a2

2ξ2
T . (11)

In this case, the visibility is identical whatever the order
of fringes from which it is measured. The situation is very
different in the case of the diffraction by slits. In that case,
the visibility cannot be defined the same way as in Young’s
experiment, because the contrast of fringes depends on where
it is measured on the diffraction pattern, and is different in the
near-field and the far-field diffraction regimes. Thus the effect
of partial coherence on the diffraction patterns is not obvious.
However, with some corrections performed on the measured
diffraction patterns the coherence lengths can be estimated
from the near-field and the far-field diffraction profiles.

Let us first consider the far-field diffraction regime. Calcula-
tions are performed using the GSM to estimate the evolution of
the contrast of fringes in the case of a partially coherent beam.
The diffraction patterns calculated from Eq. (6) for different
ξT and keeping the same diffracting slit aperture are displayed
in Fig. 2(a). The contrast of fringes decreases with decreasing
coherence lengths, as expected. In all cases, the envelope is a
squared hyperbola function [apart from the central maximum
that display a gaussian profile (Guinier’s law)28]: (αx)−2.

However, contrary to Young’s experiment, the visibility of
a sine cardinal squared function depends on the order of fringe
from which it is measured. To obtain ξT from the diffraction
patterns, independently on the location of the fringes,
it is necessary to first normalize the diffraction profile by
its squared hyperbola envelope [see inset of Fig. 2(b)]. The
visibility obtained on the normalized curves as well as the
visibility calculated from Eq. (11) are plotted with respect

FIG. 2. (Color online) (a) Diffraction profile calculated from the
GSM in the case of a rectangular slit, plotted for various ξT and for
a = 4 μm, λ = 1.5 Å and a detector distance D = 1.5 m. α = πa

λD
.

The influence of the finite size of the source is neglected in Eq. (6).
(b) Visibility vs ξT obtained from the normalized profiles (see text).
(Inset) Normalized profiles displayed for different ξT . The central
part has to be avoided to calculate the visibility.

to ξT in Fig. 2(b). The visibility of fringes is clearly related
to ξT with the same law as in Young’s experiment.

II. COHERENCE SETUP AT THE CRISTAL BEAMLINE
OF THE SOLEIL SYNCHROTRON

The CRISTAL beamline is dedicated to diffraction. The
source is an in-vaccum U20 undulator (20 mm magnetic
period), standing in a short section of the storage ring. The
vertical source size is 8.1 μm root mean square (rms) and the
horizontal one 388 μm rms. The vertical divergence is 4.6 μrad
rms and the horizontal one 14.5 μrad rms. A Si(111) double
crystal monochromator is used as first optical element and
can select beams with energies ranging from 4 to 30 keV. The
second crystal of the monochromator is mounted on a bender
for sagital focusing. The use of this monochromator fixes ξL

for a given energy. At 8 keV, �λ/λ ≈ 1.5 × 10−4, leading
to ξL ∼ 0.5 μm. The monochromatic beam is then vertically
focused by a first bendable mirror, coated with silicon,
rhodium and platinum stripes in order to get a good harmonics
rejection at any accessible energy with a constant deflection
angle of 2.8 mrad. A second flat mirror with the same coatings
deflects the beam back in the initial direction. Different sets
of slits are then inserted in the beam path for collimation.
We will concentrate in this paper on the slits located just
after the mirrors, used as source slits and located at a distance
D0 = 23 m from the U20 undulator, and on another set located
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FIG. 3. (Color online) Scheme of the CRISTAL beamline layout used for the measurements reported here. Secondary slits and mirrors
have been used for the experiment performed in the far-field only.

at a variable distance D1 downstream of them, used to select the
coherent part of the beam. Filters are inserted between the two
sets of slits. Detection is performed at a distance D from the
last slits using a 2D detector. This setup is illustrated in Fig. 3.

III. MEASUREMENT OF THE BEAM SPATIAL
COHERENCE PROPERTIES

Two different measurements are presented in this section.
The first one is performed in the far-field regime, where a car-
dinal sine squared function is observed. The second one is the
measurement of the distribution of intensity from the near-field
to the far-field regime. The link between measured visibilities
and spatial coherence lengths is studied in the two regimes.

A. Linking visibility and coherence length in the far field

For this measurement, a 7.03 keV beam is selected (λ =
1.763 Å). The setup described in Fig. 3 is used with diffracting
slits located at a distance D1 = 13 m from the source slits.
A deep depletion back-illuminated direct illumination Andor
charge-coupled device (CCD) camera with 13 μm pixel size is
installed at a distance D = 1.5 m from the diffracting slits for
detection. The Droplet algorithm is used to treat the images.29

The real number of photons per pixel is thus retrieved. A
diffraction pattern obtained with a diffracting slits aperture
of 5 × 5 μm2 is shown in Fig. 4 as well as a profile of the
horizontal fringes.

Despite the fact that the synchrotron source emittance at
Soleil is approximatively 100 times larger in the horizontal
than in the vertical direction, the contrast of fringes is almost
similar in the two directions. This is due to the fact that
rectangular secondary slits are used.

The measurements have been performed with a diffracting
slit aperture of 5 μm, i.e., twice less than the 10 μm slit
size for which the limit of resolution is reached at this energy
and this ratio between detector distance and pixel size. Several
diffraction patterns have been recorded for different secondary
slit sizes, and have been normalized by their squared hyperbola
envelope, as explained before (see Fig. 5). The visibility is
then calculated from the normalized diffraction patterns. The
final visibility is obtained by averaging the local visibilities
of these curves. The coherence length corresponding to each
secondary slits aperture is calculated using Eq. (2). The
measured normalized visibility as well as the expected law [see
Eq. (11)] is plotted with respect to the obtained ξT in Fig. 5.

The overall evolution of the normalized visibility is in good
agreement with the one expected from Eq. (11). For coherence

FIG. 4. (Color online) (a) Measured diffraction pattern obtained with a diffracting slits aperture of 5 × 5 μm2, using the Andor CCD
camera at a distance of 1.5 m from the slits (logarithmic scale). (b) Open circles: profile of the measured diffraction pattern shown in
(a) along the horizontal direction (logarithmic scale). Red dotted line: calculation of the diffraction pattern using the real experimental
conditions and considering a fully coherent beam.
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FIG. 5. (Color online) Evolution of the measured normalized
visibility (blue dots) as well as the expected law given in Eq. (11)
(red squares) with respect to the calculated coherence length. The
corresponding secondary slits gap is indicated for each measured
point on the upper x axis. (Inset) Measured diffraction profile obtained
with a secondary slit aperture of 26 μm and normalized by the
corresponding squared hyperbola envelope.

lengths smaller than ∼7 μm, the visibility does not drop as
much as expected. This is due to the fact that the beam is
smaller than 400 μm at the secondary slits position, and thus,
opening them further does not change the visibility on the
recorded patterns.

On the other hand, the measured visibility is lower than
the predicted one mainly because of the finite pixel size
of the CCD detector. This is an important issue for x-ray
diffraction experiments. Since the smallest pixel sizes available
are around ten micrometers for direct-illumination x-ray CCD
cameras, it is difficult to obtain more than five measured
points per fringe with the experimental parameters used in
Fig. 5. This low oversampling induces a lack of visibility

and thus an underestimation of the visibility. This effect can
be estimated. Let us consider the initial periodic function
f (x) = 1 + β cos( 2π

η
x) as the distribution of intensity, where η

is the period of the oscillations. In principle, the calculation of
the visibility V leads to V = β. When using a discrete camera,
with pixel size b, the total intensity impinging the nth pixel
results from an integration of the intensity over the pixel size:

I (n) =
∫ nb+ b

2

nb− b
2

f (x)dx. (12)

The visibility is not equal to β anymore, but reads

V = β
sin

(
πb
η

)
πb
η

. (13)

In the measurements shown in Fig. 5, b
η

= 1
5 (five points per

fringe). In that case, V is underestimated by ∼10%. Taking
this correction into account, the measured visibilities are in
good agreement with the expected ones.

In the far-field diffraction regime, the slit diffraction pat-
terns can thus be used to estimate the coherence length during
an experiment, provided a normalization by an envelope func-
tion is performed and the finite pixel size effect is taken into
account. There are at least two advantages to favor the mea-
surement with a slit than with a dual aperture. First, the flexi-
bility of the slit gap allows one to adapt the aperture to the other
parameters of the setup. Second, the same slit can be used for
the estimation of the coherence properties of the beam and for
the experiment itself to select the coherent part of the beam.

B. From the far field to the near field: estimation
of the spatial coherence length

In this section, we show that it is possible to measure the
distribution of intensity continuously from the far-field to the
near-field regime. This continuous change is simply obtained
by increasing the diffracting slit aperture and by using a high
resolution detector. In addition, the measurement provides a
good estimation of ξT .

Let us review the different ways of measuring the two
regimes. The crossover distance between them is located at

FIG. 6. (Color online) (Upper row) Measured diffraction patterns obtained for 4 different vertical slits gap, using a high resolution detector
standing 3 m away from the slits (logarithmic scale). (Bottom row) Calculation of the profiles for the same apertures considering a fully coherent
beam. The color scale goes from purple for lowest intensities to yellow for highest intensities. The dark spot is obtained for a diffracting slit
aperture of ab = 43 μm. The destructive interference in the middle is clearly visible. The near-field diffraction regime is obtained for slits
apertures greater than ab (a = 142 μm and a = 88 μm). The far-field regime is obtained for slits apertures lower than ab (a = 20 μm).
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a distance Db ∼ a2/(2πλ). One thus has three different ways
to detect the two regimes. Either the slits-to-detector distance
D is varied around Db keeping a and λ fixed, or the detector
is fixed at a certain distance from the slits and λ or a is varied.

Let us first consider the case where a and λ are fixed and the
detector is moved through the boundary Db. For D � Db, the
detector sits in the far-field regime. In our setup, the smallest
available pixel size is around 1 micron, and the highest detector
distance is 3 m. For Db to be located at half the distance
between slit and detector, one must have a ∼ √

2πλDb i.e.,
a ∼ 30 μm for λ = 1 Å. In these conditions, λ(D − Db)/a ∼
5 μm, which is enough to resolve the fringes. However, if
the detector is moved closer to the slits, the size of the beam
is approximately the same as the slit itself, meaning that the
distribution of intensity would spread over 30 pixels only. This
would make difficult the observation of the fringes in the close
vicinity of the slit.

The second possibility is to decrease the wavelength of the
incoming beam to reach the Fresnel regime. Assuming a fixed
detector at 3 m, and a slit aperture of 30 μm, having the detector
in the near-field regime, e.g., Db = 2D implies using a 52 keV
beam. Not only this energy is not accessible at the CRISTAL
beamline but also the use of high energy is not favorable for

the transverse coherence length [ξT is proportional to λ, see
Eq. (2)]. In addition, the transmitted beam at the edge of the
blades of the slits could also reduce the visibility. One would
in addition need a 2D detector able to cover a wide energy
range to carry out the measurement.

The last possibility is to use a detector at a fixed position and
a monochromatic beam, and change the aperture of the diffract-
ing slit. This allows a fine tuning of the boundary distance be-
tween near-field and far-field regimes, and an easy observation
of the interference fringes in both diffraction regimes.

However, this measurement requires a detector with a very
good resolution. For this purpose, a λ = 1 Å monochromatic
beam has been used, together with a 2D detector made of
a YAG scintillator, lenses and a CCD camera. This detector
provides an effective resolution of 1.3 μm and is located at
a distance D = 3 m from the diffracting slits. The latter are
used to cut the beam in the vertical direction only. The focusing
mirrors are not inserted to avoid optical aberrations, meaning
that only the monochromator and some filters are inserted in
the beam, without focusing. The secondary slits are not used
in this experiment. In these conditions, the source size to be
considered is the real source one (the undulator), i.e., 8.1 μm
rms. As the diffracting slits are located at 35 m from the source,

FIG. 7. Linear projection along the vertical direction of the distribution of intensity obtained in the near-field regime for different diffracting
slits apertures: (a) a = 43, (b) 88, (c) 142, and (d) 182 μm. For large apertures, the asymmetry of the profile is probably due to a nonhomogeneous
illumination of the slit.
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the vertical coherence length at the slit position calculated from
Eq. (4) is ξT = 70 μm.

The diffracting slit aperture a has been varied from 1 μm
to 300 μm by steps of 1 μm. The detector is exactly at the
dark spot distance Db when Eq. (9) is satisfied, i.e., for ab =
43 μm. The measurement thus contains both the near-field and
the far-field diffraction regimes, as a has been varied below
and above ab. Some results are shown in Fig. 6 as well as
calculations of the distribution of intensity after the slits for
the same apertures in the case of a fully coherent beam. The
complete measurement and calculation for each aperture are
available as movies in Supplemental Material.30

In this measurement, the faint oscillations observed in the
near-field regime are well reproduced by the simulation. The
linear scale projection of the distribution of intensity along
the horizontal direction of four maps taken in the near-field
regime are displayed in Fig. 7. The oscillations appear clearly
on these projections.

Defining the visibility in the near-field regime is not
straightforward. It highly depends on the position where it
is measured on the diffraction pattern. Here, the visibility of
the oscillations Ve has been measured in the center of the
distribution of intensity because this is where the oscillations
are first blurred when opening the slits. Ve has been extracted
for different slit gaps in the near-field regime (a � ab) using
Eq. (10). The visibility is plotted in the inset of Fig. 8 as a
function of the diffracting slits gap for the points where a finite
number of oscillations is recorded. The central fringes are not
visible for gaps larger than 180 μm although the experimental
resolution is good enough. This blurring effect is due to the
finite value of the vertical transverse coherence length. The

FIG. 8. (Color online) (Inset) Evolution of Ve (black squares), the
visibility measured in the middle of the distribution of intensity and
of Vt (red dots), the one calculated with the GSM, which takes into
account the detector point spread function. Blue dashed line: envelope
Va of the calculated central visibility in the near-field regime limit
(see Appendix). Normalized visibility Ve/Vt . The apertures were
chosen so that an integer number of fringes appear in the distribution
of intensity. The Gaussian fit was performed using Eq. (14) adding
a constant background. The black dashed line shows the dark spot
position, i.e., the crossover distance between near-field and far-field
regimes.

study of the visibility should thus allow to get an estimation
of ξT in the vertical direction. An analytical expression of the
contrast in the center of the distribution can be derived from
the asymptotic behavior of Fresnel integrals in the near-field
diffraction regime (see Appendix). The exact central contrast
can also be calculated numerically with Fresnel integrals. Here,
a simulation of the expected distribution of intensity has been
performed in the case of a partially coherent beam, using the
GSM from Eq. (6). The detector point spread function is taken
into account through a lorentzian convolution. The Lorentzian
width has been evaluated by an adjustement at small apertures.
In addition, the diffraction profile is asymmetric for large
apertures (see Fig. 7). This effect is most probably due the
nonhomogenous beam profile over such large apertures and is
taken into account in the simulations. The measured contrast
is well reproduced in the center of the distributions for a value
ξTG

= 50 ± 5 μm. This value is less than the expected one
(ξT = 70 μm). Such mismatches have already been reported in
previous works. In Ref. 17, this was attributed to a broadening
of the effective source caused by the limited depth of focus
of the electron beam in the storage ring at the undulator
position. In our case, it is probably due to instabilities of the
monochromator cooling system inducing vibrations, as also
reported in Ref. 15.

It is interesting to note, however, that the evolution of
the visibility with increasing apertures is well reproduced
by a Gaussian function, like in the case of Young holes, if
the measured visibility Ve is normalized by the calculated
visibility Vt .31 The latter is obtained considering a fully
coherent beam and taking into account the detector point
spread function and is in good agreement with the analytical
expression of the central visibility Va in the near-field regime
limit (see calculations in Appendix). The evolution of Ve/Vt

with increasing apertures then only depends on the finite value
of ξT . Ve/Vt is plotted with respect to the diffracting slits
aperture in Fig. 8. Ve and Vt are also shown on the inset of
Fig. 8.

The normalized curve has the same Gaussian behavior like
in the case of Young holes:

Ve

Vt

(a) = e
− a2

2ξ2
TF , (14)

where ξTF
is the coherence length found with this model. The

best fit yields ξTF
= 58 ± 2 μm (see Fig. 8). The value of ξTF

found with this methods is in good agreement with the value
ξTG

obtained with the GSM.

IV. CONCLUSION

We have shown in this paper that the fine analysis of
slit diffraction allows one to estimate the physical quantities
characterizing the spatial coherence of the beam both in the
near-field and far-field regime provided a few corrections
are made to the measured recorded patterns. It is also
noteworthy that the degree of coherence can reach very high
values in some configurations of the optical setup, which
allows getting a high visibility of the speckles during an
experiment with a reasonable x-ray beam intensity. Within
a double slits configuration, the use of focusing optics is
crucial. It allows an increase of the flux density at the sample
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position without decreasing much the transverse degree of
coherence. The CRISTAL beamline is thus perfectly adapted
to coherence studies, with adapted optical elements and
detectors.
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APPENDIX: ANALYTICAL CALCULATION OF THE
CENTRAL VISIBILITY OF THE DIFFRACTION PATTERNS

In this Appendix, the analytical calculation of the visibility
expected in the center of the slit diffraction pattern in the
case of a point source is made. The exact expression in terms
of Fresnel integrals as well as an estimation of the central
visibility in the Fresnel regime are given. An expression
similar to the one given in Ref. 30 is obtained, but for a factor
of 2. Our result is consistent with the visibility calculated with
the GSM (see text).

The coordinates along the diffracting slits are denoted y,
and the ones on the detector plane x (see Fig. 9 for the
notations).

The amplitude at the position x of the detector reads

A(x) =
∫ a/2

−a/2
e

2iπ
λ

[
√

r2
s +y2+

√
r2
d +(x−y)2]dy. (A1)

In our case, even in the near-field regime, we have rs � y

and rd � x − y. Thus the amplitude can be written as

A(x) ∼ e
2iπ
λ

rt

∫ a/2

−a/2
e

iπ
λrs

y2

e
iπ
λrd

(x−y)2

dy, (A2)

where rt = rs + rd . Introducing the parameter a0 defined as
a2

0 = 4λrd rs

rt
, one obtains

A(x) ∼
∫ a/2

−a/2
e

iπ
2 ( 2

√
2

a0
y− a0√

2λrd
x)2

dy (A3)

FIG. 9. Scheme of the layout and notations used for the calcula-
tion. The source is considered punctual, the slits are at a distance rs

from the source and the detector at a distance rd from the slits.

in which phase prefactors have been omitted. After the change
of variable Y = 2

√
2

a0
y − a0√

2λrd

x, one obtains

A(x) ∼ a0

2
√

2
[F (Y0 − δx) + F (Y0 + δx)], (A4)

where Y0 = √
2 a

a0
, δ = a0√

2λrd

, and F (u) = ∫ u

0 e
iπ
2 Y 2

dY are
Fresnel integrals. The positions of the extrema, necessary for
the calculation of the visibility, are the solutions of ∂A(x)

∂x
= 0,

i.e., xn = n
δY0

, n ∈ Z.
The central visibility is calculated using Eq. (10). A first

extremum is found at x0 = 0 (n = 0), where an amplitude
A0(x0) = a0√

2
F (Y0) is found. The following extremum is found

at x1 = 1
δY0

(n = 1), and an amplitude A1(x1) = a0

2
√

2
[F (Y0 −

1
Y0

) + F (Y0 + 1
Y0

)] is found at that position. The literal ex-
pression of the central visibility Vl(a) can be numerically
calculated using the Fresnel integrals and reads

Vl(a) =
∣∣∣∣ |A0(x0)|2 − |A1(x1)|2
|A0(x0)|2 + |A1(x1)|2

∣∣∣∣ . (A5)

The central visibility can be simplified in the near-field
regime, in the limit a � a0. In that case, the asymptotic behav-
ior of the Fresnel integrals can be used: F (u) = C(u) + iS(u)
with C(u) ≈ 1

2 + 1
πu

sin( πu2

2 ) and S(u) ≈ 1
2 − 1

πu
cos(πu2

2 ) in
the limit u � 1. In this limit, the intensities at the positions x0

and x1 read

I (x0) = A(x0)A�(x0) (A6a)

≈ a2
0

2

[
1

2
+ 1

π2Y 2
0

+
√

2

πY0
sin

(
πY 2

0

2
− π

4

)]
(A6b)

and

I (x1) = A(x1)A�(x1) (A7a)

≈ a2
0

2

[
1

2
+ 1

π2Y 2
0

−
√

2

πY0
sin

(
πY 2

0

2
− π

4

)]
. (A7b)

FIG. 10. (Color online) Black line: estimation of the central
visibility Vc(a) obtained analytically as a function of the slits gap
in the near-field regime, in the approximation a � a0. Red line:
envelope Va of the Vc(a) function.
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The central visibility Vc(a) calculated within the approxima-
tion Y0 � 1 thus reads

Vc(a) = 2

π

a0

a

∣∣∣∣cos

[
π

(
a2

a2
0

− 3

4

)]∣∣∣∣ . (A8)

This function is rapidly oscillating with a, as shown in
Fig. 10. The visibility obtained when a local maximum is
found at x = 0 follows the envelope of Vc(a): Va(a) = 2

π

a0
a

,
and is in good agreement with the visibilities obtained within
the GSM (see Fig. 8), even in the regime a ∼ ab.
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