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Screw dislocation in zirconium: An ab initio study
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Plasticity in zirconium is controlled by 1/3〈12̄10〉 screw dislocations gliding in the prism planes of the
hexagonal close-packed structure. This prismatic and not basal glide is observed for a given set of transition
metals like zirconium and is known to be related to the number of valence electrons in the d band. We use ab
initio calculations based on the density functional theory to study the core structure of screw dislocations in
zirconium. Dislocations are found to dissociate in the prism plane in two partial dislocations, each with a pure
screw character. Ab initio calculations also show that the dissociation in the basal plane is unstable. We calculate
then the Peierls barrier for a screw dislocation gliding in the prism plane and obtain a small barrier. The Peierls
stress deduced from this barrier is lower than 21 MPa, which is in agreement with experimental data. The ability
of an empirical potential relying on the embedded atom method (EAM) to model dislocations in zirconium is
also tested against these ab initio calculations.
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I. INTRODUCTION

Plasticity in α-zirconium is controlled by dislocations with
a 1/3〈12̄10〉 Burgers vector gliding in the prism planes of
the hexagonal compact (hcp) lattice.1–4 The relative ease of
prismatic glide compared to basal glide has been shown to be
linked to the ratio of the corresponding stacking fault energies,
which in turn is controlled by the electronic structure.5 In
particular, Legrand5 used a tight binding model to show that
prismatic slip in transition metals of the IV B column (Zr,
Ti, Hf) originates from the electronic filling of the valence
d band. As a consequence, it appears necessary to take into
account the anisotropy of the d orbital, and hence the angular
dependence of the atomic bonding, to model dislocations
in these transition metals.6 One cannot therefore rely on
central forces empirical potential and needs to take account
of the electronic structure. Tight binding models7,8 or ab
initio calculations9–13 show indeed that a 1/3〈12̄10〉 screw
dislocation, either in Zr or in Ti, spreads in prism planes, in
agreement with the prismatic glide observed experimentally.
But none of these atomistic simulations calculate the Peierls
stress of a screw dislocation. According to some authors,7,14

its core structure is not completely planar, which may be the
cause of a high Peierls stress.

It is true, experimentally, that screw dislocations glide
with difficulty compared to other dislocation characters in
zirconium or titanium alloys: Characteristic microstructures,
with long and straight dislocations aligned along their screw
orientation, are observed at low temperature,3,9,15–18 and the
flow stress is strongly temperature dependent,2,3,16,19–23 in
agreement with the assumption of a high Peierls barrier which
must be overcome by the nucleation of double kinks. But
experiments also show that the yield stress in zirconium or
in titanium strongly decreases with a decreasing amount of
interstitial impurities like oxygen.2,3,16,19,22,23 It is therefore
probable that the high Peierls stress of screw dislocations has
an extrinsic cause. In pure zirconium or pure titanium, this
Peierls stress may not be as high and screw dislocations are
probably gliding as easily as other orientations.

Recently, Mendelev and Ackland24 developed an empirical
potential for Zr in the embedded atom method (EAM)

formalism. Using this potential, Khater and Bacon25 showed
that it leads to a screw dislocation that spontaneously spreads in
the prism plane, the configuration dissociated in the basal plane
being metastable. They also showed that the Peierls stress of a
screw dislocation gliding in the prism plane is not so different
from the Peierls stress of an edge dislocation and that this
stress is small (22 MPa for the screw and 16 MPa for the edge).
These results therefore support experimental findings stating
that screw dislocations are gliding in prism planes with a low
Peierls stress in pure zirconium. But these simulations rely on
a central forces potential, which is not well suited to describe
dislocations in a hcp transition metal like Zr, as described
above. More reliable atomistic simulations, incorporating a
description of the electronic structure, are therefore needed to
confirm this easy glide of screw dislocations in pure zirconium.

This article aims to use ab initio calculations so as to
fully characterize the core structure of a 1/3〈12̄10〉 screw
dislocation in zirconium and estimate its Peierls stress. We
also examine generalized stacking faults as dislocation core
structures are closely related to them. Two different ab initio
methods, SIESTA26 and PWSCF,27 have been used. SIESTA offers
the advantage of efficiency, allowing simulating more atoms
than with a standard ab initio code, whereas PWSCF offers the
advantage of robustness. All calculations are also performed
with Mendelev and Ackland EAM potential,24 so as to identify
its ability to model dislocations in zirconium. In addition, this
empirical potential is used to study the convergence of our
results with the size of the simulation cell.

II. ATOMIC INTERACTION MODELING

Atomistic simulations have been performed both with an
empirical interatomic potential and with ab initio calculations.
The empirical potential that we used is the EAM potential
developed by Mendelev and Ackland.24 This potential is
labeled #3 in Ref. 24. It is supposed to be well suited to model
dislocations, as ab initio values28 of the stacking fault energies
in the basal and prism planes have been included in the fitting
procedure. Using this potential, Khater and Bacon25 showed
that a 1/3〈12̄10〉 screw dislocation spontaneously dissociates

144104-11098-0121/2012/86(14)/144104(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.144104


EMMANUEL CLOUET PHYSICAL REVIEW B 86, 144104 (2012)

in the prism plane and that a metastable configuration
dissociated in the basal plane also exists.

The ab initio calculations are relying on the density func-
tional theory (DFT) in the generalized gradient approximation
(GGA) with the functional proposed by Perdew, Burke, and
Ernzerhof (PBE) and the pseudopotential approximation. Two
different ab initio codes are used, SIESTA26 and PWSCF.27

In the SIESTA code,26 valence electrons are described by a
localized basis set corresponding to a linear combination of
pseudoatomic orbitals with 13 functions per atom. We used
a norm conserving pseudopotential of Troulliers-Martins type
with 4p electrons included as semicore. Electronic density
of state is broadened with the Methfessel-Paxton function
with a broadening of 0.3 eV, and the integration is performed
on a regular grid of 14 × 14 × 8 k-points for the primitive
hcp unit cell and an equivalent density of k-points for the
supercells used for the defect calculations. The charge density
is represented on a real space grid with a spacing of 0.08 Å
(mesh cutoff: 450 Ry) that is reduced to 0.06 Å (800 Ry)
for dislocation calculations. This approach, i.e., the basis and
the pseudopotential, has already been used to study vacancy
diffusion in zirconium,29 and comparison with plane waves
DFT calculations has led to a reasonable agreement.

In the PWSCF code,27 valence electrons are described
with plane waves using a cutoff energy of 28 Ry. The
pseudopotential is ultrasoft of Vanderbilt type with 4s and
4p electrons included as semicore.30 The same k-point grid
and the same electronic broadening are used as with SIESTA

code.
To validate these different atomic interaction models, it

is worth comparing their results to available experimental
data for some bulk properties of Zr. All models lead to
an equilibrium lattice parameter and a c/a ratio in good
agreement with experimental data (Table I). In particular, a
ratio lower than the ideal

√
8/3 ∼ 1.633 value is obtained in

all cases.

TABLE I. Bulk properties of hcp Zr calculated with different
atomic interaction models and compared to experimental data: lattice
parameter a, c/a ratio of the hexagonal lattice, relaxed elastic
constants Cij , inner elastic constants (Ref. 31) eij and dij , phonon
frequencies ω1 and ω3 of the optical branches at the � point [Eq. (1)],
inner elasticity contribution to elastic constant δC12 [Eq. (2)].

Expt. EAM SIESTA PWSCF

a (Å) 3.232 (Ref. 32) 3.234 3.237 3.230
c/a 1.603 (Ref. 32) 1.598 1.613 1.601
C11 (GPa) 155.4a 142.0 140.0 140.0
C33 (GPa) 172.5a 168.0 168.0 168.0
C12 (GPa) 67.2a 75.0 86.0 70.0
C13 (GPa) 64.6a 76.0 68.0 65.0
C44 (GPa) 36.3a 44.0 24.0 26.0
C66 (GPa) 44.1a 33.5 27.0 35.0
e11 (meV Å−5) 27.0 17.0 18.6
e33 (meV Å−5) 118.0 122.0 101.0
d21 (meV Å−4) 30.0 38.9 36.6
ω1 (THz) 2.66 ± 0.02 (Ref. 33) 2.60 2.08 2.16
ω3 (THz) 4.23 ± 0.15 (Ref. 33) 5.43 5.57 5.03
δC12 (GPa) 5.33 14.3 11.5

aExperimental elastic constants (Ref. 34) have been measured at 4 K.

We also compared the theoretical elastic constants with
experimental data (Table I): A good agreement is also obtained.
The computed elastic constants are the relaxed ones:35 As
the hcp lattice contains two atoms in its primitive unit cell,
some internal degrees of freedom may exist when applying a
homogeneous strain. One needs to allow for atomic relaxations
when computing C11, C12, or C66 constants.31 It is also possible
to calculate inner elastic constants to characterize these internal
degrees of freedom. These are also given in Table I using the
notations introduced by Cousins.31 Two of these inner elastic
constants, e11 and e33, are related to the phonon frequencies of
the optical branches at the � point31

ωi = 2

√
�eii

m
, (1)

where � = a2c
√

3/4 is the atomic volume and m the atomic
mass. The last inner elastic constants d21 couples the internal
degrees of freedom to the homogeneous strain. It leads to a
contribution to the elastic constants31

δC12 = d21
2

e11
. (2)

If C0
ij are the unrelaxed elastic constants, i.e., the elastic

constants calculated by imposing a homogeneous strain to
the hcp lattice without letting atoms relax from their initial
positions, the true elastic constants are given by31 C11 =
C0

11 − δC12, C12 = C0
12 + δC12, and C66 = C0

66 − δC12, all
other elastic constants being unchanged.

III. STACKING FAULT ENERGIES

Dislocation dissociation is controlled by the existence
of a metastable stacking fault for the corresponding plane.
According to the results obtained by Khater and Bacon25 with
Mendelev and Ackland EAM potential,24 a 1/3〈12̄10〉 screw
dislocation can dissociate either in a basal or in a prism plane.
To characterize these eventual dissociations, we compute
generalized stacking fault energies14,36—or γ -surfaces—for
both the basal and the prism planes.

A. Methodology

γ -surfaces describe the energy variation when two parts
of a crystal are rigidly shifted for different fault vectors
lying in a given crystallographic plane. Atoms are allowed
to relax in the direction perpendicular to the fault plane. We
calculate these γ -surfaces for both the basal and prism planes
using full periodic boundary conditions. To introduce only
one fault in the simulation cell, the same shift as the one
corresponding to the fault vector is applied to the periodicity
vector perpendicular to the fault plane. No free surfaces are
therefore introduced in the simulation cell, which allows a fast
convergence of the fault energies with the number of stacked
planes. A periodic stacking of at least 16 {0001} planes is used
for the basal fault and 12 {101̄0} planes for the prismatic
fault. This corresponds to a distance between fault planes
h0001 = 8c ∼ 41 Å and h101̄0 = 6

√
3a ∼ 34 Å. Increasing the

number of planes in the stacking modifies the energies by
less than 1 mJ m−2. Generalized stacking fault energies are
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calculated on a regular grid of 10 × 10 fault vectors and are
then interpolated with Fourier series.

B. γ -surfaces

1. Basal plane

γ -surfaces corresponding to the basal plane are shown in
Fig. 1 for the three interaction models we used. In all cases, a
local minimum can be found at 1/3[11̄00] which corresponds
to the intrinsic I2 fault.38 This minimum does not vary when
full atomic relaxations are allowed instead of being constrained
to the direction perpendicular to the fault plane. All methods
give a close value for the fault energy γb in this minimum

(a) Pwscf - basal plane
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(c) EAM - basal plane
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FIG. 1. (Color online) Generalized stacking fault energy in
the basal plane calculated with (a) PWSCF, (b) SIESTA, and
(c) EAM potential. The arrows indicate Burgers vectors of the partial
dislocations corresponding to a dissociation in the basal plane. The
dashed line is the [11̄00] direction used in Fig. 2. Contour lines are
drawn at the base every 50 mJ m−2.
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FIG. 2. (Color online) Generalized stacking fault energy in the
basal plane along the [11̄00] direction (cf. Fig. 1) calculated with
PWSCF, SIESTA, and EAM potential.

(Table II). A good agreement is also obtained with the values
calculated by Domain et al.28 and by Udagawa et al.37 using
VASP ab initio code. The depth of this local minimum is more
pronounced with the empirical EAM potential [Fig. 1(c)] than
in ab initio calculations [Figs. 1(a) and 1(b)]. This appears
clearly in Fig. 2 where the fault energy predicted by the
different interaction models are compared along the [11̄00]
direction. We will see later that this has consequences on the
stability of a screw dislocation dissociated in the basal plane.

The γ -surface calculated with the EAM empirical potential
has another minimum located in 2/3[11̄00]. This is an artifact
of the potential: One expects instead a maximum as this fault
vector transforms the original BABABA stacking of the basal
planes in a BABBCB stacking. Ab initio calculations confirm
that this fault vector gives a maximum. Finally, it is worth
pointing that both ab initio techniques give a very similar
γ -surface: The shapes are identical and the amplitudes do not
differ by more than 10%.

2. Prism plane

γ -surfaces for the prism plane are shown in Fig. 3. Both
ab initio methods lead to a similar γ -surface [Figs. 3(a)
and 3(b)]. In particular, both PWSCF and SIESTA predicts the
existence of a minimum at halfway of the Burgers vector, i.e.,
in 1/6 [12̄10]. Like for the basal fault, this minimum does
not vary when full atomic relaxations are allowed. As can be
seen on the projection of these γ -surface along the [12̄10]
direction (Fig. 4), this minimum is a little more pronounced
with PWSCF than with SIESTA. The same minimum was also
present in the VASP calculations of Domain et al.,28 but they
obtained a lower value γp of the fault energy in this point
(Table II). On the other hand, Udagawa et al.37 obtained a
value close to our result using also VASP ab initio code with
the PAW method and the PBE-GGA functional. They pointed
out that the discrepancy arises from an insufficient number of
stacked planes in the γ -surface calculation of Domain et al.
The energy of the metastable stacking fault energy in the prism
plane appears therefore higher than the value 145 mJ m−2

initially suggested by Domain et al.:28 both our PWSCF39 and
SIESTA calculations, as well as the Udagawa et al. result,37

leads to a value of about 200 mJ m−2.
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TABLE II. Stacking fault energies in the basal plane, γb, and in the prism plane, γp, calculated with different atomic interaction models,
including VASP calculations of Domain et al. (Ref. 28) and of Udagawa et al. (Ref. 37). R is the ratio defined by Legrand (Ref. 5), and d

eq
b and

d
eq
p are the dissociation lengths of a screw dislocation respectively in the basal [Eq. (5)] and in the prism plane [Eq. (6)].

EAM SIESTA PWSCF VASP (Ref. 28) VASP (Ref. 37)

γb (mJ m−2) 198.0 199.0 213.0 200.0 227.0
γp (mJ m−2) 135.0 (274.0)a 233.0 211.0 145.0 197.0
R = C66γb/C44γp 1.12 0.96 1.36 1.85 2.1
d

eq
b (Å) 4.0 2.0 2.7 3.4 3.2

d
eq
p (Å) 7.8 4.6 5.9 9.6 7.4

aFor the EAM calculation of the prismatic stacking fault energy, the value in parenthesis corresponds to the maximum in a/6[12̄10], whereas
the lower value corresponds to the true minimum in a/6 [12̄10] + 0.14c [0001].

(a) Pwscf - prism plane
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FIG. 3. (Color online) Generalized stacking fault energy in
the prism plane calculated with (a) PWSCF, (b) SIESTA, and
(c) EAM potential. The arrows indicate Burgers vectors of the
partial dislocations corresponding to a dissociation in the prism plane.
Contour lines are drawn at the base every 75 mJ m−2.

The γ -surface calculated with the EAM potential is quite
different [Fig. 3(c)] as the point located in 1/6 [12̄10] is indeed
a maximum and not a minimum like with ab initio calculations.
A minimum is found for a point located in a/6 [12̄10] +
0.14c [0001]. One therefore expects that a 1/3〈12̄10〉{101̄0}
dislocation dissociates into two partial dislocations with a
Burgers vector component orthogonal to the one of the perfect
dislocation. In particular, a screw dislocation should dissociate
in two partial dislocations with a small edge character. Khater
and Bacon25 showed that the empirical potential of Ackland
et al.40 suffers from the same artefact. As noted by Bacon
and Vitek,41 all central force potentials stabilize indeed such a
stacking fault a/6 [12̄10] + αc [0001] with α �= 0, a minimum
also predicted by a simple hard sphere model.42 This minimum
either disappears or is located exactly in a/6 [12̄10] (α = 0)
only when the angular dependence of the atomic interactions
is taken into account. The value γp of the stacking fault energy
obtained with Mendelev and Ackland EAM potential24 for this
minimum is much lower than our ab initio value (Table II).
This is quite normal as Mendelev and Ackland used the ab
initio value of Domain et al. to fit their potential.

C. Dislocation dissociation

Before using atomistic simulations to obtain dislocation
core structures and their associated Peierls stress, it is
worth looking at what can be learned from these γ -surface
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FIG. 4. (Color online) Generalized stacking fault energy in the
prism plane along the [12̄10] direction calculated with PWSCF, SIESTA,
and EAM potential.
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calculations. Legrand5 proposed a criterion based on the
elastic constants and the metastable stacking fault energies
to determine if glide occurs in the base or prism plane in a hcp
crystal. According to this criterion, prismatic glide is favored
if the ratio R = C66γb/C44γp is larger than 1. Table II shows
that this is the case for the EAM potential and the PWSCF

calculation, as well as for the VASP calculation of Domain
et al.28 and of Udagawa et al.37 On the other hand, SIESTA

leads to a value too close to 1 to be able to decide between
basal and prismatic glide.

One can also use dislocation elasticity theory43 to compute
the dissociation distance of a dislocation both in the basal
and prism planes. According to elasticity theory, the energy
variation caused by a dissociation of length d is

�Ediss(d) = −b
(1)
i Kij b

(2)
j ln

(
d

rc

)
+ γ d, (3)

where b(1) and b(2) are the Burgers vectors of each partial
dislocation, γ the corresponding stacking fault energy, K the
Stroh matrix44,45 controlling dislocation elastic energy, and
rc the core radius. Minimization of this energy leads to the
equilibrium dissociation length

deq = b
(1)
i Kij b

(2)
j

γ
. (4)

When the hcp crystal is oriented with the x, y, and z axis
respectively along the [101̄0], [0001], and [12̄10] directions,
for a dislocation lying along the z direction, the K matrix is
diagonal with its components given by46–48

K11 = 1

2π
(C̄11 + C13)

√
C44(C̄11 − C13)

C33(C̄11 + C13 + 2C44)
,

K22 =
√

C33

C11
K11,

K33 = 1

2π

√
1

2
C44(C11 − C12),

where C̄11 = √
C11C33.

The γ -surface of the basal plane (Fig. 1) indicates a
possible dissociation 1/3[12̄10] → 1/3[11̄00] + 1/3[01̄10].
The dissociation length in the basal plane is then, for a
1/3[12̄10] screw dislocation,

d
eq
b = (3K33 − K11)a2

12γb
. (5)

According to the minimum of the γ -surface in the prism
plane (Fig. 3), a 1/3[12̄10] dislocation can dissociate in
this plane in two partial dislocations with Burgers vectors
1/6[12̄10] ± αc/a[0001]. The parameter α controls the posi-
tion of the stacking fault minimum along the [0001] direction,
i.e., α = 0 for PWSCF and SIESTA, and α = 0.14 for the EAM
potential. The dissociation length of a screw dislocation in the
prism plane is then

deq
p = (K33a

2 − 4α2K22c
2)

4γp
. (6)

The dissociation lengths d
eq
b and d

eq
p calculated from the

elastic constants and the stacking fault energies are given in

Table II. Elastic constants predicted by the atomic interaction
models are used in each case. For all energy models, one
expects a larger dissociation in the prism than in the basal
plane. We will compare in the following section these
dissociation lengths predicted by elasticity theory with the
ones observed in our atomistic simulations of the dislocation
core structure.

IV. SCREW DISLOCATION CORE

A. Methodology

Our atomistic simulations of the core structure of a screw
dislocation are based on full periodic boundary conditions.49

This requires introducing a dislocation dipole in the simulation
cell. Two periodic arrangements of the dislocations have been
used (Fig. 5). In the O arrangement, dislocations with opposite
Burgers vectors are located on the same prism and basal planes,
i.e., the two foreseen glide planes. On the other hand, only
dislocation with the same Burgers vectors can be found on a
given prism or basal plane in the S arrangement.

Periodicity vectors of the O arrangement are, before intro-
ducing the dislocations, �U1 = na 1

2 [101̄0] − mc[0001], �U2 =
na 1

2 [101̄0] + mc[0001], and �U3 = a 1
3 [12̄10]. The integers n

and m are taken equal to keep an aspect ratio close to
a square. This simulation cell has been used for ab initio
calculations with n = 4 (128 atoms), n = 5 (160 atoms), and
n = 6 (288 atoms).

For the S arrangement, �U1 = na 1
2 [101̄0], �U2 = mc[0001],

and �U3 = a 1
3 [12̄10]. Ab initio calculations have been per-

formed with n = m and varying between n = 5 (100 atoms)
and n = 8 (256 atoms).

Both dislocation arrays are quadrupolar: The vector join-
ing the two dislocations composing the primitive dipole is
�D = 1/2( �U1 + �U2). Because of the centrosymmetry of this

arrangement and the symmetry properties of the Volterra
elastic field, this ensures that the stress created by other
dislocations is minimal at each dislocation position. The cut
vector �A defining the dislocation dipole is obtained by a π/2
rotation of �D.

The dislocation dipole is introduced in the simulation cells
by applying to all atoms the elastic displacement predicted
by anisotropic elasticity theory,44,45 taking full account of the

FIG. 5. Screw dislocation periodic arrangements used for atom-
istic simulations. �U1 and �U2 are the periodicity vectors of the
arrangement, and �A the cut vector of the dislocation dipole. The
thin vertical line corresponds to the prism glide plane.
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periodic boundary conditions.50 A homogeneous strain is also
applied to the simulation cell so as to cancel the plastic strain
introduced by the dislocation dipole and minimize the elastic
energy. This strain is given by

ε0
ij = −biAj + bjAi

2S
,

where S = |( �U1 ∧ �U2) · �ez| is the surface of the simulation
cell perpendicular to the dislocation lines. This homogeneous
strain adds some tilt components to the periodicity vectors.
Atoms are then relaxed until all components of the atomic
forces are smaller than 5 meV Å−1 for SIESTA, 2 meV Å−1 for
PWSCF, and 0.1 meV Å−1 for the EAM potential.

B. Core structure

Starting from perfect dislocations, atom relaxation leads to
dislocations spread in the prism plane, whatever the interaction
model (EAM, SIESTA, or PWSCF) and whatever the simulation
cell used. This can be clearly seen by plotting differential
displacement maps as introduced by Vitek.51 These maps
(Fig. 6) show that the strain created by the screw dislocation
spreads out in the (101̄0) prism plane and that displacements
outside this plane are much smaller.

To characterize this spreading in the (101̄0) prism plane,
we extract from our atomistic simulations the disregistry D(x)
created by the dislocation. This is defined as the displacement
difference between the atoms in the plane just above and
those just below the dislocation glide plane. The derivative
of this function ρ(x) = ∂D/∂x corresponds to the dislocation
density. Figure 7 shows the disregistry obtained for the three
interaction models. In all cases, the b discontinuity created
by the screw dislocation does not show a sharp interface, but
spreads on a distance ∼10 Å.

Peierls52 and Nabarro53 built a model that leads to a simple
expression of the disregistry. The analytical expression they
obtained43 can be extended to a dissociated dislocation. As
suggested by the prismatic γ -surface (Fig. 3), we assume
that the screw dislocation dissociates in two equivalent partial

(a) Pwscf

[101
-
0]

[0001]

[12
-
10]

(b) Siesta (c) EAM

FIG. 6. Differential displacement maps around one of the two
1/3[12̄10] screw dislocations composing the dipole for the S periodic
arrangement with n = m = 7 (196 atoms). Atoms are sketched by
circles with a color depending on the (12̄10) plane to which they
belong. The arrow between two atomic columns is proportional to
the [12̄10] component of the differential displacement between the
two atoms. Displacements smaller than 0.1b are not shown. Crosses
× correspond to the positions of the two partial dislocations, and +
to their middle, i.e., the position of the total dislocation.
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FIG. 7. (Color online) Disregistry D(x) created by the screw
dislocation in the prism plane and corresponding dislocation density
ρ(x) = ∂D(x)/∂x for the S periodic arrangement with 196 atoms
(n = m = 7). Symbols correspond to atomistic simulations and lines
to the fit of the Peierls-Nabarro model to these data. For clarity,
disregistries D(x) have been shifted by 0.25 between the different
interaction models.

dislocation separated by a distance d. Based on the Peierls-
Nabarro model, we write the disregistry created by a single
dislocation

Ddislo(x) = b

2π

{
arctan

[
x − x0 − d/2

ζ

]

+ arctan

[
x − x0 + d/2

ζ

]
+ π/2

}
, (7)

where x0 is the dislocation position, d its dissociation length,
and ζ the spreading of each partial dislocation. We need then to
take into account that we do not have only one dislocation on a
given prism plane but a periodic array (Fig. 5). The disregistry
created by an array of period L is

DL(x) =
∞∑

n=−∞
Ddislo(x − nL)

= b

2π

{
arctan

[
tan

(
π
L

[x − x0 − d/2]
)

tanh
(

πζ

L

)
]

+ π

⌊
x − x0 − d/2

L
+ 1

2

⌋

+ arctan

[
tan

(
π
L

[x − x0 + d/2]
)

tanh
(

πζ

L

)
]

+ π

⌊
x − x0 + d/2

L
+ 1

2

⌋}
, (8)

where �·� is the floor function. For the O arrangement
[Fig. 5(a)], the disregistry in the prism plane should be given
by D(x) = DL(x) − DL(x − L/2) with L = 2mc, whereas it
should be D(x) = DL(x) with L = mc for the S arrangement
[Fig. 5(b)].
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FIG. 8. (Color online) Dissociation length of the screw disloca-
tion. Symbols correspond to data extracted from atomistic simulations
through the fit of the disregistry [Eq. (8)] for both the O and S periodic
arrangements and for different sizes of the simulation cell. The solid
lines are the predictions of elasticity theory based on the stacking
faults (Table II). On the right vertical axis, the experimental c lattice
parameter has been used to normalize the dissociation length by the
distance λP = c/2 between Peierls valleys.

We fit this analytical expression of the dislocation dis-
registry to the data coming from the atomistic simulations.
Figure 7 shows a good agreement between atomistic simu-
lations and the model, using only three fitting parameters:
the dislocation position x0, the dissociation length d, and the
spreading ζ . This procedure therefore allows us to determine
the location of the dislocation center. For all interaction
models, we find that this center lies in between two (0001)
atomic planes. One can see in Fig. 6 that this position
corresponds to a local symmetry axis of the differential
displacement map. This is different from the result obtained by
Ghazisaeidi and Trinkle13 in Ti where the center of the screw
dislocation was found to lie exactly in one (0001) atomic plane,
a position that corresponds in Zr to the saddle point between
two Peierls valleys, as will be shown below.

The dissociation length of the screw dislocation obtained
through this fitting procedures are shown in Fig. 8 for
both periodic arrangements. We observe variations with the
dislocation periodic arrangement used in the simulation, as
well as with the size of the simulation cell. The results
are nevertheless close to the predictions of elasticity theory
(Sec. III C) for all three interaction models. We could even
see with the EAM potential that the dissociation lengths
extracted from atomistic simulations converge to the value
given by elasticity theory for large enough unit cells. It is thus
relevant to describe the screw dislocation as dissociated in two
partial dislocations linked by a stacking fault, although the
dissociation length remains small.

C. Core energy

We obtain the dislocation core energy by subtracting the
elastic energy from the excess energy given by the atomistic
simulations. This excess energy is the energy difference
between the simulation cell containing the dislocation dipole
and the same cell without any defect. The elastic energy
calculation takes into account the elastic anisotropy44,45 and
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FIG. 9. (Color online) Core energy of the screw dislocation
obtained for different sizes of the atomistic simulation cell and for
both the O and S periodic arrangements (rc = b).

the effect of periodic boundary conditions.50 The obtained core
energy are shown in Fig. 9. Like for the dissociation length,
some variations with the size of the simulation cell and the
periodic arrangement can be observed. We did not manage to
link both quantities, i.e., the core energy and the dissociation
length. They are not simply related by the expression of the
energy variation with the dissociation length [Eq. (3)], and the
change of the elastic interaction between dislocations caused
by their dissociation could not fully explain the variation of
the core energy either. As the spreading of partial dislocations
also depends on the size of the simulation cells, the variation
of the core energy probably have a more complex origin than
simply a variation of the dissociation length.

We could use, with the EAM potential, a simulation cell
large enough to obtain a converged value of the core energy,
163 meV Å−1 for a core radius rc = b. It is worth pointing
that this value does not depend on the periodic arrangement
used in the simulation (Fig. 9). This can be achieved thanks
to a proper account of the core traction contribution to the
elastic energy.54 A difference of ∼10 meV Å−1 would have
been observed between the S and O periodic arrangement
without this contribution. Ab initio calculations lead to a
dislocation core energy of 145 ± 5 meV Å−1 for SIESTA and
125 ± 5 meV Å−1 for PWSCF (rc = b in both cases).

D. Dissociation in the basal plane

Basal slip is observed experimentally only at high temper-
ature (above 850 K) and for a higher resolved shear stress
than the one needed to activate prismatic slip.55 At lower
temperatures, no basal slip could be observed,3,56 even when
the monocrystal was oriented so as to favor basal slip. Our
atomistic simulations lead to a screw dislocation configuration
dissociated in the prism plane, which clearly cannot glide
easily in the basal plane. It is worth looking if another
configuration, which could glide in this basal plane, also exists.

Using the same EAM potential, Khater and Bacon25 showed
that a screw dislocation can also dissociate in the basal plane.
The basal configuration is obtained by introducing in the
same basal plane two partial dislocations of Burgers vector
1/3[11̄00] and 1/3[01̄10], in agreement with the location of the
minimum on the basal γ -surface (Fig. 1). After relaxation of
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FIG. 10. Differential displacement map of the metastable config-
uration of a 1/3[12̄10] screw dislocation dissociated in the basal
plane, as obtained with the EAM potential for the O periodic
arrangement with n = 6 (288 atoms). Crosses × correspond to the
positions of the two partial dislocations, and + to their middle, i.e.,
the position of the total dislocation.

the atomic positions, the dislocation remains dissociated in the
basal plane, as can be seen from the corresponding differential
displacement map (Fig. 10). A fit of the screw component of
the disregistry created by the dislocation in the basal plane
leads to a dissociation length d = 6.0 Å, a higher value than
predicted by elasticity theory (Table II). This configuration is
metastable. It has indeed an energy higher by 62 meV Å

−1

than the configuration dissociated in the prism plane.
We check if ab initio calculations also lead to such a

metastable configuration. Starting from a screw dislocation
dissociated in two partial dislocations in the basal plane,
both SIESTA and PWSCF lead after relaxation of the atomic
positions to the stable configuration dissociated in the prism
plane. This is true both with the S (n = 5) and the O (n = 4)
periodic arrangements. These ab initio calculations show then
that such a dissociation of the screw dislocation in the basal
plane is unstable. The metastable configuration observed with
the EAM potential appears to be an artifact of the empirical
potential. This is not specific to the Mendelev and Ackland
potential24 as a configuration dissociated in the basal plane is
stabilized by any central forces potential.25,41,57

V. PEIERLS BARRIER

Before calculating ab initio the Peierls barrier of the screw
dislocation, we use the EAM potential to assess the validity of
the method and to check the convergence of the Peierls barrier
with the size of the simulation cell.

A. Methodology

We determine the Peierls barrier for the screw dislocation
gliding in the prism plane. This is done using a constrained
minimization between two adjacent equilibrium configura-
tions of the dislocations. We move both dislocations in the
same direction by one Peierls distance λP = c/2 between the
initial and final states, so as to keep constant the distance
between dislocations.

Two different algorithms are used to perform the con-
strained minimization, the simple drag method and the more
robust nudged elastic band (NEB) method.58 Intermediate
configurations are built by linearly interpolating the atomic
coordinates between the initial and final states. We define
the corresponding reaction coordinate ζ = ( �X − �XI) · ( �XF −

�XI)/‖ �XF − �XI‖2, where �X, �XI, and �XF are the 3N vectors
defining atomic positions for respectively the intermediate,
initial, and final configurations. In the drag method, the
minimization is performed on all atomic coordinates with the
constraint that ζ remains fixed for each of the nine intermediate
images. Nine intermediate images are also used in NEB
method with a spring constant k = 0.1 eV Å−2.

So as to obtain the variation along the path of the dislocation
energy with its position, we need to determine the dislocation
position xDislo(ζ ) for each intermediate image, once it has been
relaxed. This is done thanks to a fit of the disregistry in the
prism plane, as described in Sec. IV B. This allows us to check
that both dislocations in the simulation cell are moving in a
coordinated way: The distance between them remains fixed.
As a consequence, there is no variation of the elastic energy
along the path and the energy variation �EP(ζ ) obtained by
the constrained minimization corresponds to a variation of the
core energy, i.e., the Peierls energy. We deduce the Peierls
energy �EP(xDislo) by eliminating the reaction coordinate ζ

between �EP(ζ ) and xDislo(ζ ).
Figure 11 illustrates the whole procedure for a given dislo-

cation periodic arrangement using both constrained minimiza-
tion techniques. The variation �EP(ζ ) slightly differs between
both techniques: For a given reaction coordinate ζ , the drag
method leads to a state of lower energy than the NEB method.
This corresponds to a small difference in the dislocation
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FIG. 11. (Color online) Peierls barrier of a screw dislocation
calculated with the EAM potential for the S periodic arrangement
with 1600 atoms (n = m = 20). Two different methods for finding
the minimum energy path have been used: the NEB method and a
simple constrained minimization (drag). Symbols correspond to the
results of atomistic simulations and lines to their interpolation with
Fourier series.
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position: This position deviates more with drag than with the
NEB method from a linear variation. Nevertheless, one obtains
at the end the same Peierls barrier �EP(xDislo), whatever the
method used. These differences observed for the functions
�EP(ζ ) and xDislo(ζ ) between drag and NEB methods increase
with the size of the simulation cell, i.e., with the number of
degrees of freedom. For large simulation cells (containing
more than 3600 atoms in the S periodic arrangement for
instance), the drag method sometimes fails to find a continuous
path between the initial and final states: One has to use the NEB
method in theses cases. Only much smaller simulation cells
can be studied ab initio. For these sizes, the drag and the NEB
methods always lead to the same result. We will therefore only
use the drag method in the ab initio calculations, as it costs
much less CPU time.

Finally, we interpolate with Fourier series the periodic
functions �EP(ζ ) and xDislo(ζ ) − λPζ . This leads to a smooth
function �EP(xDislo) that can be derived. The Peierls stress σP

is deduced from the maximal slope of this function,

σP = 1

b
Max

(
∂�EP

∂xDislo

)
. (9)

We obtain a Peierls stress σP = 24 ± 1 MPa for the
EAM potential. Khater and Bacon25 determined, for the
same empirical potential, a Peierls stress σP = 22 MPa using
molecular statics simulations under applied stress. As the
agreement between both methods is good, we see that the
Peierls stress can be defined either from the slope of the Peierls

 0

 0.2

 0.4

 0.6

 0.8

 0  0.25  0.5  0.75  1

ΔE
P
  (

m
eV

 Å
−

1 )

xDislo / λP

(a) S arrangement 100 atoms
144
256
400

1600
3600

 0

 0.1

 0.2

 0.3

 0.4

 0  0.25  0.5  0.75  1

ΔE
P
  (

m
eV

 Å
−

1 )

xDislo / λP

(b) O arrangement 392 atoms
800

3200

FIG. 12. (Color online) Variation of the Peierls barrier with the
size of the simulation cell calculated with the EAM potential for both
periodic arrangements.

barrier or from the minimal applied stress under which the
dislocation glides indefinitely.

We now examine, still with the EAM potential, how this
Peierls barrier varies when the size of the simulation cell
decreases up to reaching a number of atoms that can be
handled in ab initio calculations (Fig. 12). Both the S and O
periodic arrangements give the same Peierls barrier, and hence
the same Peierls stress, for a large enough simulation cell
(�1000 atoms). The Peierls barrier increases when the size of
the simulation cell decreases with the S periodic arrangement,
whereas it decreases with the O periodic arrangement. As
a consequence, the S and O periodic arrangement should
respectively lead to an upper and lower limit of the Peierls
stress for small simulation cells. We will therefore use the S
periodic arrangement to calculate ab initio this Peierls barrier.
This will allow us to confirm that the Peierls stress is as low as
indicated by experiments and this EAM potential. Moreover,
it is worth pointing out that the expected Peierls barrier should
be small: �EP = 0.4 meV Å−1 at the saddle point according to
the EAM potential. This corresponds to a difference of energy
2b�EP = 2.6 meV for a simulation cell of minimal height
containing a dislocation dipole. Such a small energy difference
may be problematic because of the precision of ab initio
calculations. Looking for an upper limit of this value is easier
as it minimizes the problems associated with this precision.

Finally, it is worth pointing that the dissociation length
varies during the dislocation migration, and this variation is
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FIG. 13. (Color online) Peierls barrier for a screw dislocation
gliding in its prism plane calculated ab initio with (a) PWSCF and
(b) SIESTA for the S periodic arrangement. Symbols correspond to ab
initio results and lines to their interpolation by Fourier series.
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more pronounced (∼10%) for the smallest simulation cells.
But, like for the core energy, we did not manage to relate the
size dependence of the Peierls barrier to this variation of the
dissociation length.

B. Ab initio barriers

The Peierls barriers obtained by ab initio calculations are
shown in Fig. 13(a) for PWSCF and Fig. 13(b) for SIESTA. In
both cases, the height of the barrier decreases when the number
of atoms increases, in agreement with what has been observed
with the EAM potential for the same S periodic arrangement.
For a given number of atoms, the ab initio barriers are a little
bit lower than the ones obtained with the EAM potential.
Results obtained with SIESTA are noisy: The energy barrier
that we want to calculate is so small that it needs a really
strict convergence criterion on atomic forces for the relaxation.
We did not manage to reach such precision with SIESTA. On
the other hand, the barriers obtained with PWSCF are smooth.
We can therefore interpolate the ab initio results with Fourier
series, and estimate then the Peierls stress [Eq. (9)]. This leads
to σP = 36 MPa for the simulation cell containing 100 atoms
and σP = 21 MPa for 144 atoms. Considering that these values,
obtained in small simulation cells, are upper limits, ab initio
calculations predict a Peierls stress smaller than 21 MPa for a
screw dislocation in zirconium gliding in a prism plane.

The comparison of this ab initio estimate of the Peierls
stress with experimental data2,3,19,56 is quite challenging. As
pointed out in the introduction, the yield stress of zirconium

strongly depends on its oxygen content. No experimental
data exists for a purity better than 0.07% O (in atomic
fraction). Moreover, all measurements have been performed
at temperatures higher than 77 K. The determination of pure
zirconium flow stress at 0 K therefore needs some extrapolation
of experimental data. Without a clear understanding of the
mechanisms responsible of zirconium hardening by oxygen
impurities, such an extrapolation is quite hazardous. Never-
theless, a graphical comparison (Fig. 14) of experimental data
with our ab initio Peierls stress shows a reasonable agreement,
keeping in mind that the value 21 MPa has to be considered as
an upper limit.

VI. CONCLUSIONS

Using two ab initio approaches (PWSCF and SIESTA), both in
the DFT-GGA approximation, we have shown that a 1/3〈12̄10〉
screw dislocation in hcp zirconium dissociates in two partial
dislocations with a pure screw character. This is in agreement
with the minimum in 1/6〈12̄10〉 found for the generalized
stacking fault energy in the prism plane. We could extract the
dissociation length from our atomistic simulations. Although
this dissociation length is small (d ∼ 6 Å for PWSCF and d ∼
4 Å for SIESTA), it is in reasonable agreement with the one
predicted by elasticity theory.

The EAM potential of Mendelev and Ackland24 leads to the
same structure of the dislocation dissociated in the prism plane.
The metastable configuration dissociated in the basal plane
predicted by this potential is not stable in ab initio calculations,
both with PWSCF and SIESTA. This configuration is therefore
an artifact of this potential, probably induced by the deep
minimum in 1/3〈11̄00〉 found with this empirical potential for
the generalized stacking fault in the basal plane. This minimum
is much more shallow in ab initio calculations.

We could also obtain an ab initio estimate of the Peierls
stress of the screw dislocation gliding in the prism plane.
Calculations with PWSCF lead to an upper limit of 21 MPa
for this Peierls stress. This small value shows that screw
dislocations can glide quite easily in pure zirconium, thus
confirming what had been obtained with Mendelev and
Ackland EAM potential. Such a small Peierls stress is in
agreement with experimental data, once the hardening of
oxygen impurities has been considered.
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