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Ab initio formation volume of charged defects
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When the formation volume of charged defects is evaluated by a straightforward cell minimization, the obtained
ab initio formation volume is affected by a bias. Furthermore, the error does not vanish with increasing supercell
sizes. The quantity to be minimized with respect to volume is not the defective supercell energy, but rather the
formation energy of the charged defect. The formation energy of a charged defects contains additional correction
terms, which have a non-vanishing derivative with respect to the volume. Surprisingly, the usually predominant
electrostatic correction is shown to have almost no effect on the formation volume, whereas the small potential
alignment correction is demonstrated to yield a huge correction that does not vanish for infinitely large systems.
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I. INTRODUCTION

The advances made during the recent years in the ab
initio description of defects in semiconductors and insu-
lators are impressive.1 The newest functionals of density
functional theory2 or the progresses in many-body pertur-
bation theory have permitted unprecedented accuracy in the
description of the properties of charged or neutral defects
in semiconductors.3,4 However, the convergence with system
size (or supercell in the common case of periodic boundary
conditions) is still an issue.

While it is an important piece of information,5 the formation
volume of a point defect is one of these properties that is still
poorly understood for charged systems. Through its relation
with elastic strain field induced by the presence of defects, the
formation volume pilots the variation of defect enthalpies with
stress,6 such as defect concentrations and diffusion properties.7

It contributes to the possible segregation of point defects
on extended defects (dislocations, grain boundaries, cavities,
etc.)8 and controls the elastic interaction of defects with these
sinks.9 It is also highly relevant for irradiated materials because
it is a major contribution to the swelling effect observed under
irradiation.10

Despite the importance of the formation volume of defects,
it is striking to observe that very few ab initio evaluations for
charged defects have been published so far. Most of the works
on vacancies11–14 use an indirect evaluation of the volume of
defects: the volume enclosed by the tetrahedron formed by
the four first nearest neighbors to the vacancy. Whereas this
value is relevant for the lifetime of the positron in positron
annihilation spectroscopy, it provides a different meaning
from the formation volume itself. Furthermore, this somewhat
indirect approach cannot easily be generalized to other types of
defects beyond vacancies. The studies that actually minimized
the energy with respect to the supercell size and shape (see
below the formal definitions) obtained a surprising behavior:
the formation volume appears almost linear with the charge
state. This is exemplified in Fig. 1. Besides the particular case
of V2+

Si which will be discussed in detail later, all the considered
defects show the same linear trend. The same behavior was
also observed in a completely different system, ZnO, for a
wide variety of defect types.15

It is clear that the charge state induces local rearrangement
of the neighboring atoms; however, it is more dubious that the

charge state should imply a linear change of volume, which
would only weakly depend on the defect type. The purpose of
the present article is to clarify this puzzling situation.

In the following, we demonstrate that the formation
volume is affected by the electrostatic and potential alignment
corrections, which should be included to properly define
the formation energy of charged defects. In particular, we
show that the potential alignment, which is a very small and
rapidly converging correction to the formation energy, yields
a large correction to the formation volume, which does not
vanish but rather converges to a finite value for infinitely
large systems. Once the correction is correctly included, the
formation volume only weakly varies with the charge state,
except for defects exhibiting vastly different arrangements of
atoms depending on charge states, as will be exemplified by
the silicon vacancy. Finally, we propose a practical way to
perform cell relaxation including the required correction.

II. FORMATION ENERGY AND FORMATION VOLUME

Let us recall here the basic definitions of quantities
pertaining to charged defects. The formation energy Ef of
a charged defect Xq is given by the relation16,17

Ef (Xq) = E(Xq) − E(perfect) −
∑

i

niμi + �Ee.s.

+q(εVBM + μe + �V ), (1)

where q is the charge state, E(Xq) is the energy of a supercell
containing the defect Xq , E(perfect) is the reference supercell
without the defect, and ni and μi are the numbers and chemical
potentials of the elements necessary to create the defective
supercell starting from the perfect one. When dealing with
charged defects, additional terms are added in Eq. (1). First,
the additional charge gives rise to an electrostatic interaction
with the images induced by the use of periodic boundary
conditions, term labeled �Ee.s. Second, the additional charge
comes from an electron reservoir with a chemical potential,
the Fermi level μe. The Fermi level is usually referred to the
valence band maximum of the pristine solid εVBM. However,
there is a discontinuity in the potential between the defective
supercell and the pristine cell, so that a potential alignment
correction �V has to be added in Eq. (1). The exact form of
the two corrections �Ee.s. and �V is still the subject of intense
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FIG. 1. (Color online) Formation volume of a tetrahedric self-
interstitial (SiTet, circle symbols), a split self-interstitial (Sisplit〈110〉,
triangle symbols), and a vacancy (VSi, square symbols) as a function
of charge state, obtained by the straight minimization of the stress in
a 216 ± 1 atom silicon supercell.

debate in the community.14,18–27 Our favored expressions for
the two corrections will be specified in detail in the following
section.

The elastic effect of including defects onto the volume of
the system is usually measured by two related quantities: the
relaxation volume ��rel

��rel = �(Xq) − �(perfect), (2)

and the formation volume ��f

��f = �(Xq) − Ndefective

Nperfect
�(perfect), (3)

where �(Xq) is the equilibrium volume of the supercell
containing the defect Xq , and �(perfect) is the equilibrium
of the perfect supercell. Note that the latter is properly defined
for elemental solids only. For simplicity our presentation
is restricted to isotropic volume and pressure change, but
the generalization to anisotropic deformation and stress is
straightforward. These two volumes are easily connected: for
a vacancy ��f = ��rel + �0 and for an self-interstitial atom
��f = ��rel − �0. �0 is the volume of a single atom in
the pristine crystal. They measure different properties: the
relaxation volume can be related to the lattice parameter
change induced by a point defect, whereas the formation vol-
ume is related to the macroscopic volume change induced by
the defect. For nonelemental solids (binaries, etc.), formation
volumes of composite intrinsic defects such as Frenkel pairs,
Schottky defects, etc., can be defined by relevant combinations
of relaxation volumes.

III. CORRECTIONS TO THE PRESSURE
AND FORMATION VOLUME

For charge neutral defects, there is no ambiguity about the
practical way to obtain the formation volume: the derivative
of the formation energy of Eq. (1) with respect to the cell
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FIG. 2. (Color online) Convergence of the formation volume of
a tetrahedric self-interstitial atom SiTet in silicon as a function of
supercell size for charge state 2+ (squares), 1+ (circles), and 0
(diamonds). The open symbols report the uncorrected volumes, the
striped symbols the volumes corrected for the electrostatics, and the
full symbols the volumes corrected for the potential alignment.

parameters is simply the derivative of the energy of the
defective supercell. The formation volume can hence be
deduced by a standard minimization procedure aiming at zero
pressure in the defective supercell calculations.

However, the situation is much more intricate for charged
defects. It might be tempting to apply the same procedure as
for neutral defects. If we do so, we obtain for the tetrahedric
self-interstitial in silicon the uncorrected curves of Fig. 2. The
values apparently converge very nicely with the system size.
However, the converged formation volumes yield the strange
linear behavior with charge state reported in Fig. 1.

In fact, the formation energy from Eq. (1) contains several
additional terms when q is not zero. Two of them present a
nonvanishing derivative with respect to volume that prove to
have a non-negligible contribution to the pressure. These terms
are the two corrections �Ee.s. and �V .

We now have to specify the expression of the mentioned two
corrections. In a previous study,26 we showed the relevance
of the simplest correction to the electrostatic issue, namely,
the monopole correction of Leslie and Gillan,18 and the
validity of the potential alignment based on the average total
potential.28–30

In terms of formation energy, the electrostatic term �Ee.s.

produces a large correction that slowly vanishes as �−1/3. The
monopole correction reads

�Ee.s. = αq2

2ε
�−1/3, (4)

where α stands for the Madelung constant of the lattice and
ε is the dielectric constant of the materials that governs the
screening of the Coulomb interaction. From the expression of
the monopole correction of Eq. (4), it is clear that there is an
induced pressure P e.s. = −∂�Ee.s./∂�:

P e.s. = αq2

6ε
�−4/3. (5)
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To evaluate the effect of this additional pressure onto the
equilibrium volume, one can expand the pressure as a function
of the volume to the first order. Then safely assuming that the
bulk modulus of the defective cell is only slightly affected by
the presence of a single defect in a large supercell, we obtain an
expression for the correction to the formation volume ��e.s.

induced by the electrostatic correction:

��e.s. ≈ P e.s.�

B
, (6)

where B is the bulk modulus of the pristine solid.
Now numerically evaluating the effect of this correction,

it is proven very small for realistic cases. For example, for
a defect with charge 2+ in a cubic 64-atom supercell of
silicon, one can evaluate the correction to the pressure to
be around 0.01 GPa and the corresponding correction to the
formation or relaxation volumes to be around 0.01�0. The
electrostatic correction has been included in Fig. 2 with the
striped symbols. The result is hardly distinguishable from the
uncorrected curves. As a conclusion, this correction can be
safely disregarded.

The second correction, namely, the potential alignment
�V , is known to have a smaller effect on formation energies,
which probably explains why many contradicting expressions
for it can be found in the literature.17,22,26–34 In Ref. 26, a
potential alignment �V based on the average total potential
was selected:

�V = 〈vKS(perfect)〉 − 〈vKS(Xq)〉. (7)

vKS labels the total Kohn-Sham potential and the brakets 〈· · ·〉
imply an average over the whole supercell. Let us summarize
the advantages of such an expression for �V : it avoids the
double counting of the electrostatic correction, it induces the
correct limit when an electron is brought infinitely far from
the defect, and it has been successfully tested down to very
small supercells.26

The potential alignment of Eq. (7) has a nonvanishing
derivative with respect to the volume as we show in the
following. When considering the variation with respect to the
volume, only the second term of Eq. (7) varies. This derivative
cannot be evaluated from ground-state quantities: it would
indeed involve derivatives of the density. However, we can
proceed by now with magnitude arguments.

For large systems, the relative variations of the volume
induced by the defect are small. One observes that down
to relatively small supercells, the average potential nicely
behaves as

〈vKS(Xq)〉 ∝ 〈ρ〉1/3, (8)

with 〈ρ〉 = N/� the average density in the supercell. This
behavior can be traced back to the exchange potential. Since the
average local pseudopotential and average electrostatic poten-
tials have been set conventionally to zero in codes employing
periodic boundary conditions, the average potential reduces
to the average exchange-correlation potential. Within local
density approximation (LDA),2 for instance, the exchange
potential is one order of magnitude larger than the correlation
counterpart and the LDA exchange potential behaves as 〈ρ〉1/3.
Anyway, the precise exponent in Eq. (8) is not an issue, since
any other exponent would yield the same final result.

When considering the limit to infinitely large supercells,
both the number of electrons N and the volume � go to infinity
while retaining the ratio 〈ρ〉 constant. As a consequence, the
correcting pressure P p.a. is found inversely proportional to the
volume and proportional to the charge:

P p.a. = q
∂〈vKS(Xq)〉

∂�
(9)

∝ q 〈ρ〉1/3 �−1. (10)

Hence, provided that the bulk modulus is not affected by the
presence of a single defect, one finally obtains the correction
to the formation volume:

��p.a. ≈ P p.a.�

B
∝ q 〈ρ〉1/3 . (11)

Strikingly the correction to the volume converges very quickly
but not to zero: it has a finite limit when both N and �

tend to infinity while keeping 〈ρ〉 constant. This explains the
seemingly good converging behavior of the uncorrected curves
of Fig. 2.

Then, the corrected curves in Fig. 2 with the closed symbols
have been obtained by a minimization of the formation energy,
including the two corrections, as a function of the volume
for each supercell size and each charge state. Eventually we
observe that the formation volume only weakly depends on
the charge state. The corrected formation volume converges
quickly with supercell size, however, to a completely different
value compared to the uncorrected formation volume.

IV. PRACTICAL MINIMIZATION SCHEME FOR THE
FORMATION VOLUME

In the previous section, we employed a manual optimization
procedure of the formation energy Ef as a function of the
volume in order to obtain the data for Fig. 2. Unfortunately, it
is much less handy than the usual minimization of the supercell
based on the calculated stress tensor that all ab initio codes
use. It becomes even more critical when the defect induces
nonisotropic deformation: one should optimize with respect to
supercell size and shape. Hereafter we propose a practical
way to perform the minimization of the formation energy
with respect to the supercell size and shape with only a small
overhead work with respect to the standard procedure.

We observe in practical calculations that the correcting
pressure P p.a., as evaluated from a finite difference, is almost
insensitive to the supercell size or shape. We propose here to
evaluate it numerically out of two single point calculations. In
practice, we perform two separated total energy calculations
for different volumes of the same supercell and then evaluate

P p.a. ≈ q
〈vKS(Xq)〉�2

− 〈vKS(Xq)〉�1

�2 − �1
. (12)

As the potential alignment correction is a function of the
volume, it induces simply a diagonal correction stress tensor.
Finally, one can relax the supercell size and shape with a target
stress tensor with the diagonal values −P p.a..

The prescribed procedure has been checked against the
previous results of Fig. 2 for SiTet. The obtained volumes are
virtually superimposed onto the one we got by minimizing the
formation energy directly (not shown). In Fig. 3 we present
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FIG. 3. (Color online) Formation volume of a tetrahedric self-
interstitial (SiTet, circle symbols), a split self-interstitial (Sisplit〈110〉,
triangle symbols), and a vacancy (VSi, square symbols) as a function
of charge state, obtained by the minimization of the stress correcting
for the potential alignment pressure in a 216 ± 1 atom silicon
supercell.

the corrected formation volumes of the vacancy and self-
interstitials in silicon. One finds that the formation volumes
are now approximately independent of the charge state for a
given defect. However, formation volumes prove to depend on
the defect types. Just the vacancy presents a special behavior,
since the vacancy point group changes along with the charge
state. Whereas V2+

Si has a tetrahedric environment, all the

other charge states experience a Jahn-Teller distortion. In
the uncorrected data, the effect of the Jahn-Teller distortion
was partially hidden by the spurious charge effect. With the
corrected data, V2+

Si appears as clearly different from the other
charge states. Note that the finally relaxed supercells are not
isotropic, due to the Jahn-Teller effect. This was obtained
almost effortlessly from the described procedure.

V. CONCLUSIONS

In the present article, we presented a consistent method to
evaluate the formation volume of point defects for charged
defects. We demonstrated that the two corrections to the
formation energy, namely, the electrostatic correction and the
potential alignment correction, do induce a correction to the
formation volume. Surprisingly, the electrostatic correction
that is sizable for the energy affects only slightly the formation
volume and can be safely disregarded in all practical cases. It
is also astonishing that the potential alignment term, which
is usually regarded as a tiny correction (if not simply disre-
garded), yields indeed a massive correction to the formation
volume. Furthermore, this correction converges extremely
quickly with supercell size. If it is not included, the formation
volume quickly converges to a biased value. If included, the
formation volume rapidly tends to a more sensible value, as
we have demonstrated here with silicon.
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