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Iron undergoes a bcc to close-packed structural phase transition under pressure, at around 13 GPa, as shown
by diamond anvil and shock experiments. Atomistic simulations have been able to provide insights into the
transition, but without any plasticity occurring before the phase change, in single crystals, defective single
crystals, or polycrystals. However, experiments in polycrystals do show clear evidence for plasticity. Here we study
homogeneous uniaxial compression of polycrystalline Fe using several interatomic potentials: three embedded-
atom-model potentials and one modified embedded-atom-model potential. We analyze grain-boundary rotation
and dislocation activity, and find that the amount of dislocation activity as a function of strain depends greatly on
the potential used. This variation can be explained in terms of the dislocation properties, calculated in this work
for each of these potentials.
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I. INTRODUCTION

Iron is one of the crucial components of the universe, and
is ubiquitous in the Earth’s crust and the Earth’s interior. It
has clear technological relevance, from the “iron age” till our
days, where steels are the structural material of choice in a
large variety of settings.

It has been long known that Fe undergoes a structural
phase transition at a pressure around 13 GPa, going from
body-centered-cubic (bcc) to a hexagonal close-packed (hcp)
structure.1 This phase transition is usually preceded by
plastic yielding. For instance, under shock conditions, the
experimental signature of plasticity appears as an additional
step in the shock wave structure, which for pressures above
∼15 GPa consists of three waves, corresponding to elastic,
plastic, and phase changed regions.2,3

There was an immense breakthrough in our understanding
of this phase transition thanks to the atomistic simulations of
Kadau and co-workers,4–6 and to several dynamic diffraction
experiments covering similar time and length scales.7,8 One
outstanding issue remains: current molecular-dynamics (MD)
simulations6 show a phase transition lacking previous disloca-
tion activity in the Fe samples.

There are many atomistic studies of polycrystals under
compression. However, most of them deal with face-centered-
cubic (fcc) samples.9 For work on bcc metals, we can mention
the papers by Pan et al.10 and Rudd11 on nanocrystalline
(nc) Ta, and Frederiksen et al. on nc-Mo,12 for grain sizes
up to ∼20 nm. Farkas and co-workers13 studied crack prop-
agation in Fe polycrystals and found significant dislocation
activity near the crack tip, which indicated the feasibility of
observing dislocation-based plasticity in atomistic simulations
of polycrystalline Fe under high stress. The effect of grain
size on the deformation behavior of nanocrystalline bcc iron
under tension was recently studied in MD simulations by Jeon
et al.,14 for grain sizes up to nearly 20 nm, and using the

potential by Ackland et al.15 They observed a peak in the flow
stress averaged over a strain range, as a function of grain size,
which was attributed to grain boundary sliding dominating
deformation for grain sizes below 10–15 nm, and dislocation
activity dominating deformation for larger grains.

In the present paper we use MD simulations to study a
nanocrystalline Fe sample, as a model Fe polycrystal. Grain
boundaries (GBs) provide dislocation sources, which could
be activated to nucleate dislocations under stress. We employ
several interatomic potentials, and analyze their dislocation
properties. The connection of this study with high pressure
experiments is also discussed.

II. SIMULATION METHOD

The public-domain molecular dynamics code LAMMPS16

was used in this study to perform the simulations.

A. Interaction potentials for iron

Fe belongs to the elements most studied using atomistic
simulations, and there are dozens of interaction potentials
to simulate different aspects. The pressure-induced transition
bcc → close-packed in Fe is closely connected to the magnetic
nature of Fe;17 empirical interatomic interaction potentials
nevertheless are able to capture the essential mechanical
properties of such phase transitions.

A large fraction of Fe potentials have been created for
understanding radiation damage in pressure vessels in nuclear
reactors, and focus on reproducing point defect properties at
p = 0 and relatively low temperatures, below 1000 K. Some
potentials aim at describing the melting transition5,18 and other
thermal properties.19 The Fe pressure-volume relationship is
often described by a Rose equation of state,20 without any
consideration for the structural phase transitions, but there is
a recent potential developed to reproduce the temperature-
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induced close-packed → bcc phase transition at pressures of
a few hundred GPa.21

A recent review22 analyzes the ability of several often
used Fe potentials to reproduce ab initio results, including
dislocation core structure, line energy, etc. It was shown that
the Mendelev family of potentials15,22,23 provided a reason-
able description of dislocation properties. Those potentials,
however, do not describe properly the pressure-induced phase
transition bcc to close-packed, since its barrier is assumed
high. Here we use the Mendelev potential described in Ref. 23,
which can be applied to describe both liquid and solid iron. It
is fitted to the first-principles total forces over a liquid atomic
configuration.

We also present here a new embedded-atom-model (EAM)
potential, similar to the Machová and Ackland potential,24 but
fitted specifically to provide the phase transition. This potential
is described in the Appendix and gives a bcc → hcp transition
at 13.75 GPa.

The Voter potential25 has been used extensively to study
the bcc → close-packed transition, since it gives a transition
pressure close to the experimental value. This includes not
only shock-related research,4,5 but also simulations of single
crystals under homogeneous compression.26 It is fitted to the
Rose equation of state and it reproduces well the energetic
properties of ferromagnetic bcc iron. This potential typically
gives a large fraction of fcc phase, instead of the thermodynam-
ically expected hcp phase. Surprisingly, dislocation properties
of the Voter potential have not been studied until now.

Recently, a new modified embedded-atom-model (MEAM)
potential was presented for Fe, MEAM-p.27 It achieves good
agreement with the experimental transition pressure paying
the price of artificially reducing the energy difference between
the phases, compared to ab initio results. This issue hinders the
goal of achieving a potential offering a realistic comparison
to experiments. We note that this MEAM potential also has a
phase transition at p = 0 and finite T .

For convenience we shall abbreviate the potentials used
in the present work as Voter,25 Mendelev,23 MEAM-p,27 and
Ackland (Appendix of this paper).

B. Sample generation, compression, and analysis methods

Our cubic sample contains approximately 2 million atoms
and has an edge length of 30 nm. 64 crystal grains are created in
it with random crystallographic orientations using a Voronoi
construction method.28 To equilibrate our systems, we first
subjected them to energy minimization using the conjugate
gradient method, and then to high-temperature annealing at
80% of their melting temperature during 100 ps. We note
that the high-temperature anneal was essential to equilibrate
the grain boundaries; the average potential energy per atom
decreased from −4.28 to −4.56 eV in the case of the Ackland
potential (and similarly for the other potentials) showing the
effectiveness of the anneal procedure. Later the samples were
cooled back to 10 K. The heating and cooling ramps were
performed during 2 ps. Temperature is controlled via velocity
scaling. During and after the high-temperature anneal, we
used a barostat to keep the pressure at zero. The barostat was
anisotropic; it controlled the normal pressures along the three
Cartesian directions independently.

We applied periodic boundary conditions to remove any
influence of surface effects. Averback and co-workers29–31

showed that a similar relaxation scheme helps diminishing
grain boundary sliding and, therefore, favors dislocation
emission. In the simulations, the Verlet integrator is used.
Potential cutoffs are defined for each individual potential.

The uniaxial compression along the z axis was carried
out at a strain rate of 109 s−1 and at an initial temperature
of 10 K under periodic boundary conditions. We chose this
low temperature deliberately as our main aim is to look for
plasticity in polycrystalline Fe: since temperature increases
under loading, a low starting temperature allows us to identify
dislocations relatively easily, as thermal noise is minimal. We
performed a number of test simulations at 300 K and found that
the higher temperature only increases the noise level without
adding new physics.

The samples were deformed up to strains of around 20%
during a compression time of 200 ps. During compression we
use the NVE ensemble; no temperature control was performed
in order to be able to analyze plasticity-driven temperature
effects. The samples were visualized using common-neighbor
analysis32,33 and a recently developed technique called the
dislocation extraction algorithm (DXA).34

III. RESULTS

A. Pressure induced phase transition

Any structural phase transition is driven by the change in
Gibbs free energy G(p,T ),

G = U + pV − T S = H − T S. (1)

H is the enthalpy of the system. The phase with lowest G (or
lowest H at T = 0 K) will be the thermodynamically stable
one at a given (p,T ).

To measure the transition pressure for the different
interatomic potentials we deformed hydrostatically a bcc
single crystal with 2000 atoms, as well as the corresponding
hcp and fcc structures at T = 0 K by rescaling the atomic
coordinates. We calculated the enthalpy as a function of
pressure, and the intersection of the enthalpies of different
phases as a function of pressure gives the transition pressure;
see Fig. 1; enthalpies at 10 K are almost identical to those at
0 K.35 The values of the transition pressures for bcc → hcp
and bcc → fcc, together with the energy differences at zero
pressures, are listed in Table I. We also include results from
ab initio calculations and experiment.

MEAM-p and the novel potential presented here are fitted to
the phase transition and give results in good agreement with the
ab initio data. Note, however, the reduced barriers compared
to ab initio values. The Mendelev potential did not include
any fitting of the phase transition and the transition pressure is
significantly higher than experiments. The Voter potential was
not fitted to the transition, but it gives a reasonably close value.6

B. Dislocation properties

In this subsection, using four different interatomic potential
models, we investigate properties of a single dislocation in
terms of core structure, core energy, and Peierls stress. It is
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FIG. 1. (Color online) Enthalpies H at 0 K of the bcc, fcc, and hcp structures evaluated for the potentials investigated here. (a) Ackland;
(b) MEAM-p; (c) Mendelev; (d) Voter potential. Arrows point at the transition pressures.

generally accepted that the dislocation core structure affects
the lattice resistance to dislocation motion and hence crystal
plasticity as well.40 Since the peculiar deformation behaviors
in bcc metals are closely related with screw dislocation,41,42 we
confine our focus on the 〈111〉/2 screw dislocation in this work.
In order to create dislocation core structures, a screw dipole
was constructed using three-dimensional periodic boundary
conditions by displacing atoms according to the elasticity
solution43 and then relaxing the position of atoms via the
conjugate gradient method. The core energy is calculated as
the difference between the atomistic energy of the relaxed
structure and the elastic energy of a dipole, later divided by 2
to count the number of dislocations in the cell.44

The core structure can have multiple metastable states
and the one with lower core energy is the more stable
structure. Figures 2 and 3 show differential displacement
(DD) maps45 of the relaxed core structures. Both Ackland
and Voter potentials predict a polarized core structure, which
asymmetrically dissociates into three {110} planes in two
different ways as shown in Figs. 2(a) and 2(b). These two
variant structures are geometrically different but energetically
identical (cf. core energy in Table II), which is why this type
is also called a degenerate core structure. On the other hand,
both Mendelev and MEAM-p potentials predict a compact
nondegenerate core structure [Fig. 3(a)] and a split-core
structure [Fig. 3(b)]. These two structures have different core

TABLE I. Transition pressures and energy differences (at zero pressures) for the potentials investigated. The ab initio data are taken from
Refs. 6,36–38 and the experimental data from Ref. 39.

Method pbcc→hcp (GPa) pbcc→fcc (GPa) �Ebcc-hcp(p = 0) (eV) �Ebcc-fcc(p = 0) (eV)

Ackland 13.75 14.4 0.04 0.04
MEAM-p 12.95 23.1 0.0015 0.008
Mendelev 57.1 52.75 0.12 0.12
Voter 8.1 6.6 0.05 0.01
Ab initio 11.45 19.0 0.07 0.06
Experiment: polycrystal 12.89 ± 0.15
experiment: monocrystal 14.26 ± 0.14
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(a) (b)

FIG. 2. (Color online) Ackland and Voter potentials predict degenerate core structures in two variants, (a) and (b).

energies. The nondegenerate core structure has lower core
energy in the Mendelev potential, while the split core has
lower core energy in the MEAM-p potential.

Another important measure of crystal plasticity is the
Peierls stress (τP ), which is defined as the minimal stress
at which a dislocation starts to move at zero temperature.
In this work, we externally apply pure shear stress to the
simulation cell, which contains a single screw dislocation,
along the Burgers vector direction in increments of 100 MPa,
until dislocation motion is observed. The Peierls stress as well
as the core energy of each potential tested in this work are
listed in Table II. What is interesting is that the τP of two
different core structures are (almost) identical within the same
potential, except for the Voter potential. For the Mendelev and
MEAM-p potentials, as described in Vitek’s study in bcc Mo,46

the variant core structures become less distinguishable under
stress and accordingly the overall behavior of the 〈111〉/2
screw dislocation shows similar response to the applied stress.
For degenerate cores, one structure can be more or less
mobile than its degenerate one depending on the sense of
shearing direction.47 For the Ackland potential, a less mobile
core configuration easily transforms into a mobile one under
stress and again the τP coincide for the two degenerate core

structures. However, in the Voter potential the transformation
between the two degenerate cores seems to be very difficult
and we see that the τP for one configuration is only 3.1 GPa,
while for the other configuration the dislocation does not move
until the cell collapses at 5.5 GPa. In this case, if the two
alternate structures coexist along the dislocation line,48 the
dislocation is most likely to be anchored due to the immobile
core configuration.

Overall, the Mendelev potential gives reasonable disloca-
tion properties as mentioned in Ref. 22. The Voter potential
does not seem appropriate to describe dislocation-based
plasticity in Fe due to its high Peierls stress. MEAM-p
seems to give reasonable values but, since the split core
configuration is more stable, an initial configuration with a
compact core is unstable and transforms into the extended
core configuration under shear. The new Ackland potential also
shows a degenerate core configuration, with a core polarization
which does not agree with ab initio calculations.22

C. Stress-strain and plastic heating behavior

The von-Mises stress is useful to describe the driving stress
for plastic activity. Using the components σij of the stress
tensor, it is defined as

σvM =
√

1

2

[
(σxx − σyy)2 + (σxx − σzz)2 + (σzz − σyy)2 + 6

(
σ 2

xy + σ 2
xz + σ 2

yz

)]
. (2)

Figure 4(a) shows the von-Mises stress versus strain for all
simulated potentials.

The stress-strain curves in polycrystals depend on grain-
boundary sliding as well as dislocation activity. GB sliding
has been shown to be significant mostly for small grains, with
grain sizes up to ∼15–20 nm.50–53

A typical behavior for nanocrystals starts with a narrow
linear elastic regime, followed by some GB sliding and then
dislocation emission, which lead to a maximum in the von-
Mises stress and subsequent plastic relaxation. Because of the
presence of plasticity, we cannot pinpoint the phase transition
from the stress-strain curves. The plastic relaxation occurs

considerably later for the Mendelev potential than for the other
potentials; here the high transition pressure prevents the phase
transition from starting.

The Voter potential shows significant shear relaxation even
at small strains (∼3%), when dislocation emission is just
starting (see Sec. III D), indicating a large amount of GB
sliding (Sec. III F) to relax the applied shear. Dislocation
emission in all other potentials, discussed in the next section,
starts near the yielding point of the von-Mises stress, and leads
to softening of the material.

Figure 4(b) displays the evolution of the diagonal compo-
nents of the stress tensor with strain. The compression stress
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(a) (b)

FIG. 3. (Color online) Mendelev and MEAM-p potentials predict (a) nondegenerate and (b) split-core structures.

for the Voter potential displays an anomalously flat behavior
with strain. It features the softness of this potential and is due
to GB sliding. Note that all other potentials behave similarly
until ∼10% strain. The expected departure at larger strains
seen in the Mendelev potential is due to the lack of a phase
transformation.

Both GB sliding and dislocation motion lead to plastic
heating, seen in Fig. 4(c). However, only the Voter potential
displays a huge increase in temperature, indicative of large
GB sliding frictional losses, which are consistent with the
shear stress relaxation in Fig. 4(a). The unphysically large
temperatures reached for the Voter potential will preclude its
use in studies including strong plastic effects. Thus the Voter
potential gives an example that—even though the phase
transition is satisfactorily modeled—the physics of dislocation
mobility and in particular GB sliding and rotation has essential
impact on the physical reliability of simulation results.

TABLE II. Core structure, core energy, and upper bound for
Peierls stress τP of a 〈111〉/2 screw dislocation. The core energies
are given for two values of the cutoff radius, rc, in the elastic solution
for the dislocation energy, and b is the length of the Burgers vector
[111]/2. The ab initio data are taken from Ref. 49.

Potential Core type Core energy Ec (eV/Å) τP (GPa)

Ackland degenerate 1 0.24853 (rc = 2b) 1.2
0.32875 (rc = 3b)

degenerate 2 0.24843 (rc = 2b) 1.2
0.32865 (rc = 3b)

MEAM-p nondegenerate 0.27955 (rc = 2b) 3.8
0.35382 (rc = 3b)

split-core 0.26875 (rc = 2b) 3.9
0.34303 (rc = 3b)

Mendelev nondegenerate 0.34526 (rc = 2b) 2.9
0.42554 (rc = 3b)

split-core 0.34691 (rc = 2b) 2.9
0.42719 (rc = 3b)

Voter degenerate 1 0.07904 (rc = 2b) 3.1
0.15926 (rc = 3b)

degenerate 2 0.07884 (rc = 2b) Anchored
0.15906 (rc = 3b)

Ab initio 1.3–1.9

D. Dislocation activity

The single dislocation behavior seen in Sec. III B would
only provide a rough guide to dislocation activity in a loaded
polycrystal. Details of dislocation nucleation at GB have been
studied in detail for fcc nanocrystals,9 but there are few
studies for bcc nanocrystals. We display snapshots showing the
activation of dislocations and the phase transformation in our
nc-Fe crystal in Fig. 5. Note that the CNA analysis employed
here was only able to distinguish local bcc environments
from non-bcc environments, but could not further analyze
the non-bcc environments. Figure 5 allows us to study the
changes induced for our nc samples with a complex local
stress state; in particular, we observe several nucleation events
for dislocations of mixed character, with an edge component
running ahead and leaving two straight screw segments on its
way to the opposite GB. Sometimes we also observe reactions
of dislocations and junction formation.

Snapshots in Fig. 5 show dislocation activity which is
quantified in Table III. The Mendelev potential (top row)
shows sizable dislocation activity already below ∼12% strain,
which in the other potentials is masked by the onset of phase
transformation. This activity accompanies the huge von-Mises
stress building up for the Mendelev potential [cf. Fig. 4(a)] and
is thus due to the unrealistically large transition pressure of this
potential. Dislocation nucleation at GBs leads to the softening
at larger strains.

All the other potentials investigated, which have their tran-
sition pressure at roughly the same (physically correct) value,
show roughly comparable behavior. However, the details of the
dislocations produced vary from potential to potential, as well
as the detailed evolution of the phase transformation, as shown
by the frames with a phase transformation at 12%, which
are clearly different. In the following, we analyze differences
showing up between these potentials, but note that this analysis
is at the limit of statistical reliability.

The new Ackland potential only displays reduced disloca-
tion activity, as compared to the Mendelev potential. Note that
the von-Mises pressure is almost constant during compression
until strains of ∼9%; cf. Fig. 4(a). Thus the material softens
here only when the phase transition starts. A detailed analysis
reveals that dislocations appear as expected in bcc metals, with
several mixed dislocations showing fast edge segments which
leave behind straight screw segments.
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FIG. 4. (Color online) (a) Von-Mises stress, (b) diagonal stress components, and (c) temperature increase versus strain. Arrows in (a) point
at the strains where dislocation emission starts.

Before phase transformation, the Voter and Ackland poten-
tials exhibit comparable dislocation densities. Note, however,
that the Voter potential showed a strong softening [see
Fig. 4(a)] which can be related to the excessive GB sliding;
cf. Sec. III F. Because of the highly immobile dislocation
configuration of the Voter potential, the comparatively large
dislocation density does not lead to observable dislocation-
based plasticity, both in our present simulation results and also
in earlier shock simulations of polycrystals.4–6 There is only
reduced dislocation activity for MEAM-p, but without large
GB rotation seen in Voter, as discussed in Sec. III F.

We have used DXA to analyze dislocations resulting
from our uniaxial compression. DXA identifies linear defect
structures with a common-neighbor analysis filter, and then can
identify those structures with dislocation lines. This procedure
works well in single crystals, but in polycrystals the result
is less reliable, since DXA can identify some of the initial
GBs as dislocation networks. Figure 6 gives an example of the
structure of true dislocations evolving during compression of
the polycrystal. By an analysis of such snapshots, we observe
the first dislocations going from a GB into a grain at von-Mises
stresses of 5.45, 3.22, 1.73, and 5.39 GPa for the Mendelev,
Ackland, Voter, and MEAM-p potentials, respectively. This
means that dislocations do not appear until strains of 4.42%,
2.48%, 1.99%, and 4.42%. Plasticity for lower strains is due
to GB sliding for all potentials.

In general, for all nanocrystalline samples, we note that
different relaxation schemes will lead to different dislocation
densities. For instance, if we generate our polycrystals and
perform only energy minimization and a short-term room-
temperature annealing without a high-temperature relaxation
annealing, there are only a handful of dislocations produced
using the Voter potential. However, as noted by Vo et al.,29 this
is to be expected, given that the lack of GB relaxation leads
to larger GB rotation and reduced dislocation activity. Using
high temperature relaxation, there is still a large temperature
increase, associated with significant GB rotation, as described
in Sec. III F.

E. Phase transformation

At stresses exceeding ∼9% the bcc phase in Fig. 5 becomes
increasingly smaller for the Ackland, Voter, and MEAM-p
potentials, such that lattice defects (dislocations) can no longer
be detected. Instead the material starts phase transforming. We

present in Table IV the fraction of material which underwent
phase transformation. These results were obtained using the
“adaptive CNA” algorithm,54 which, however, does not provide
the local atomic environments. As expected, the Mendelev
potential features only a negligible fraction of transformed
material, up to the highest compression considered. For
the other potentials, the bcc phase has essentially vanished
at compressions of around 18%, while the close-packed
phases hcp and fcc have built up. Note that the amount of
unidentified atoms stays nearly constant during compression.
In all potentials that undergo phase transformation, the fraction
of hcp is larger than fcc, with the exception of the Voter
potential at the highest compression. This is compatible with
the nearly degenerate energies of these two close-packed
phases.

In order to study the properties of the transformed phase
with greater detail—and in particular to decide whether the
material will finally transform to hcp or fcc—we “postpro-
cessed” an 8%-compressed specimen (Ackland potential) by
hydrostatically compressing it to 100 GPa; at this pressure
the specimen has fully phase transformed. Note that due to
the kinetics of phase transition an increase of the pressure to
values considerably above the transition pressure helps
to fully transform the specimen. Due to the application
of a hydrostatic—rather than uniaxial—pressure, also the
identification of local crystalline order is simplified. Figure 7
demonstrates that the transformation indeed produces hcp-Fe,
containing a large number of stacking fault planes. These
appear in this plot as fcc material according to their local
environment. The stacking faults start and end at grain
boundaries and link partial basal dislocations.

F. Grain-boundary rotation

Grain boundary sliding is a process where grain boundaries
slip past each other and it was first observed by Adams and
Murray in bicrystals of sodium chloride and magnesia.56 It
is driven by rotational or translational strain jumps.57 It is
well known that the total shear stress is influenced by grain
boundary sliding and plasticity. Therefore, grain boundary
sliding can help suppressing dislocation activity and mobility.
On the other hand, it has been shown that high pressures can
reduce GB sliding and lead to hardening of nanocrystals.58

Despite this reduction, simulations by Jarmakani et al.59
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%81%41%01%6:niarts
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FIG. 5. (Color online) Snapshots showing dislocation activity. System has been cut in a plane perpendicular to the compression direction.
Yellow: bcc; blue: other structures, i.e., close-packed structures, grain boundaries, and defects, identified via CNA analysis. The compressive
strains increase from left to right from 3% to 6% to 9% to 12%. Only for the Mendelev potential, the strains are higher (6%, 10%, 14%, and
18%). The potentials vary in the row from top to bottom in the sequence: Mendelev, MEAM-p, Ackland, Voter potential.

showed that GB sliding continues to contribute significantly
to shock-induced plasticity.

There are several ways to measure GB sliding. Here, to
measure the change in grain orientation which indicates grain
boundary sliding, we consider two-dimensional cuts on {100}
planes. On that plane, we define the local orientation angle θi as

the angle between the vector connecting atom i to its neighbor
and an arbitrary chosen axis (for instance [010]). Using these
local angles we can calculate the average grain orientation
of the initial sample and compare it to the orientation in a
later deformation stage, right before the phase transformation
occurs; cf. Fig. 8. The average was estimated by weighting each
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TABLE III. Total dislocation density (in 1015 m−2) versus strain.
The data pertain to the snapshots shown in Fig. 5. Data for the
MEAM-p, Ackland, and Voter potentials for 12% strain could not be
determined due to the high fraction of phase-transformed material.

Strain 6% 10% 14% 18%

Mendelev dislocation density 1.3 3.5 7.4 7.1

Strain 3% 6% 9% 12%
MEAM-p dislocation density 0.52 1.1 1.3
Ackland 0.66 1.7 1.8
Voter 0.44 1.55 1.21

average grain orientation with the area of the grain regarding
different planes of our polycrystal. We achieve a change in
grain orientation for Voter of 2.64◦, whereas the average grain
rotation for the other three potentials is around 1◦. In detail,
we observe 0.80◦, 1.22◦, and 1.20◦ for the Mendelev, Ackland,
and MEAM-p potentials, respectively. These values are lower
bounds to GB rotation, since the direction perpendicular to
the plane might add an additional rotation angle. We conclude
that grain boundary sliding is an important effect for the Voter
potential and suppresses dislocation activity.

IV. SUMMARY AND DISCUSSION

We analyzed the response of polycrystalline α-iron to a
homogeneous uniaxial compression in order to describe the
dislocation activity and the transformation of the initial body-
centered cubic phase into a close-packed phase.

Our results show that details of the interatomic interaction
potentials, which up to now have only insufficiently been
characterized, strongly influence the simulation results. In
particular, the Peierls stress, the mobility of dislocations,
but also grain rotation and GB sliding essentially influence
the phase-change kinetics. It turns out that the often-used
Voter potential does not perform well in describing the

(a) (b)

FIG. 6. (Color online) Snapshots of the sample at (a) 0% and
(b) 6% strains, using the Mendelev potential and the DXA tool. Grains
are represented as surfaces, with a cut showing the interior of several
grains. Dark-blue line segments are GB dislocations, including a
spider-web-like dislocation network seen at both 0% and 6% strains,
which features a low-angle GB. The red segments at 6% strain
represent a dislocation originating at a grain boundary and growing
inside a grain.

TABLE IV. Fraction of transformed material for the four po-
tentials (given in %) analyzed with the help of the adaptive CNA
algorithm.54

Potential Strain bcc hcp fcc Disordered

Mendelev 3% 86.09 0.05 0.01 13.85
6% 85.86 0.05 0.02 14.07
9% 84.56 0.08 0.08 15.28

12% 83.27 0.14 0.20 16.39
15% 81.08 0.31 0.62 17.99
18% 76.30 1.03 2.73 19.93

MEAM-p 3% 81.13 1.88 1.04 15.94
6% 65.82 13.30 3.13 17.74
9% 48.20 27.41 6.11 18.28

12% 30.03 40.53 10.70 18.75
15% 8.63 55.37 16.77 19.23
18% 3.69 55.60 21.68 19.04

Ackland 3% 83.72 0.38 0.25 15.65
6% 81.79 1.05 0.84 16.32
9% 57.98 15.87 6.89 19.26

12% 12.88 49.85 18.41 18.87
15% 3.59 56.31 22.02 18.08
18% 1.65 56.28 24.98 17.10

Voter 3% 83.84 0.88 0.48 14.80
6% 74.10 4.69 4.66 16.55
9% 55.49 16.30 8.86 19.34

12% 18.06 45.15 14.70 22.09
15% 1.28 48.86 29.00 20.86
18% 0.67 33.33 46.51 19.49

response of polycrystalline Fe to compression, even though
it fairly reproduces the transition pressure: it overestimates
GB sliding, leading to material softening and unrealistically
large temperature increases during compression under high
strain rates. In addition, it predicts a large fraction of fcc phase
due to unrealistic bcc → fcc transition pressures.

In consequence we investigated the performance of several
other Fe potentials. Of these the Mendelev potential shows the
best description of dislocations (core energy and configuration,
Peierls stress), but displays a significantly too large transition
pressure. Two other potentials (the recent MEAM-p and the
here presented Ackland potential) possess a realistic transition
pressure, but model dislocation properties less accurately.

All potentials used in this study lead to dislocation emission
from GBs. Previous studies of shocked polycrystals using the
Voter potential did not observe plasticity before the transfor-
mation. There are several differences between the simulations
presented here and nonequilibrium MD shock simulations,
which could account for that. (a) We use homogeneous loading
instead of having a compression front, (b) our loading history
does not follow a “Hugoniostat,”60 and (c) the construction
and relaxation of nanocrystalline samples might be different
and favor GB sliding in the shock simulations.29–31

Our analysis of screw dislocations shows that dislocation
properties are only described adequately by the Mendelev
potential, which yield dislocation densities considerably larger
than the other potentials, at strains where the material should
have phase changed.
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FIG. 7. (Color online) Cross sectional view of the 8%-
compressed specimen (Ackland potential) hydrostatically com-
pressed to 100 GPa in order to fully transform the specimen. Local
atomic configurations have been analyzed by ballviewer.55 Dark
blue: hcp; light blue: fcc (here: stacking faults); green: bcc (mainly
misidentified, but the small region in the center may have survived,
screened by the tensile strain field of the surrounding dislocations);
red: unidentified (typically grain boundaries). Note that the cross
section shown differs from that of Fig. 5.

The new Ackland potential also leads to a correct descrip-
tion of the phase transition pressure. While the dislocation
core structures differ significantly from those in the Mendelev
potential, dislocation production is sizable.

Using the MEAM-p potential by Lee et al.27 we find the
correct phase transformation at 13 GPa, but somewhat reduced
dislocation emission. The often used Voter potential yields
a phase transition near 10 GPa, but dislocation emission is
accompanied by significant GB sliding, as determined by a

70,3°

56,5°

68°

60°

-9,3°
-11,9°

64,6°
63,9°

FIG. 8. (Color online) Grain boundary rotation illustrated for
compressed crystal (Voter potential). Left: 0% strain; right: 7.1%
strain. White lines show local orientation angles in the grains.

mean grain reorientation by 2.6◦. This correlates well with the
large temperature increase during loading.

Our results are relevant to shock experiments for poly-
crystalline Fe, indicating that atomistic simulations would
be able to display the complex three-wave structure seen in
experiments. However, they also point out the complexity of
the problem. Even if atomistic simulations are able to describe
the phase transition, plasticity details might not be described
adequately. In addition, recent experimental results8 point to a
lack of fcc structure, as opposed to a mixture of hcp and bcc
phases. The resulting fractions of fcc and hcp close-packed
structures would also depend on details of the potentials, with
Voter predicting mostly an fcc phase.

Details of the phase transition will depend not only on the
free-energy barriers, but also on the resulting kinetics.61 Phase
stability might also be affected by the nanoscale structure of
the samples.62

Fe shock experiments have dealt so far with large grains,
with a typical size of 1–100 μm. For such samples, plasticity at
high pressures is likely related to the activation of dislocation
sources inside grains, with a minor contribution from GB
sources. Such sources would typically have a much lower
activation stress than GB sources, and would then lead to much
lower elastic limits. However, high-strain-rate effects also lead
to an increase of the yield stress, and the values we obtain here,
of a few GPa, are not far from the results of Smith et al.3

We note that compression-induced shear in our simulated
nanograins might lead to lowering of the transition pressure,
as predicted by models63 and experiments.64 Furthermore,
plasticity occurs in our sample only by grain-boundary motion
and by grain-boundary nucleation of a few dislocations. The
volume inside our grains is initially dislocation-free, and
the size of our grains precludes the formation of pileups,
which might in turn help nucleating the new phase or further
dislocation activity, as proposed in Ref. 65.

The issue of defect nucleation during plastic flow is
of general interest. In our samples, plastic flow is caused
by the nucleation of relatively few dislocations from grain
boundaries. Nucleation of dislocations from GBs has been
studied in detail for a number of nanocrystals,66 and it has
been found to depend heavily on the orientation of grains
separated by the GB, on GB structure, on the local stress state,
etc. In our study, we use polycrystals which are large enough
to contain a large collection of GBs and, therefore, are able to
give a reasonable “average” plastic deformation.

Future simulations will cover nonequilibrium MD shock
simulations of nanocrystals using various potentials, and also
recovery of loaded samples. Given the high Peierls barriers
for dislocation motion in bcc metals, the amount of recovery
would be significantly less than in fcc samples and, therefore,
recovery experiments might be directly comparable to MD
results including unloading and relaxation.

Finally, future experiments using nc-Fe samples are now
feasible and would allow a direct comparison between MD
simulations and experiments at similar time and length scales.
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TABLE V. Parameters for the new potential, Eqs. (A3) and (A4), in units of eV and iron lattice parameter (a0 = 2.866 Å).

ak (eV/a3
0 ) − 31.807065 36.158663 12.237970 − 72.863506 156.864024 200.148093

Ak (eV2/a3
0 ) 72.868383 − 100.944857

rk (a0) 1.450000 1.430000 1.080000 0.990000 0.930000 0.866025
Rk (a0) 1.300000 1.200000
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APPENDIX: NEW POTENTIAL

The new potential is a simple amendment to a previous
Finnis-Sinclair potential from 1997.67 That potential was fitted
to the lattice parameter 2.866 Å, elastic constants C11 = 243,
C12 = 145, and C44 = 116 GPa, cohesive energy 4.316 eV, and
unrelaxed vacancy formation energy 1.79 eV. It stabilizes the
bcc structure, and has an α-ε phase transition, but at too high a
pressure. Other potentials examined here23,25,27 generally have
an α-ε transition at pressure. Although it would be desirable to
have all phases (α, γ , δ, ε) stable, and include the effect that γ is
stabilized in potentials for steel by small amounts of carbon,68

we were unable to easily convert other existing potentials to
have the correct α-ε transition. Consequently, we refitted the
high-pressure behavior of the 1997 potential to obtain an α-ε
transition pressure at 13.75 GPa. The refitting was done by

adjusting the short-range part of the potential, which has the
side effect of raising the melting point to 2700 K; however, we
do not approach the melting temperature in this work.

The energy is written as

U =
∑

i

F (ρi) + 1

2

∑
i,j �=i

Vij (rij ), (A1)

with

ρi =
∑
j �=i

φij (rij ). (A2)

The functions φ and V were defined as cubic splines; F is
given by its Finnis-Sinclair form (F = ρ1/2) and

V (r) =
6∑

k=1

ak(rk − r)3H (rk − r), (A3)

φ(r) =
2∑

k=1

Ak(Rk − r)3H (Rk − r), (A4)

where H (x) is the Heaviside step function: H (x) = 0 for x < 0
and H (x) = 1 for x > 0. The various parameters are given in
Table V.
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