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Bending modes, anharmonic effects, and thermal expansion coefficient
in single-layer and multilayer graphene
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We present a simple analytical approach to study anharmonic effects in single-layer, bilayer, and multilayer
graphene. The coupling between in-plane and out-of-plane modes leads to negative Grüneisen coefficients and
negative thermal expansion. The value of the thermal expansion coefficient depends on the coupling to the
substrate. The bending rigidity in bilayer graphene shows a crossover between a long wavelength regime where
its value is determined by the in-plane elastic properties, and a short wavelength regime where its value approaches
twice that of a single layer.
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I. INTRODUCTION

To realize the full potential of graphene layers in promising
applications, such as the design of fast electronic devices or
sensitive and accurate molecular detectors, it is important to
gain a thorough understanding of the properties of graphene
down to the atomic level.1,2 Perfect graphene is found as a
flat honeycomb lattice where carbon atoms form efficient and
strong bonds; both experimentally and theoretically, it has
been proven that this kind of arrangement results in a material
with the largest known in-plane elastic constants to date.3–5

However, departures from this perfect configuration caused
by rippling, corrugation, deformation, etc., are interesting to
study since they affect electronic and heat transport and all
sorts of mechanical properties.6–10 In this work, we analyze
a simple model based on the theory of elasticity to obtain
physical insight into the Grüneisen coefficients and the thermal
expansion coefficient of graphene, which can be compared to
atomistic models based on ab initio density functional theory,
which yields a realistic quantitative description of bending
modes and corrugations appearing at the atomic scale.11

II. SINGLE-LAYER GRAPHENE

We study anharmonic effects using the continuum theory of
elasticity. We extend previous analyses12,13 using the standard
theory of free-standing membranes.6–8,10 The Hamiltonian is14
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where ρ is the mass density, �u is the two-dimensional (2D)
displacement vector, h is the displacement in the out-of-plane

direction, κ is the bending rigidity, and λ and μ are 2D elastic
Lamé coefficients (for 3D elastic constants, we use the notation
cij ). For graphene, we have κ ≈ 1 eV, λ = 2 eV Å−2, and
μ = 10 eV Å−2.5

We study the modes associated with the out-of-plane
displacements. If we assume that there are no in-plane tensions,
∂iuj = 0, and we neglect the quartic terms in h, we obtain

ω�q =
√

κ|�q|4/ρ. This is the well known dispersion relation
for out-of-plane flexural modes. We now analyze how these
frequencies are modified when the in-plane lattice constant is
modified. An isotropic change of the lattice constant by a factor
ū can be included in the Hamiltonian, Eq. (1), by assuming that
∂xux = ∂yuy = ū. The effective Hamiltonian for h, expanded
to second order, becomes

Hflex =
∫

d2�r
{
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2
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)

+ (λ + μ)ū[(∂xh)2 + (∂yh)2]

}
. (2)

The new frequencies of the flexural phonons are

ω�q =
√

κ|�q|4 + 2 (λ + μ) ū|�q|2
ρ

. (3)

The derivative of the phonon frequency with respect to a
change in the area of the unit cell A is

γ�q = − A
ω�q

∂ω�q
∂A = − 1

2ω�q

∂ω�q
∂ū

∣∣∣∣
ū=0

= − λ + μ

2κ|�q|2 , (4)

where γ�q is the Grüneisen parameter. We obtain a negative
Grüneisen parameter for all low-frequency flexural modes,
which diverge for |�q| → 0 as |�q|−2. This expression is valid
for momenta much smaller than the inverse of the interatomic
spacing a, |�q| � a−1. This result is consistent with a number
of numerical calculations, which show negative Grüneisen
coefficients for flexural modes, which tend to diverge at low
momenta.4,5,15,16

Within the harmonic approximation, the estimate of the
Grüneisen parameters in Eq. (4) allows us to obtain the thermal
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expansion coefficient,10

α = kB

A (λ + μ)

∑
�q

(
h̄ω�q

2kBT

)2
γ�q

sinh2
( h̄ω�q

2kBT

) , (5)

where A is the area of the unit cell and we take into account
that the two-dimensional bulk modulus B = λ + μ. The sum
(in the thermodynamic limit it is replaced by an integral)
on the right-hand side of Eq. (5) is divergent at small q,
which is a consequence of the inapplicability of the harmonic
approximation at small q where renormalization of effective
bending rigidity and elastic moduli becomes relevant. The
crossover wave vector is6,10

q∗ =
√

3kBT Y

8πκ2
, (6)

where Y = 4μ(λ + μ)/(λ + 2μ) is the two-dimensional
Young modulus. Note that the corresponding phonon fre-
quency lies deep in the classical region:

h̄ω∗ = 3kBT

8π

Y√
κ3ρ

∼ kBT

√
m

M
� kBT , (7)

where m and M are the electron mass and the mass of a carbon
atom, respectively. With logarithmic accuracy,

α ≈ − kB

4πκ

∫ qT
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dq

q
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8πκ
ln
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16πκ
ln

κ3ρ

h̄2Y 2
,

(8)

where qT is the thermal wave vector satisfying the condition
h̄ω(qT ) = kBT . From the estimation in Eq. (8), we obtain α ≈
−10−5 K−1, a quite good estimation for such an oversimplified
model (cf. Refs. 4 and 5). Here we assume that the temperature
is smaller than the maximal energy of the flexural phonon,
Tm ≈ 15 THz ≈ 700 K,4 otherwise one needs to add the factor
Tm/T under the argument of the logarithm in Eq. (8).

Due to Eq. (7), phonons relevant for the thermal expansion
coefficient can be considered to be classical at any temperature.
This allows us to repeat the calculation of α, taking into account
anharmonic effects. Due to Eq. (2) and the Hellmann-Feynman
theorem, the derivative of the free energy F with respect to
the deformation at ū = 0 can be rigorously expressed via the
correlation function of out-of-plane displacements:

∂F
∂u

=
〈
∂Hflex

∂u

〉
= (λ + μ)

∑
−→q

q2〈|h−→q |2〉, (9)

and via the anharmonic self-energy 
(−→q ):

〈|h−→q |2〉 = kBT

κq4 + 
(−→q )
. (10)

The latter can be estimated from the condition that at q = q∗,
both terms in the denominator in Eq. (10) are of the same order
of magnitude:17


 (q) = A (YkBT )η/2 κ1−ηq4−η, (11)

where η ≈ 0.85 is the exponent of renormalization of the
bending rigidity. The numerical factor A was calculated within
the self-consistent screening approximation;18 it was also
shown that this approximation agrees quite well with the
atomistic Monte Carlo simulations. Substituting Eq. (11) into

Eq. (10) and further into Eq. (9), one can calculate the thermal
expansion coefficient

α = − 1

2(λ + μ)

∂2F
∂T ∂u

(12)

with anharmonic effects taken into account. With logarithmic
accuracy, the result coincides with Eq. (8) provided the upper
cutoff phonon energy is chosen as min(kBTm,kBT ). Thus, the
contribution of the flexural mode to the thermal expansion
coefficient is always negative and temperature independent
up to T ≈ Tm ≈ 700 K; at higher temperatures, it depends
on the temperature logarithmically. This means that the
inversion of the sign of the thermal expansion coefficient at
high temperature found in atomistic simulations5 is due to
contributions of other phonon modes.

This justifies the use of the quasiharmonic approximation
to estimate the contribution of flexural phonons to the thermal
expansion. From this point on, we will consider only this
approximation.

Finally, from Eq. (3) for the phonon frequencies, we can
estimate the momentum qc for which the value of ω2

�q becomes

negative for negative ū. We obtain qc = √
[(λ + μ)|ū|]/κ . For

ū = −0.04, we find qc ≈ 0.6 Å−1.

III. GRAPHENE ON A SUBSTRATE

The flexural modes of graphene on a substrate are modified
by the coupling to the substrate. The leading effect at long
wavelengths can be analyzed by considering the interaction
energy per unit area between the graphene layer and the
substrate, Vsubs(hsubs), where hsubs is the distance to the sub-
strate. The dispersion relation for the flexural modes becomes
ω|�q| ≈

√
[κ|�q|4 + V ′′(heq)]/ρ =

√
(ω0

�q)2 + ω2
0, where heq is

the equilibrium distance. We can get an estimate of V ′′(heq),

V ′′(heq) = V (heq)
d2

0
, (13)

where V (heq) is the binding energy per unit area of graphene
to the substrate, and d0 is a length scale such that d0 � heq. The
binding energy between graphene and the substrate depends on
the precise attraction mechanism19 between the two materials,
and it is likely bound by the van der Waals interactions. A
reasonable range of values is 5–50 meV Å−2. For d0 ≈ 2 Å,
we find h̄ω0 ≈ 1–4 meV. The value of ω0 provides a cutoff
in the expression for the thermal expansion, Eq. (5). This
approximation is valid for substrates such that their binding to
graphene is not larger than the binding between two graphene
layers. The analysis is not applicable to graphene on metals,16

where the van der Waals interaction is much larger, due to the
high polarizability of the metal.20

Hence, the negative contribution of the flexural modes
is reduced at temperatures such that T ≈ (h̄ω0)/kB ≈ 10–
40 K. For kBT � h̄ω0, the thermal expansion of graphene
on a substrate should be similar to that of free-standing
graphene. At room temperature and V (heq) � 50 meV Å−2,
the anharmonic momentum cutoff q∗ [see Eq. (6)] is such that
q∗ � [V (heq)/κd2

0 ]1/4, and the thermal expansion of graphene
should be independent of the substrate.
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IV. BILAYER GRAPHENE

In a discrete stack made of weakly coupled slabs, we can expand the interlayer coupling assuming that the displacements vary
slowly as a function of the two-dimensional coordinate �r, u2

zz → (unz − un+1z/d)2, u2
xz + u2

yz → |(�rn+1 − �rn−1)/2 + ∇‖unz|2,
where d is the distance between the layers.

For two layers, an approximate expression is

E =
∑
i=1,2

Ei + Eint,

Ei =
∫

d2�r
[
λ

2
(uixx + uiyy)2 + μ

(
u2

ixx + u2
iyy + 2u2

ixy

) + κ

2

(
∂2
xxuiz + ∂2

yyuiz

)]
,

(14)

Eint =
∫

d2�r
{
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2

(
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d

)2
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2

[(
u1x − u2x

d
+ ∂xu1z + ∂xu2z

2

)2

+
(

u1y − u2y

d
+ ∂yu1z + ∂yu2z

2

)2]

+ g3

2

[
∂x(u1x + u2x) + ∂y(u1y + u2y)

2

(u1z − u2z)

d

]}
,

where the Lamé coefficients and bending rigidity in Ei are the same as in the Hamiltonian for a single layer, Eq. (1). For an
infinite three-dimensional stack, the parameters g1, g2, and g3 define a continuum model like the one in Eq. (20) with c33 = g1/d,
c13 = g3/d, and c44 = g2/d.

If we assume that g2 = 0, the in-plane and out-of-plane modes are decoupled. The equations of motion for the out-of-plane
modes are

ρ∂2
t t u1z = −κ

(
∂2
xx + ∂2

yy

)2
u1z − g1

d2
(u1z − u2z) ,

(15)
ρ∂2

t t u2z = −κ
(
∂2
xx + ∂2

yy

)2
u2z − g1

d2
(u2z − u2z) ,

where ρ is the two-dimensional mass density. In momentum space, we obtain two flexural modes, ω+(�k) =√
κ/ρk2, ω−(�k) =√

(κk4 + 2g1/d
2)/ρ, where k = |�k|.

For g2 �= 0, the phonon frequencies are obtained from the diagonalization of the 6 × 6 matrix. It can be split into two 3 × 3
matrices by using the combinations �r1 = ±�r2,u1z = ∓u2z. The low-energy modes are given by

0 = det

∣∣∣∣∣∣∣
(λ + 2μ)k2

x + μky + g2

d2 − ρω2 (λ + μ)kxky
g2kx

2d

(λ + μ)kxky (λ + 2μ)k2
y + μk2

x + g2

d2 − ρω2 g2ky

2d

g2kx

2d

g2ky

2d

g2k
2

4 + κk4 − ρω2

∣∣∣∣∣∣∣ . (16)

The out-of-plane displacement couples to the longitudinal
acoustical phonons. At low momenta, we have g2/d

2 � (λ +
2μ)k2, g2k

2, κk4, and we find

ρω2 ≈ g2k
2

4
+ κk4 − g2

2k
2/(4d2)

(λ + 2μ)k2 + g2/d2

≈ κk4 + (λ + 2μ)d2

4
k4

×
[

1 − O

(
(λ + 2μ)k2

g2/d2

)]
. (17)

The quartic term in this expression is consistent with the
continuum analysis described below. The flexural modes ac-
quire a contribution which is independent of the parameter g2,
and which scales with the three-dimensional bulk modulus and
with d3, as the relation between two- and three-dimensional
Lamé coefficients is λ,μ ∝ c12d,c66d.

For graphene (2D), κ � (λ + 2μ)d2, so that the second
term dominates in Eq. (17). The bending rigidity of a bilayer
should be significantly larger than that of a single layer,
provided that the interlayer shear rigidity g2 �= 0. Using again
λ = 2 eV Å−2 and μ = 10 eV Å−2, g2 = 0.03 eV, and

d = 3.3 Å, we find a crossover from a high to a low value
of the flexural rigidity at a length � = k−1 ≈ 55 Å. Note that
the atomistic simulations for finite-size crystallites in Ref. 21
deal with a larger k region giving approximately the same
values for the bending rigidity (per layer) for single-layer and
bilayer graphene.

The model in Eq. (14) can be generalized to an arbitrary
number of layers, as we show in Sec. V. The dispersion of the
flexural phonons for systems with a different number of layers
is shown in Fig. 1. The figure highlights the two regimes
discussed in the bending rigidity of a graphene multilayer:
(i) Above a crossover length, of order k−1

c , the bending
rigidity is given by the bending rigidity of an individual plane,
irrespective of the number of planes. This regime is shown in
the top plot where for k

kc
� 1 all curves coincide irrespective

of the number of layers. (ii) Below the crossover length, on the
other hand, the bending rigidity is determined by the in-plane
elastic constants and it depends on the number of layers, in
agreement with the general behavior of elastic plates.17 This
regime is better observed if energy and momentum are rescaled
with the number of planes in the multilayer, N , where now all
curves become indistinguishable for kN

kc
� 1 (bottom plot).
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By applying an in-plane strain, u, the frequencies in Eq. (17)
are reduced by

δ(ρω2) = −u(λ + μ)k2. (18)

This expression gives a Grüneisen parameter

γk = − λ + μ

2[κ + (λ + 2μ)d2]k2
≈ − λ + μ

2(λ + 2μ)d2k2
. (19)

This value is lower than the corresponding expression
for single-layer graphene, so that the negative expansion

coefficient is reduced in a graphene bilayer. The analy-
sis probably can be extended to graphite, although the
dispersion of the out-of-plane modes will no longer be
quadratic.

V. MULTILAYERED GRAPHENE:
CONTINUUM MODEL

The elastic energy of a slab which is isotropic in the xy

plane can be written as

E =
∫ h/2

−h/2
dz

∫
d2�r

[
c12

2
(uxx + uyy)2 + c33

2
u2

zz + c13(uxx + uyy)uzz + c66
(
u2

xx + u2
yy + 2u2

xy

) + 2c44
(
u2

xz + u2
yz

)]
, (20)

where we use the notation cij for the elastic constants instead
of Lamé coefficients.

We assume that the slab is sufficiently narrow so that the
stresses at the top and bottom surface do not differ much. The
boundary conditions are14

0 = σzz = c33uzz + c13(uxx + uyy),

0 = σxz = 2c44uxz, (21)

0 = σyz = 2c44uyz.

FIG. 1. (Color online) Log-log plot of the dispersion of the
flexural modes in graphene multilayers (k2

c = κ

[(λ+2μ)d2]
). Top panel:

From bottom to top: 2, 4, 8, 16, and 32 layers. Bottom panel: as in
the top graph, with k and wk rescaled to the number of layers, N .

From these equations, we obtain

uzz = −c13(uxx + uyy)

c33
,

ux = −z∂xuz,
(22)

uy = −z∂yuz,

uxx + uyy = −z
(
∂2
xxuz + ∂2

yyuz

)
.

Finally, the frequencies of the flexural modes are given by

ρω2 = h2

12

[
λ + 2μ − c2

13

c33

]
k4. (23)

This expression does not depend on the value of c44, but the
value of this parameter must be different from zero in order
for Eq. (21) to be valid, in agreement with the analysis carried
out earlier for the bilayer.

VI. CONCLUSIONS

We have used classical elasticity theory to set up an
analytical model to describe the role of anharmonicity in the
anomalous thermal expansion of very few layers of graphene.
While flexural modes explain the negative sign of α at very
low T , we find that the change to positive values in graphite at
high temperature cannot be explained by anharmonic effects
originating on these modes alone. For a bilayer, a crossover
between long and short wavelengths has been found from a
Landau-like analysis. Finally, the evolution from a single layer
to a large stack of weakly interacting layers has been described,
and the frequencies for the corresponding bending modes have
been obtained.
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