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Impurity states in multiband s-wave superconductors: Analysis of iron pnictides
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We examine the effect of a single, nonmagnetic impurity in a multiband, extended s-wave superconductor
allowing for anisotropy of the gaps on the Fermi surfaces. We derive analytic expressions for the Green’s
functions in the continuum and analyze the conditions for the existence of sharp impurity-induced resonant
states. Underlying band structure is more relevant for the multiband than for the single-band case, and mismatch
between the bands generically makes the formation of the impurity states less likely in the physical regime
of parameters. We confirm these conclusions by numerically solving the impurity problem in a tight-binding
parametrization of the bands relevant to pnictide superconductors.
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Since the discovery of the multiband iron-based supercon-
ductors (FeSC),1–6 the determination of their gap shape has
been an active subject of study. Several theories proposed
that the superconducting order parameter for many pnictides
and dichalcogenides is of the s-wave (A1g) type. However
the presence of several Fermi surface (FS) sheets away from
the center (� point) of the Brillouin zone (BZ) allows for a
strongly anisotropic, or nodal (with zeros), gap. Experiments
sensitive to low-energy quasiparticle excitations indicate that
the gap structure is nonuniversal across the families and doping
ranges, so that complementary methods have to be employed
for a complete picture to emerge.

These measurements include the temperature dependence
of the penetration depth and spin-lattice relaxation rate,
both temperature and field variation of the specific heat and
the thermal conductivity, and angle-resolved photoemission,
among others. Scanning tunneling spectroscopy (STS) at or
near impurity sites played an important role in testing the
anisotropic superconducting state of the high-Tc cuprates,7 and
therefore it is natural to ask what information it can provide
for the iron-based materials. In conventional single-band
superconductors with an isotropic gap, potential scatterers do
not change the local density of states appreciably. In contrast,
for superconductors with sign-changing order parameter on
the Fermi surface, nonmagnetic impurities create a quasibound
(resonant) state, whose energy relative to the gap maximum
and the shape in real space both carry information about the
gap shape.

Existence of multiple FS sheets complicates the picture,
and several recent studies arrived at different conclusions. For
tight-binding bands with the extended s-wave cos(kx) cos(ky)
gap (in the “unfolded” BZ; see below), Refs. 8,9 do not find
low-energy impurity states, and Ref. 10 finds such states at
or above the energies of about half of the SC gap amplitude.
In two-band continuum models of isotropic gaps of opposite
signs (s+−), Refs. 11,12 find that the impurity resonances can
form deep within the gap. The Bogoliubov–de Gennes analysis
of the five-band model13 finds the low-energy impurity states
for some intermediate values of the scattering potential. The
inevitable question is how general the results obtained using a
specific set of assumptions are, and whether different results
are due to details of the models or salient features of pairing.

We address this issue in the current Rapid Communication.
We combine analytical and numerical techniques to investigate
the impurity resonance states for different gap shapes in the
A1g representation. One of our conclusions is that, for similar
gap shapes, details of the band structure, even for similar
Fermi surface topologies, strongly affect the location of the
resonance state. Also, the role of inter- and intraband impurity
scattering potentials in the formation of the impurity resonance
is different depending on the degree of anisotropy in the gap.
We explain the physics behind these effects by combining
analytical and numerical approaches.

The simplest model of FeSC superconductors that captures
the relevant physics has two FS sheets: one hole-like (h) around
the � point and one electron-like (e) close to M and equivalent
points in the BZ. It allows the analysis of the two principal
scenarios for the A1g pairing: (a) s± where magnetically
assisted predominantly interband pair scattering requires a sign
change in the order parameter between FS sheets of different
type,14 and (b) s++ where orbital fluctuations promote pairing
with the same sign on the FS sheets.15–17 Under both pictures
the gap on the hole sheet is nearly isotropic in the x-y plane,
while Coulomb repulsion may lead to an anisotropic, or even
nodal, gap on the electron sheet.

To describe scattering by a nonmagnetic impurity we make
a simplifying assumption that the scattering amplitude depends
only on the band index of the initial and final states, so that
Himp = ∑

kk′σ Ujj ′c
†
jkσ cj ′k′σ , where Ujj ′ = U0 if the band

indices j = j ′ (j = e,h) and Ujj ′ = U1 otherwise. The ap-
proximate independence of the elements of the 4 × 4-matrix Ǔ

(we use Û to denote 2 × 2 matrices in Nambu space) is justified
by the small size of the FS in FeSC. This parametrization
means separation into small and large momentum transfer
scattering, and naively one can expect U1 � U0 because of
screening. However band structure calculations show that the
same Fe d orbitals contribute significantly to both the electron
and the hole sheets of the Fermi surface,18 and hence an
impurity at or near the Fe site will produce a significant
interband scattering component. One candidate is the Co
dopants in the 122 series.19

We compute the Green’s function which is a matrix in both
band and particle-hole space, Ǧjj ′ (k,k′; τ ) = −〈Tτ [�jk(τ ) ⊗
�

†
j ′k′(0)]〉 , where the Nambu spinor is �

†
jk = (c†jk↑,cj−k↓),
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and Tτ is the imaginary-time ordering operator. In this notation
the Hamiltonian for a pure superconductor is Ĥjk = ξjkτ̂3 +
�jkτ̂1, with τ̂0 the identity matrix and τ̂i (i = 1 . . . 3) the
Pauli matrices in the Nambu space, ξjk is the quasiparticle
energy in band j , and �jk is the superconducting gap
function on the j th Fermi surface sheet. We ignore the weak
dispersion along the c axis. In the absence of impurities
Ǧ0,jj ′ (k,k′) = δjj ′δkk′Ĝ0,j (k), with Ĝ0,j (k; iωn) = (iωnτ̂0 −
Ĥjk)−1, and Matsubara frequencies are ωn = 2πT (n + 1/2).

For an extended s wave �k = A + B[cos(kxa) +
cos(kya)], in the “unfolded” zone scheme, with a the lattice
constant for the square Fe lattice.14,18,20,21 When projected on
the hole, Sh, and electron, Se, FS sheets this results in a nearly
isotropic �hk ≈ �h for k ∈ Sh, and a generally anisotropic
gap on the electron sheet(s), �ek = −�e(1 + r cos 2φ). Here
φ is the angle as measured from the [100] and [010] directions
at (±π,0) and (0, ± π ), respectively. In our notations δ0 =
�e/�h > 0 for the s± state and δ0 < 0 for the s++ state. Below
we compare the values r = 0 (isotropic gap on electron Fermi
surface), r = 0.7 (nodeless anisotropic gap), and r = 1.3
(nodal gap).

We solve the single-impurity problem using the T -matrix
(Ť ) method, where Ť and Ǧ satisfy the coupled
equations7 Ǧ = Ǧ0 + Ǧ0Ť Ǧ0 and Ť = Ǔ + Ǔ

∑
k Ǧ0Ť .

For the momentum-independent Ǔ , the solution Ť = [1̌ −
Ǔ

∑
k Ǧ0]−1Ǔ is solely a function of the band index and

the frequency. Upon analytic continuation iωn → ω + i0+
the poles of Ǧ give the energies of elementary excitations,
and hence the poles of Ť (ω) give the energies of the impurity-
induced states. The density of states per spin in each band is
Nj (r,ω) = −π−1Im(Ǧjj,11(r,r; ω + i 0+)), where indices 11
refers to the particle component in the Nambu space.

Denoting ĝj = ∑
k Ĝ0,j (k) = ∑

i gji τ̂i , with i = 0, . . . ,3,
we find that the components of the T matrix sat-
isfy T̂ee = U0τ̂3 + U0τ̂3ĝeT̂ee + U1τ̂3ĝhT̂he and T̂he = U1τ̂3 +
U1τ̂3ĝeT̂ee + U0τ̂3ĝhT̂he; the equations for Thh and Teh are ob-
tained by switching indices. The solution is T̂ee = Â−1[U0τ̂3 −
(U 2

0 − U 2
1 )̂τ3ĝhτ̂3] where Â = (1 − U0τ̂3ĝh)(1 − U0τ̂3ĝe) −

U 2
1 τ̂3ĝhτ̂3ĝe. Consequently, the energies of the bound state

are determined from det(Â) ≡ D(ω) = 0, where

D(ω) = U 4
0

(
g2

e0 − g2
e1 − π2N2

e c2
e − ge

2 U 2
1

U 2
0

)

×
(

g2
h0 − g2

h1 − π2N2
hc2

h − gh
2 U 2

1

U 2
0

)
−U 2

1 (ge
2 + gh

2 + 2(ge0gh0 − ge1gh1 + ge3gh3)). (1)

Here we introduced gj
2 = ∑

i(−1)ig2
ji and c2

j =
(πNjU0)−2(1 − U0gj3)2. Note that Eq. (1) depends only on
U 2

1 , and hence we take U1 > 0 without loss of generality.
As in single-band superconductors, the gap shape affects

the angular averages of the anomalous Green’s functions, gj1,
and therefore influences the energy of the impurity state both
in a single- and multiband cases. Two other aspects reflect the
multiband nature of the system. First, since summation over
momenta in the T -matrix equations yields a prefactor of the
density of states (DOS) at the appropriate FS sheet, the ratio of
the DOS n = Ne/Nh controls the number of states available
for inter- vs intraband scattering. In the models with dominant

interband pairing the same parameter controls the ratio of the
gap amplitudes, δ0. In analogy with Refs. 22,23 we find that
at T = 0 such models obey the constraint nδ2

0(1 + r2/2) = 1.
Variation of n very significantly affects the properties of the
impurity bound state.

Second, the particle-hole band asymmetry,

gj3 = 1

2

∑
k

Tr[Ǧ0,j τ̂3] = −
∑

k

ξj k

ω2
n + ξ 2

jk + �2
jk

, (2)

appears in combination with the the impurity potential in the
equation for the T matrix. This term is largely determined by
the normal-state band structure, and therefore can be approx-
imated by its value with �jk = 0. In analytical approaches
it is often assumed gj3 = 0, although even in single-band
superconductors the resonance state is sensitive to the band
structure.24,25 In FeSC the situation is even more complex
since the chemical potential is close to the top/bottom of the
hole/electron bands, respectively. As a result, (a) ge3 and gh3

have opposite signs and hence the sign of U0 matters, and
(b) we expect ge3/Ne ∼ −gh3/Nh ∼ O(1), which changes the
bound-state properties relative to the particle-hole symmetric
case.

The location of the bound state for the isotropic gap, r = 0,
is given by

ω2
± = α2(�e + �h)2 − 2(α2 − 1)�e�h

2(α2 − 1)

± α(�e + �h)

2(α2 − 1)

√
α2(�e − �h)2 + 4�e�h , (3)

where all the information about the DOS and scattering
potentials is contained in the parameter (note α � 1)

α = π2NeNhU
4
0

2U 2
1

[
1 + c2

e −
(

1 + g2
e3

π2N2
e

)
U 2

1

U 2
0

]

×
[

1 + c2
h −

(
1 + g2

h3

π2N2
h

)
U 2

1

U 2
0

]

+π2
(
N2

e + N2
h

) + (ge3 − gh3)2

2π2NeNh

. (4)

Figure 1 shows that (a) the bound state is much deeper
in the gap for the s+− than for the s++ state, and (b) the
lowest energy of the bound state is reached for the “balanced”
band case, Ne = Nh and �h = �e, and any deviation from
this regime leads to the impurity state edging closer to the
continuum. Figure 2 shows several traces over this surface
for fixed n, where the resonance state becomes closer to
the gap edge and exists in a narrower and narrower range
of parameters as the densities of states in the two bands
“detune.” Hence not only the topology of the Fermi surfaces
but also the curvature of the bands at the Fermi level and the
relative bandwidth matter. In our view it is for that reason
that the simplest tight-binding parametrization26 does not give
a clearly defined bound state. For that model we estimate
Ne(0) ≈ 4.9Nh(0), ge3 ≈ −3.7πNe(0), and gh3 ≈ 0.4πNh(0),
which suggests that the impurity state is very close to the gap
edge, or does not form at all, in agreement with the conclusions
of Refs. 8,9. In the extreme case of the proximity to the Van
Hove singularity for one of the bands, the impurity states form
only for U1 � U0.27 In contrast, the studies utilizing more
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FIG. 1. (Color online) Energy of the impurity bound state for
isotropic gaps (r = 0). Here ũM = min(ũ + ,ũ.), see Eq. (3), and
minimal gap �M = min(�e,�h). For a given value of the DOS ratio
Ne/Nh, and the corresponding fixed δ0, variation of the impurity
potentials U0 and U1 traces a path along the surface. For a given
value of α, the bound-state energy is always lowest at δ0 = 1.

realistic band structure fits with smaller ratio of the DOS often
find the deeper and sharper impurity resonance.12

For r = 0 the lowest energy of the impurity resonance is
reached for

U 2
1,m

U 2
0

=
√√√√ 1 + c2

e

1 + (
ge3

πNe

)2

√√√√ 1 + c2
h

1 + (
gh3

πNh

)2 . (5)

For the particle-hole symmetric case (ge3 = gh3 = 0) this
clearly indicates U1 > U0, which is unlikely. For strongly
particle-hole asymmetric bands, and for strong scattering
(ce,h � 1), the impurity bound state may be formed for more
physical values of U1 � U0, but, as is seen from Fig. 1, the
state itself is at finite energy.

As the value of r , and the anisotropy of the gap on the
electron sheet, increases, this trend remains for as long as
the gap does not develop nodes. Once the gap on the electron
sheet develops zeros, a more familiar aspect of the single-band
nodal superconductors comes into play: Intraband scattering
produces a bound state, while the interband scattering broadens
it. This is illustrated in Fig. 3. Even in this case the small
size of the Fermi surfaces, i.e., moderately large and opposite
in sign values of gj3, leads to a much shallower resonance
state than for a particle-hole symmetric case. Note also a
very significant anisotropy with respect to the sign of the
intraband scattering potential. These analytical results show
that in multiband systems with opposite nature of the carriers in
the two bands it is generically difficult to realize a well-defined
impurity resonance state.

To verify that these conclusions remain valid for pnic-
tides we numerically solved the T -matrix equation and
determined the local density of states on the impurity
site for a tight-binding fit to the Fermi surface from
Ref. 28. In the folded (2-Fe) BZ, the energies of the hole
and the electron bands are given by ξαik = −tαi

[cos(kx) +
cos(ky)] − t ′αi

cos(kx) cos(ky) − μαi
, and ξβik = −tβi[cos(kx)

+ cos(ky)] − t ′βi
cos( kx

2 ) cos( ky

2 ) − μβi
, respectively, with the

hoppings and the band shifts (in eV) (tα1 ,t
′
α1

,μα1 ) =
(−0.3, − 0.24,0.6) and (tα2 ,t

′
α2

,μα2 ) = (−0.2, − 0.24,0.4) for
the hole, and (tβ1,t

′
β1

,μβ1 ) = (−1.14, − 0.74, − 1.70) and
(tβ2 ,t

′
β2

,μβ2 ) = (−1.14,0.64, − 1.70) for the electron bands.
In this model n ≈ 0.4, close to the n = 0.5 considered above,
and different from n ≈ 0.2 used in Refs. 8,9, even though
the Fermi surface topology is similar. Hence the difference
between the results stems from this DOS imbalance. Our
Green’s functions ge3 ≈ −πNe(0) and gh3 ≈ 1.2πNh(0). We
again consider the isotropic gap �αik = �h on the hole FS
sheets, and we define the gap on the electron sheets to
be �β1,2k = −�e[1 ± r̃ cos( kx

2 ) cos( ky

2 )], where the upper and
lower signs arise from the folding of the Fermi surfaces into
the smaller 2-Fe Brillouin zone. In general the gap anisotropy

FIG. 2. (Color online) Energy of the impurity bound state for r = 0 for different DOS ratios, n, and the particle-hole anisotropies, gj3,
measured in units of πNj . We denoted NF = (Ne + Nh)/2. Note that the deep and well-defined bound state only appears for the strong
interband scattering U1.

140507-3



RAPID COMMUNICATIONS

R. BEAIRD, I. VEKHTER, AND JIAN-XIN ZHU PHYSICAL REVIEW B 86, 140507(R) (2012)

FIG. 3. (Color online) Energy of the impurity bound state for r = 1.3 for different DOS ratios, n, and the particle-hole anisotropies, gj3, in
the same notations as in previous figure.

on the electron FS sheets is not a simple cosine, but is
close to it in shape. We can extract the effective anisotropy
from the ratio |�e, min|/|�e, max| ≡ |r − 1|/|r + 1|, and make
comparison with our analytical results. The electron Fermi
surfaces in this description are very close to each other,
so that the values of r differ by about 6% between them,
and we quote the average number. The calculations were
performed on a 2000×2000 k-space grid with the intrinsic
broadening γ = �h/40 = 0.0015 eV. Figure 4 shows the
LDOS at the impurity site for moderate values of the scattering
potentials. As before, the particle-hole band asymmetry causes
the impurity-state energy to depend strongly on the sign of
U0. For these moderate values of U0 and U1 the low-energy
states do not form when the FS sheets are fully gapped
(r = 0) except for the unphysical case U1 � U0. The impurity
resonance forms more easily when there are nodes on the
electron sheets; this happens regardless of the sign of δ0

since the formation of the state is dominated by intraband
processes. For the anisotropic nodeless gap (r = 0.7) there
exist broad features associated with the transfer of spectral
weight from the coherence peak to energies above the threshold
εm = �e|r − 1|. These states mix with the continuum and
are not sharp. At the same time we find that they can feature
relatively prominently at the impurity site simply because the
peak at εm is much smaller than that at ω = �h in the pure
system. A sharp bound state close to midgap only appears for
extremely high values of U0 � U1 ∼ 100, also supporting the
qualitative analysis above.

Our main conclusions therefore are that within a model
of relatively momentum-independent inter- and intraband
scattering in multiband systems (a) the mismatch of the
densities of states and the gap values on different Fermi surface
sheets affects very significantly the energy of the impurity
bound states, pinning them relatively close to the continuum
states over most of the parameter range; (b) this conclusion
remains qualitatively valid even for nodal gaps on one of the
Fermi surface sheets for realistic particle-hole anisotropies
in the electron and hole bands; and (c) broad features due to
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FIG. 4. (Color online) Evolution of on-site LDOS (eV−1) for
four-band model with moderate scattering, Ū0 = ±1.5, for (a), (b)
isotropic, (c), (d) nodeless anisotropic, and (e), (f) nodal gaps for
δ0 > 0. Panels (g), (h) are for nodal gap with δ0 < 0. The thin black
line is the DOS of clean system, and arrows mark the DOS feature
at εm = (0.38,0.41) for the anisotropic cases with r = (0.7,1.4),
respectively. Low-energy impurity states form below εm in the nodal
system even at small values of Ū1, but impurity states do not form
near ω = 0 in either of the fully gapped systems. LDOS for Ū1,m

is shown when Ū1,m �≈ |Ū0| but is unlikely when Ū1,m > |Ū0|. The
insets show close-ups of the low-intensity positive-bias peaks. Note
the different vertical scales.
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impurities may exist for anisotropic gaps in the s± case, but are
far less likely for the s++ pairing. We explain the differences in
the results between different groups as stemming in part from
the different underlying band structure. Of course, in fully
microscopic theories starting from the orbital representation
the resulting effective scattering may be anisotropic within
each Fermi surface sheet: strong between parts with similar
orbital content and weak between regions stemming from
different Fe orbitals. It would therefore be very instructive
to check such effective potentials, for example, in the model
of Ref. 13. It will also be useful to check whether within these
models the scattering potential varies strongly on the scale of
the bandwidth, since such an effect assists the formation of the

bound state even for an isotropic gap. Our results clearly show
that the study of impurity states alone is not sufficient to draw
reliable conclusions about the shape of the superconducting
gap in multiband systems.
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