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We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q.
The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic
patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from
average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in
the Edwards-Anderson model but scale as 1/L and

√
L, respectively, in the Sherrington-Kirkpatrick model.
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1. Introduction. After decades of much work, the nature of
the spin-glass (SG) phase is still unclear. A SG phase is found
at low temperature in magnetic systems which are both quench
disordered and frustrated.1,2 Random spin positions as well as
random spin-spin couplings are sources of quenched disorder.
When competition arises, because not all spin-spin coupling
energies can be minimized simultaneously, a system is said to
be frustrated.3 Fixed disorder and built-in competition are the
two essential ingredients of complex systems.4

The Sherrington-Kirkpatrick (SK) spin-glass model,5 in
which each spin-spin coupling is assigned at random, with-
out regard to spin-spin distance, is quench disordered and
frustrated. Its exact solution1,6–8 implies that different random
number seeds (which fully specify all couplings) can give rise,
in thermal equilibrium, to magnetic patterns which are macro-
scopically different.9 Diversity of macroscopic observable
magnitudes arising from random arrangements of microscopic
constituents is the hallmark of complexity.10,11

However, no consensus has yet been reached on whether the
macroscopic limit of the Edwards-Anderson12 (EA) model, in
which only nearest-neighbor spins interact, (i) follows closely
the SK model,13 (ii) deviates from SK model behavior but
nevertheless shows some diversity,14 or (iii) fits a radically
different picture, the droplet scenario,15,16 in which SGs with
up-down symmetry can only be found in one of two macro-
scopic spin configurations which are related by global spin
inversion. (See also Ref. 17.) Thus, according to the droplet
theory, the two necessary ingredients (quenched disorder and
frustration) for complexity would become unable to generate
diversity in the macroscopic limit of EA systems.

Complexity would make SGs rather exceptional among
the many-particle systems of statistical physics. On the other
hand, they would share this property with systems one
finds elsewhere, such as in the life sciences,18 information
systems,19 optimization problems,20 and finance.21 In every
one of these fields complexity and diversity are the rule rather
than the exception. Thus, addressing these issues in SGs with
standard methods of statistical physics can lead to insight into
other seemingly disconnected areas of research.

The basic tool for the characterization of the SG state is the
spin overlap q between two system states.1 To define it, let σ (1)

i

be the spin of system state 1 at site i, and similarly for 2. Then,
q ≡ N−1�iσ

(1)
i σ

(2)
i ; i.e., q is the average (over all sites) spin

alignment between states 1 and 2. One usually lets states 1 and
2 be either (i) of a given time evolution of a given specimen at
two widely different times,22 or (ii) of two independent (1 and
2) time evolutions of the same specimen. For numerical work,
we follow the latter of the two procedures.

In macroscopic SK systems, the probability density, p(q),
averaged over all realizations of quenched disorder (RQD),
fulfills1,8 (i) p(q) ∝ f (q) + δ(q − qm) for q � 0, where f (q)
is a smooth function of q for q < qm and f (q) = 0 for q � qm,
and (ii) p(q) = p(−q) if no magnetic field is applied (which
we will assume throughout).

The fact that f (q) �= 0 in the SK model implies the
existence of “odd” magnetic patterns (in addition to a pair
of ordinary magnetic patterns that one expects to observe in
all magnetic systems), whence complexity follows. Under-
standably, attempts at discerning between the macroscopic
behaviors of the SK and EA models have focused on p(q).

Specific system samples are interesting to examine. At least
for finite-size EA systems, seed-dependent spin configurations
do appear,23 much as in the SK model,24 in thermal equilib-
rium. This is illustrated in Figs. 1(a) and 1(b) of Ref. 25, where
plots of pJ (q) vs q are shown for two different J sets of
spin-spin couplings. Whereas some portions of pJ (q) differ
drastically from Figs. 1(a) to 1(b) of Ref. 25, the portions
for larger values of q are alike and all of them peak near
q = qm. We let self-overlap spikes (SOS) stand for spikes
centered near qm. Because they are all centered near the same
position, the average of SOS (one for each RQD) over all RQD
gives rise to the large peak at q = qm in Fig. 1(c) of Ref. 25.
Spikes centered on smaller q values, which vary randomly
with different RQD, come from spin overlaps between states
that belong to different basins of attraction. Accordingly, we
refer to them as cross-overlap spikes (COS).

Interesting as it might be, no statistical information on
spikes, except for a very recent report,26 has been available.
Very little information on COS follows from the (average)
behavior of p(q). Cross-over spike statistics would enrich
our picture of the SG state, somewhat as the pair correlation
function does for the physics of liquids.

We aim to show how COS in pJ (q), such as the ones
shown in Fig. 1(b) of Ref. 25, of which the locations and
shapes vary randomly over different RQD, can be added in a
coherent fashion, in order to obtain a pair correlation function,
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FIG. 1. (Color online) (a) Plots of g(q | 0,1/2) vs q for EA
systems at T = 0.2, with the values of L shown. The full line is
for a fit to the L = 8 data points with �γ /[w(�γ + | q |γ )]. (b) Same
as for (a) but for g(q | 1/2,1). (c) Same as for (a) but for the SK
model. (d) Same as for (a) but for g(q | 1/2,1) for the SK model.
Values of w and � are given in Fig. 2 for all T and L above, in both
the EA and SK models. Values for γ are given in the text.

g(q | 0,Q), which is an average (in a sense which is defined
below) over all RQD of all COS in the 0 < q < Q range. We
also (numerically) calculate the width of g(q | 0,Q), which is
a measure of magnetic pattern thermal fluctuations, for Q =
1/2. The results we obtain for low temperature (T ) point to the
following behavior: (i) g(q | 0,1/2) closely follows a Lévy-
flight-like distribution,28 (ii) the pair correlation functions
that follow from SOS and COS are roughly equal, that is,
g(q | 0,1/2) ≈ g(q | 1/2,1), and (iii) the width of g(q | 0,1/2)
varies little, if at all, with linear system size L (scales as 1/L)
in the EA (SK) model. Thus, different ranges of spin-spin
interaction give rise to qualitative differences between the
complex behavior of spin glasses.

2. Models. We study the SK and EA models. In both of
them, a σi = ±1 spin is located at each ith site of a simple
cubic lattice of N = L3 sites. The interaction energy between
a pair of spins at sites i and j is given by Jijσiσj . We let
Jij = ±1/

√
N randomly, without bias, for all ij site pairs in

the SK model. The transition temperature Tsg between the
paramagnetic and SG phase is Tsg = 1.1,5 For the EA model,
Jij = 0 unless ij are nearest-neighbor pairs, and we draw
each nearest-neighbor bond Jij independently from unbiased
Gaussian distributions of unit variance. Then, Tsg � 0.95.29

We let 〈uJ 〉J stand for the average of a thermal equilibrium
quantity uJ over a number Ns of different sets of random
bonds {J }.

3. Pair correlation function. Aiming for statistical informa-
tion on COS at low temperature, we let

GJ (q | Q1,Q2) =
∫ Q2−h(q)

Q1+h(−q)
dq1 pJ (q1)pJ (q1 + q), (1)

where h(q) = 0 if q < 0 and h(q) = q if q � 0.
Clearly, (�Q− | q |)−1GJ (q | Q1,Q2), where �Q = Q2 −
Q1, is the average of pJ (q1)pJ (q1 + q) over the
(Q1 + h(−q),Q2 − h(q)) domain. We term G(q | Q1,Q2) ≡
〈GJ (q | Q1,Q2)〉J the pair correlation function.

The integral in Eq. (1) is as for the probability density to be
at −q after a two-step random walk which starts at the origin,
in which the length of both steps is identically distributed, but
they are taken in opposite directions. Note that GJ (q | Q1,Q2)
(i) peaks at q = 0,30 (ii) is even with respect to q = 0, since
pJ (q) = pJ (−q), and (iii) is somewhat broader than pJ (q)
(from the theory of random walks).

The operation defined in Eq. (1) clearly displaces to
q = 0 any spike in pJ within the (Q1,Q2) domain. Thus,
by appropriate choice of Q1 and Q2 values, G(q | Q1,Q2)
enables one to make comparisons (see below) on equal footing
of statistical information on SOS and COS.

We can also define g(q | Q1,Q2) = BG(q | Q1,Q2),
where B ≡ 1/

∫ Q2−Q1

Q1−Q2
dq G(q | Q1,Q2). One can think of

g(q | Q1,Q2) as the (conditional) probability density that
q2 − q1 = q, given that q1,q2 ∈ (Q1,Q2): Read q1 and q2 at
infinitely far apart times from an identical pair of systems
which evolve independently in time while in equilibrium; now,
register the value q, given by q2 − q1 if q1,q2 ∈ (Q1,Q2), but
not otherwise; repeat the procedure indefinitely with different
pairs of identical samples. The probability density for q taken
from all the registered q values is g(q | Q1,Q2).

We define widths of two correlation functions. For a
distribution function F (x) such that

∫ ∞
−∞ dx xF (x) = 0, it

makes sense to define a width δx by δxF (0) ≡ ∫ ∞
−∞ dx F (x).

Since g(q | Q1,Q2) is normalized, we let

w(Q1,Q2) = 1/g(0 | Q1,Q2). (2)

For short, we let w+ ≡ w(0,1/2), w− ≡ w(1/2,1). For T �
0.3, w− and w+ are widths for COS and SOS, respectively.
Furthermore, note (i) g(q | Q1,Q2) � g(0 | Q1,Q2) implies
w−,w+ � 1/2, (ii) that we can think of w− as an intrinsic
width of g(q | 0,1/2), if w− � 1/2, and similarly for w+. We
also define half-widths at half-maxima �− and �+ by 2g(�−
| 0,1/2) = g(0 | 0,1/2) and 2g(�+ | 1/2,1) = g(0 | 1/2,1).

4. Method. All numerical results given below follow from
parallel tempered Monte Carlo (MC) simulations.31–33 We give
all times in terms of MC sweeps.

All pairs of systems start running from independent random
spin configurations. Each system pair is then allowed to come,
in time τs , to equilibrium with each reservoir of a string of
them at T , T + �T , T + 2�T, . . . , before readings of q

values are taken over an additional τs time span. From many
such readings, the thermal equilibrium probability pJ (q), for
a given RQD, is obtained for each temperature. Relevant
simulation parameters are in Table I.

We next consider equilibration. Let Xn(Q) =∫ Q

−Q
dq pJ (q) for the nth sample. Furthermore, let

	Q(k) = ∑k
n=1 Xn(Q). Note that both the average value

of p(q), as well as deviations from it, over q ∈ (−Q,Q),
follow from 	Q(k) for a sufficiently large k. Plots of 	Q vs
k are shown in Fig. 2 of Ref. 27 for L = 8. Similar plots
for 4 � L � 10 are unchanged as τs increases beyond the
values given in Table I. From such considerations, we infer
that equilibrium values of 	Q(k) follow from MC runs after
equilibrating for some 102+L/2 MC sweeps.

5. Results. Data points for the pair correlation function are
shown in Fig. 1 for T = 0.2. The two graphs on the left-hand
side (right-hand side) are for the EA (SK) model. The two top
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TABLE I. Number of samples Ns and equilibration time τs , as well as time for subsequent averaging. Average acceptance rates for system
configuration exchanges at all T are larger than A, and �T is the temperature spacing between systems in the tempered MC setup.

SK EA SK EA

L 4 6 8 4 6 8 10 L 4 6 8 4 6 8 10

τs/104 5 5 10 1 10 102 103 10A 7 5 4 7 4 5 4.5
Ns/104 2 1 1 3 4 3 0.5 102�T 4 4 4 10 10 5 4

(bottom) graphs are for Q1,Q2 = 0,1/2 (Q1,Q2 = 1/2,1),
which, since for T � 0.3, are for COS (SOS). While neither
COS nor SOS exhibit significant size dependence in the EA
model, they clearly do so in the SK model. We return to this
point below.

All curves shown in Fig. 1 are rather pointed at the top.
This is in contrast with the well-known curves for p(q) in
the neighborhood of q = qm for finite SK systems34 [but see
Ref. 24 for some pJ (q)]. This is because values of qm vary
over different RQD by amounts which, at least for L = 8
and T � 0.3, are roughly equal to �+ for the SK model.
Thus, averaging pJ (q) over all RQD gives rise to a rounded
p(q) while g(q | 1/2,1), being a coherent-like superposition
of spikes over different RQD, reveals their individual shapes.

Good fits to all plots in Fig. 1 are provided by �γ /[w(�γ +
| q |γ )], which closely follows a Lévy flight distribution28 for
1 < γ � 2. Fits to the L = 8 data are shown in Figs. 1(a)–1(c),
and 1(d). For both the EA and SK models, γ � 2(1 − 1/L) for
all T � 0.3. Values for w and � are given in all panels of Fig. 2.
As in Fig. 1, the two graphs on the left-hand side (right-hand
side) are for the EA (SK) model. The two top (bottom) graphs
are for Q1,Q2 = 0,1/2 (Q1,Q2 = 1/2,1), which for T � 0.4
are for COS (SOS).

We also note that if z = x1 + x2, and x1 and x2 are drawn
from a Lévy flight distribution, then, within a few percent, in
obvious notation, �z � �x2/

√
γ − 1 if 1.15 � γ � 2. Thus,

g(q | Q1,Q2) is approximately 2/
√

γ − 1 times wider than
spikes in the (Q1,Q2) domain.
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FIG. 2. (Color online) (a) Log-log plots of w− and 2�− vs T ,
for EA systems of L = 4,6,8 and L = 10, as shown. Error bars
for L = 10 are shown, but for smaller L values they are hidden by
symbols. (b) Same as in (a) but for w+ and 2�+. (c) Same as in (a)
but for SK systems of L = 4,6 and L = 8, as shown. (d) Same as in
(c) but for Lw+ and 2L�+.

Widths w− and w+ appear in Figs. 2(a) and 2(b) to be size
independent for 0 < T � 0.3. This points to finite widths for
COS and SOS in the L → ∞ limit of the EA model at low
temperature. On the other hand, w−,w+ ∼ 1/L for large L in
the SK model seems consistent with the data points shown in
Figs. 2(c) and 2(d) for w− and w+.35

Results for probability fluctuations over different RQD
are next given. Additional information follows from the
(unnormalized) pair correlation function G(q | Q1,Q2). For
instance,

G(0 | 0,Q) = Q[(pQ)2 + (δp
Q

)2], (3)

where pQ and (δp
Q

)2 are the averages of p(q) and [δp(q)]2

over the 0 <| q |< Q range, respectively, and δp(q) is the rms

deviation of pJ (q) from p(q) over all RQD. Plots of (δp
Q

)
vs T for Q = 1/2 and various systems sizes of the EA and
SK models are shown in Fig. 3. These plots do not vary with

Q, at least down to Q = 1/8. Note that whereas (δp
Q

) scales
as ∼√

L in the SK model, it appears to be, within statistical
errors, independent of L in the EA model.

The rms deviation of XJ (Q) from 〈XJ (Q)〉 differs qual-

itatively from (δp
Q

) if Q is not too small. This is because

〈
X2

J (Q)
〉
J = w(0,Q)Q[(pQ)2 + (δp

Q
)2], (4)

as follows from Eq. (2). Quantity 〈X2
J (Q)〉J is examined in

some detail in Ref. 37, where it is termed X2. Now, w(0,Q) and
(δp

Q
)2 come into 〈X2

J (Q)〉J as a product, which happens to be
size independent not only in the EA model [where both w(0,Q)

and (δp
Q

)2 are size independent] but in the SK model as well

if Q � w(0,Q), since w(0,Q) ∼ 1/L then and (δp
Q

)2 ∼ L.
For the neighborhood of X1 = 0 in the second panel of Fig. 2
of Ref. 37, things are quite different. Then, Q � w(0,Q) is no
longer fulfilled [w(0,Q) ≈ Q in both the EA and SK model
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FIG. 3. (Color online) Plots of (δp
Q

) and of (δp
Q

)28/L vs T for
the EA and SK models, respectively, Q = 1/2, and the values of L

shown. Except for L = 10, icons cover all error bars.
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then], and [see Eq. (4)] X2/X1 do exhibit size effects then.
Our own plots (not shown) of X2/X1 vs X1 for T = 0.2 and
Q = 1/2 show size effects we expect for the SK model [i.e.,
X2/X1 moves towards the mean-field line as L → ∞ and
w(0,Q) consequently becomes smaller]. Slight size effects
are seen in Ref. 37 for the EA model at T = 0.6, but there
are no appreciable size effects in our own plots (not shown) at
T = 0.2.

6. Conclusions. We have given a recipe for a coherent
addition of self- and cross-overlap spikes (SOS and COS). The
latter are centered on positions that vary randomly with RQD.
In both the EA and SK models, the correlation functions for
SOS and COS turn out to be approximately equal. The widths
w− and �− (both for COS) give a measure of the thermal
fluctuations of magnetic patterns. They are not too different
from w+ and �+ (both for SOS), respectively. Neither w± nor
�± vary much with linear system size L in the EA model but
scale approximately as 1/L in the SK model. Their variation
with system size at low temperature suggests they vanish in

the macroscopic limit of the SK model but remain finite in the

EA model. Finally, δp
Q

does not vary much with L in the EA
model but scales as L1/2 in the SK model.36 Our results may

be compared with mean-field predictions, that δp
Q → ∞ as

L → ∞ for any Q > 0.38

The rule we have uncovered—which relates thermal fluctu-
ations of magnetic patterns as well as probability fluctuations
to interaction range—may well be valid in some broader
domain, beyond the SK and EA models. For one, preliminary
(unpublished) work yields similar results for some spatially
disordered systems which are geometrically frustrated. Exten-
sions to other fields of complex systems easily come to mind.
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