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Parity qubits and poor man’s Majorana bound states in double quantum dots
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We study a double quantum dot connected via a common superconducting lead and show that this system can
be tuned to host one Majorana bound state (MBS) on each dot. We call them “poor man’s Majorana bound states”
since they are not topologically protected, but otherwise share the properties of MBS formed in topological
superconductors. We describe the conditions for the existence of the two spatially separated MBS, which include
breaking of spin degeneracy in the two dots, with the spins polarized in different directions. Therefore, we propose
to use a magnetic field configuration where the field directions on the two dots form an angle. By control of this
angle the cross Andreev reflection and the tunnel amplitudes can be tuned to be approximately equal, which is
a requirement for the formation of the MBS. We show that the fermionic state encoded in the two Majoranas
constitutes a parity qubit, which is nonlocal and can only be measured by probing both dots simultaneously.
Using a many-particle basis for the MBS, we discuss the role of interactions and show that interactions between
electrons on different dots always shift the condition for degeneracy. We also show how the MBS can be probed
by transport measurements and discuss how the combination of several such double dot systems allows for
entanglement of parity qubits and measurement of their dephasing times.
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I. INTRODUCTION

It is well known that as a result of Andreev reflection
at the normal metal–superconductor interface, the pairing
interaction present in superconductors can be transferred to
normal metals and semiconductors by the so-called proximity
effect. Recently, this effect has been suggested as a way
to induce a p-wave pairing1–4 needed to create interesting
topological states associated with Majorana bound states
(MBS) in conventional semiconductors by a combination of
spin-orbit coupling and Zeeman splitting induced by external
magnetic fields,5–8 or by spatially varying magnetic fields
without spin-orbit interaction.9–11 See Refs. 12–14 for recent
reviews on this rapidly developing field. MBS are interesting
because of the potential use as elements in a topological
quantum computing architecture.15 Even though topological
manipulations of MBS do not allow a universal set of gates, it
could have advantages for a restricted set of operations or for
storage of quantum information.

Another usage of induced pairing is the so-called Cooper
pair splitter, where Cooper pairs are split through cross
Andreev reflection, which gives a source of entangled electrons
because of the singlet nature of the Cooper pairs.16 This idea
was further theoretically developed to include a quantum dot
in each arm of the beam splitter,17,18 a geometry which was
later realized using carbon nanotubes19 and nanowires.20

The ideas of cross Andreev reflection and induced p-wave
superconductivity in a semiconductor system were combined
in a recent proposal by Sau and Das Sarma, see Ref. 21. A
series of quantum dots, spin split by a magnetic field, but with
noncollinear spin arrangements due to spin-orbit coupling,
make a direct mapping of the Kitaev model22 onto an engi-
neered quantum dot system. Since quantum dot technology is
well established, this proposal has clear advantages over others
relying on particular material properties.

Here we consider a very simple system, sketched in Fig. 1,
consisting of two quantum dots tunnel coupled to a common
s-wave superconductor. In addition, large noncollinear
magnetic fields are applied to the dots. This setup allows for

splitting of a Cooper pair into the dots (the split electrons are,
however, not entangled because of the dot spin polarizations).
This, in turn, creates the possibility to induce a p-wave pairing
potential between electrons residing in the dots. The angle
of the dot magnetic fields gives a handle on the ratio of the
normal tunneling and cross Andreev tunneling, allowing for a
simple tuning into the interesting regime with MBS localized
on the dots.

The MBS in our setup are not protected to the same degree
as topological states in p-wave superconductors. The system
is nonetheless useful for testing theoretical predictions of,
e.g., resonant Andreev reflection,23,24 nonlocal teleportation-
like phenomena,25 and measurements of the lifetime of the
nonlocal state carrying information about the parity of the two
Majorana states. Given the small Hilbert space of the system
we can explicitly study the influence of interactions by
expressing the Majorana states in a many-body language.
We also calculate the transport properties with the double
dot system tunnel coupled to a normal metallic probe, and
furthermore discuss experimental setups that would allow a
determination of the dephasing and lifetimes of qubits based
on the parity of the Majorana states.

The paper is organized as follows: In Sec. II we set up
the model and calculate the conditions for having a set of
MBS. We also investigate the sensitivities to fluctuations of
the various parameters, as well as the effects of inter-dot
electron-electron interaction. In Sec. III, we show the expected
tunneling characteristic, and finally Sec. IV is concerned with
entanglement and decoherence of the parity qubits.

II. DOUBLE DOT MODEL AND MAJORANA STATES

We consider a double quantum dot connected via a common
superconducting lead. The width of the superconductor is
smaller than the superconducting coherence length, which al-
lows cross Andreev reflection involving electrons on different
dots. Furthermore, electrons can tunnel via the superconductor
from one dot to the other, involving virtual occupation of
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FIG. 1. (Color online) Sketch of setup. Two quantum dots are
coupled to each other via a superconductor, which mediates both
normal tunneling between the dots and cross Andreev reflection.
Each dot has only one level close to the chemical potential of the
superconductor (energies ε1 and ε2), which are controlled by the gate
voltages V 1

g and V 2
g . The dots are fully spin-polarized, but in different

directions because of the inhomogeneous magnetic field (B1 at dot 1
and B2 at dot 2). The normal metal tunnel probe, coupled to dot 1, is
used in Sec. III to detect the MBS.

quasiparticle states above the gap. The geometry is illustrated
in Fig. 1. The magnetic fields on the two dots, B1 and B2, make
an angle ϕ. We will assume the Zeeman splitting to be larger
than temperature, which allows us to consider only one state
in each dot. The amplitude for tunneling between the dots
therefore depends on the angle ϕ as t = t0 cos(ϕ/2), where
t0 is the tunneling amplitude for parallel fields. Similarly,
the cross Andreev reflection induces a pair coupling between
electrons in the two dots, which also depends on the angle.
However, since we consider a standard s-wave superconductor,
the pairing is maximal for antiparallel spin polarizations, and
is given by � = �0 sin(ϕ/2). Thus, ϕ provides a way to tune
the ratio t/�, which will be crucial to engineer the appropriate
conditions for MBS. The model Hamiltonian is

H = ε1n1 + ε2n2 + td
†
1d2 + �d

†
1d

†
2 + H.c., (1)

where ni = d
†
i di is the occupation operator for dot i = 1,2,

and where the onsite energies εi are measured relative to the
chemical potential of the superconductor.

A. Single-particle formulation

We start by studying the Hamiltonian (1) within the Nambu
formalism. Using the basis � = (d1,d2,d

†
1,d

†
2), Eq. (1) can be

written

H = 1
2�†h� + 1

2 (ε1 + ε2), (2)

with

h =

⎛
⎜⎜⎜⎝

ε1 t 0 �

t ε2 −� 0

0 −� −ε1 −t

� 0 −t −ε2

⎞
⎟⎟⎟⎠ , (3)

where we have chosen both t and � real. The eigenvalues λ of
the Hamiltonian matrix h fulfill

λ2 = ε2
+ + ε2

− + t2 + �2 + 2η

√
(ε2+ + �2)(ε2− + t2), (4)

where ε± = (ε1 ± ε2)/2, and η = ±1.

Since we are searching for MBS, we seek zero energy
solutions to Eq. (4). Therefore, we set η = −1 and see that for
t = ±�, the eigenenergy vanish for either ε1 or ε2 being equal
to zero. We start by investigating the “sweet spot” (we show
below that the MBS are quadratically protected in this point),
where in addition to t = �, both dot levels are aligned with
the chemical potential of the superconductor, ε1 = ε2 = 0.
Here, the solutions to the Bogoliubov-de Gennes equations,
hψi = Eiψi , are

ψ1 = 1√
2

(1, 0, 1, 0)T , E1 = 0, (5a)

ψ2 = i√
2

(0, 1, 0, − 1)T , E2 = 0, (5b)

ψ3 = 1

2
(−1, 1, 1, 1)T , E3 = −2t, (5c)

ψ4 = 1

2
(1, 1, − 1, 1)T , E4 = 2t. (5d)

The corresponding second quantization operators are given
by γi = � · ψi . For the two zero energy states we then
find γ1 = (d1 + d

†
1)/

√
2 and γ2 = i(d2 − d

†
2)/

√
2. These are

clearly Hermitian, γ1,2 = γ
†
1,2, and therefore describe MBS.

Furthermore, the two MBS are spatially isolated since each
zero energy state is completely localized on one of the
dots.

If we let only one dot level move away from 0, say ε1 �=
0, the two low energy states remain doubly degenerate. The
corresponding eigenstates of h are in this case

ψ1 = 1

A
√

2
(1, − δ, 1, − δ)T , E1 = 0, (6a)

ψ2 = 1√
2

(0, 1, 0, − 1)T , E2 = 0, (6b)

with δ = ε1/2t and A = √
1 + δ2. Thus, both ψ1 and ψ2 are

still MBS, but while ψ2 is completely localized on dot 2, ψ1

also has a component (∝ ε1
t

) on dot 2.
To study the sensitivity of the zero energy states, we expand

up to second order in the onsite energies, ε1,2, at the point where
t = ±�:

E1,2 = ±ε1ε2

2�

[
1 + O

((
ε1,2

�

)2)]
, (7)

which shows that the zero energy solutions are “protected”
against small deviations to linear order in the onsite energies.
In contrast, deviations away from t = � result in

E1,2 = ±(|�| − |t |). (8)

Thus, there is no protection against such deviations. However,
one can still find a condition for zero modes even for |t | �=
|�| by adjusting the onsite energies, but these will not be
quadratically protected.

In general, the diagonalized Nambu Hamiltonian h in
Eq. (2) has eigenvectors ψi with eigenenergies Ei , where i =
1, . . . 4. Due to electron-hole symmetry the eigenvalues come
in pairs with energies ±E. Choosing E1 = −E2, E3 = −E4,
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we can write the Hamiltonian (1) as

H = |E1|β†
1β1 + |E3|β†

3β3 + 1
2 (ε1 + ε2 − |E1| − |E3|).

(9)
The ground state energy is thus given by Eg = 1

2 (ε1 + ε2 −
|E1| − |E3|), which for the special case t = � and ε1,2 =
0 becomes Eg = −|t |. The ground state is thus two-fold
degenerate, because E1 = 0. The degeneracy corresponds to
the occupation of the fermion formed by f = (γ1 − iγ2)/2,
with the two MBS residing on the two dots. Below we study
this conclusion in a many-particle formulation.

B. Many-particle formulation of Majorana fermions

In the basis {|00〉,|10〉,|01〉,|11〉} of number states |n1n2〉
(where |11〉 ≡ d

†
1d

†
2 |00〉 fixes the choice of sign), the many-

particle version of the Hamiltonian (1) becomes

H =

⎛
⎜⎜⎜⎝

0 0 0 �

0 ε1 t 0

0 t ε2 0

� 0 0 ε1 + ε2

⎞
⎟⎟⎟⎠ , (10)

where we again have chosen both t and � real. The states |01〉
and |10〉 couple via the normal tunneling t , while |00〉 and |11〉
couple via the cross Andreev reflection �.

We saw above that MBS exist in the special limit ε1 = ε2 =
0,t = ±�. Taking t = �, the eigenstates are

|αe〉 = 1√
2

(|00〉 + |11〉), Eαe
= t, (11a)

|αo〉 = 1√
2

(|10〉 + |01〉), Eαo
= t, (11b)

|βe〉 = 1√
2

(|00〉 − |11〉), Eβe
= −t, (11c)

|βo〉 = 1√
2

(|10〉 − |01〉), Eβo
= −t. (11d)

There are two degenerate pairs of eigenstates (α and β), with
one of the states in each pair having even (e) and the other odd
(o) fermion number parity. In the MBS language, these two
states are eigenstates of the number operator corresponding to
the Dirac fermion operator made out of the two MBS. To see
this, we use the nonlocal fermion f = (γ1 − iγ2)/2 with the
corresponding occupation n = f †f = (1 − iγ1γ2)/2, which
in terms of the original d fermions becomes

n = 1
2 (1 + d

†
1d2 − d1d

†
2 + d1d2 − d

†
1d

†
2). (12)

Acting with this number operator on the eigenstates of the
many-particle Hamiltonian, we then have

n|αe〉 = n|βe〉 = 0, n|αo〉 = |αo〉, n|βo〉 = |βo〉. (13)

Thus, |αe〉, |βe〉 and |αo〉, |βo〉 are eigenstates of the number
operator corresponding to the nonlocal fermion f , with
eigenvalues 0 and 1, respectively. The two-fold degeneracy of
the ground state thus corresponds to an even or odd number of
fermions in the total system consisting of the superconductor
and quantum dots. Moreover, when operating on a ground

state, the Majorana operators flip the parity, for example

γ1|αe〉 = 1√
2

(d1 + d
†
1)|αe〉 = |αo〉. (14)

C. Nonlocality of parity measurements

The nonlocal nature of the two degenerate sweet-spot
ground states [Eqs. (11a) and (11b) for t < 0 and Eqs. (11c)
and (11d) for t > 0] has the consequence that one cannot
distinguish between them by local measurements on a single
dot. A measurement of the charge on one dot, Q1,2 = −e〈n1,2〉,
gives the same result for the even and odd parity states,
〈βe|n1,2|βe〉 = 〈βo|n1,2|βo〉 = 1

2 (and the same for the α

states). In fact, that the parity states cannot be distinguished
by a local measurement is clear since they are maximally
entangled Bell states in terms of the dot charges, see Eq. (11).
However, a measurement of the fluctuations of the total
charge does reveal the state, since 〈βe|(n1 + n2)2|βe〉 = 2,
while 〈βo|(n1 + n2)2|βo〉 = 1. Detection of the fluctuations
could be done by having a nonlinear charge detector, e.g.,
a single-electron transistor, capacitively coupled to both dots.

The nonlocality is, however, destroyed if the system is
tuned away from the sweet spot. To show this we consider
the situation where |t | �= |�|, while tuning to a degeneracy
point by setting ε1 = (t2 − �2)/ε2. In this case the ratio of the
occupations for the even/odd states of dot 2 become (to lowest
order in |t | − |�|)

〈n2〉e
〈n2〉o ≈ 1 −

√
4�2 + ε2

2 + ε2

�ε2
(|t | − |�|), (15)

which shows that the nonlocality of the determination of the
dot occupations is gradually destroyed as one moves away
from the sweet spot.

D. The influence of interdot interaction

An interaction between the charge on the two dots corre-
sponds to a term in the Hamiltonian given by

HU = Un1n2, (16)

which in the many-particle basis of Eq. (10) becomes

H + HU =

⎛
⎜⎜⎜⎝

0 0 0 �

0 ε1 t 0

0 t ε2 0

� 0 0 ε1 + ε2 + U

⎞
⎟⎟⎟⎠ . (17)

The two lowest eigenenergies are then

E1 = ε+ −
√

(ε+)2 + t2, (18a)

E2 = 1
2 (2ε+ + U −

√
(2ε+ + U )2 + 4�2). (18b)

The situation with a finite U is similar to the case discussed
above, when t and � are tuned away from the sweet spot. One
can tune the system into a situation with two MBS, but their
existence is not quadratically protected. The two energies are
degenerate only if

U =
(�2 − t2 + ε1ε2)(ε + 2

√
t2 + ε2−)

2(t2 − ε1ε2)
. (19)
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Moreover, the fermion associated with the parity of the ground
state is no longer fully nonlocal in nature, because one can
determine the state by a measurement of the charge on one dot
only, similar to the situation for the noninteracting case away
from the sweet spot.

In an experiment, we do not expect it to be particularly
problematic to achieve U ≈ 0 since the superconductor effi-
ciently screens the charge on one dot as seen from the other.
Note that local (intra-dot) electron–electron interactions are
irrelevant since both dots are fully spin polarized (only single
occupancy is allowed).

III. DETECTING THE MAJORANA STATES BY TUNNEL
SPECTROSCOPY

A simple way to detect the MBS is by tunnel spectroscopy.
We consider a normal metallic electrode tunnel coupled to dot
1, see Fig. 1. We want to determine the current flowing into
the grounded superconductor from the normal electrode, as a
function of the applied bias voltage. We assume that the normal
electrode is weakly coupled to dot 1, such that the entire voltage
drop takes place at the normal electrode–quantum dot tunnel
barrier. The current is determined by the Andreev reflection
amplitude a(ω) as

I = 2e

h

∫ ∞

−∞
dω|a(ω)|2[f (ω − eV ) − f (ω + eV )], (20)

where f (ω) is the Fermi-Dirac distribution of the normal
electrode.

The amplitudes for normal reflection r(ω) and Andreev
reflection a(ω) follow from the scattering matrix

S =
(

r a

a∗ r∗

)
. (21)

In the wide-band limit, the S-matrix is given by

S = 1 + 2iπW [h − ω + iπW †W ]−1W †, (22)

where W is the coupling matrix describing the coupling
between the normal electrode and the dot system. With a tunnel
coupling only to dot 1, it is given by

W =
√

�

2π

(
1 0 0 0

0 0 −1 0

)
, (23)

where � is the width of the dot level due to the tunnel coupling.
In Fig. 2, we show the calculated zero-temperature differ-

ential conductance, G = dI/dV . In each subfigure, (a)–(d),
the upper panel shows G on a color scale plotted as a function
of V and one more parameter, while all other parameters are
kept fixed at their sweet-spot values. The lower panel shows
G as a function of V along three different horizontal cuts in
the corresponding upper panel conductance map. At the sweet
spot, found along a horizontal line through the center of each
upper panel conductance map and represented by the green
conductance curve in each lower panel, we find a peak of
height 2e2/h centered at V = 0 and broadened by �. This is
a well-known result for tunneling into a localized Majorana
bound state.23,24 The additional states in Eq. (5) give rise to
conductance peaks at ±2t .

FIG. 2. (Color online) Calculated differential conductance, G = dI/dV , at zero temperature. Upper panel: G plotted on a color scale as
a function of bias voltage and one more parameter, while all other parameters are fixed at their sweet spot values, with t = � = 8�. Lower
panel: G as a function of bias voltage along three different horizontal cuts in the corresponding upper panel conductance map (the position
being marked there with the same color and line style as the corresponding curve in the lower panel). (a) ε1 is varied, cuts in lower panel are
at ε1 = 0 (green solid curve), ε1 = 4� (magenta dashed curve), and ε1 = 8� (brown fine-dashed curve). (b) ε2 is varied, cuts in lower panel
are at ε2 = 0 (green solid curve), ε2 = 4� (magenta dashed curve), and ε2 = 8� (brown fine-dashed curve). (c) ε = ε1 = ε2 is varied, cuts in
lower panel are at ε = 0 (green solid curve), ε = 4� (magenta dashed curve), and ε = 8� (brown fine-dashed curve). (d) t is varied, cuts in
lower panel are at t = � = 8� (green solid curve), t = 4� (magenta dashed curve), and t = �/2 (brown fine-dashed curve).
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In Fig. 2(a), we let ε1 vary away from the sweet-spot
value (ε1 = 0). As discussed above, this does not remove the
zero-energy states, but only moves some of the weight of the
Majorana wave function ψ1 from dot 1 to dot 2, see Eq. (6).
As a result, the zero-bias peak remains, but with a somewhat
reduced width, related to the reduced weight of the Majorana
wave function on dot 1. The finite bias conductance signatures
show a stronger dependence on ε1, moving to higher V and
being reduced in height. Varying instead ε2 away from the
sweet spot, as in Fig. 2(b), leads to a qualitatively different
conductance map. Now some of the Majorana wave function
localized on dot 2, ψ2, “spills over” into dot 1, enabling
tunneling from the normal electrode into both MBS. Tunneling
into the two modes interfere destructively, leading to a sharp
dip in the conductance centered at V = 0 (if the temperature
is too large to resolve this dip, the decreased height of the
zero bias peak still provides a transport signature of ε2 �= 0).
Note, however, that the zero-energy states remain intact. In
Fig. 2(c), we simultaneously move both dot levels away
from zero, setting ε1 = ε2 = ε. This introduces a splitting
of the zero-energy states in quadratic order, see Eq. (7),
and therefore also a splitting of the zero bias conductance
peak. Varying t away from �, as in Fig. 2(d), introduces
a linear splitting of the zero energy states, Eq. (8), and of
the corresponding conductance peak. For very small t (or
very small �), the conductance is suppressed. Below the
superconducting gap, the only way to move electrons into
or out of the superconductor, and thereby to or from ground,
is through cross Andreev reflection. However, this can only
happen when both dots are either empty or full, necessitating
normal tunneling since the normal electrode is only coupled
to dot 1.

The results in Fig. 2 show that tunnel spectroscopy can
indeed be used to detect the MBS. Moreover, any parameter
being tuned away from the sweet spot results in a clear con-
ductance signature. Therefore, continuously monitoring the
conductance spectrum provides a guide for an experimentalist
navigating through the parameter space (ε1, ε2, and t/�)
towards the sweet spot.

IV. PARITY QUBITS: ENTANGLEMENT
AND COHERENCE TIMES

The fermionic two-level system spanned by the MBS can be
thought of as a parity qubit, the state of which can be read out
via the parity measurements discussed above. However, there
appears to be no feasible way to create superposition states of
an isolated parity qubit, i.e., to rotate it away from the north or
south pole on the block sphere (even or odd parity). Controlled
addition or removal of an electron changes the parity between
even and odd (flips the qubit between north and south pole),
but rotations by other angles would require adding or removing
a fractional charge.

Therefore, we consider the system sketched in Fig. 3(a),
including two double-dot systems (A and B), each internally
coupled via a superconductor, and coupled to each other via
another quantum dot (C). By controlling the position of the
energy level of dot C, εC , we can transfer an electron to or from
dot C. If we do not measure which side (A or B) is involved
in the charge transfer, we create entanglement between states

FIG. 3. (Color online) (a) Sketch of setup with two double dots,
tunnel coupled with amplitudes tAC and tBC to an additional dot (C).
Dot C has a single orbital with energy εC , which is controlled by the
gate voltage V C

g . (b) The eigenenergies of the even total parity sector
of Eq. (24) for tAC = tBC , plotted as a function of εC .

where the charge transfer has flipped the parity of system A and
states where it has flipped the parity of system B. The basic
idea is related to Refs. 26–28, where, however, “standard”
MBS were considered.

We illustrate the principle by showing how to both create
maximally entangled parity states of A and B, and measure the
coherence time of such states. We consider the systems A and
B to be tuned to the sweet spot, where we can describe them
in terms of the Majorana operators when investigating the
low-energy physics. The total system is then described by the
Hamiltonian

HABC = εCnC + tACγ A
1 (dC − d

†
C) + tBCγ B

1 (dC − d
†
C), (24)

where nC = d
†
CdC is the occupation operator for dot C.

Without the coupling to dot C, the ground states of A,B

are |e〉A,B and |o〉A,B , where |e,o〉A,B stands for |αe,o〉A,B if
tA,B < 0 and for |βe,o〉A,B if t > 0 [see Eq. (11)]. We now
consider the case tAC = tBC (note that making the phases equal
requires control of the phase difference, φA − φB , between
the superconductors in A and B). The total parity of the
system (nA + nB + nC , with nA,B |e〉A,B = 0, nA,B |o〉A,B = 1)
is conserved by the Hamiltonian (24), and we restrict our
attention to the subspace of even total parity. Figure 3(b)
shows the eigenenergies plotted as a function of εC . The
special property of the limit tAC = tBC is the crossing of
two of the eigenstates (blue and magenta curves) at εC = 0.
These states correspond to dot C always being full (magenta
sloped line) or empty (blue horizontal line), which we
denote by |F 〉ABC and |E〉ABC , respectively. The other two
states correspond to mixed occupation of dot C, denoted by
|M1〉ABC (brown lower line) and |M2〉ABC (green upper line).
When εC � |tAC |, meaning far above the chemical potential
of the superconductors, |M1〉ABC (|M2〉ABC) corresponds to
an empty (filled) dot, while the situation is reversed for
εC � −|tAC |.
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We start with an empty dot C (nC = 0) and εC � |tAC |, at
the point marked 1 in Fig. 3(b). We also initialize the systems A

and B in the even parity states, which can be done for example
by moving the dot levels far above the chemical potential of
the superconductors and waiting for the system to relax to the
ground state, which is then even since the dots are empty and
the superconductors have standard s-wave pairing. The initial
state, |i〉ABC , is then

|i〉ABC = |e〉A|e〉B |0〉C = 1√
2

(|M1〉ABC + |E〉ABC), (25)

an equal superposition of the blue and brown states in Fig. 3(b),
which are degenerate for εC � |tAC |. We now adjust V C

g to
bring down the level of dot C to εC � −|tAC |. If this is done
adiabatically, the system will remain in an equal superposition
of |M1〉ABC and |E〉ABC . However, this has now become a
superposition of dot C being empty [|E〉ABC , corresponding
to the point marked 2′ in Fig. 3(b)] and full [|M1〉ABC ,
corresponding to the point marked 2 in Fig. 3(b)], which will
likely quickly decohere into a statistical mixture due to the
long range of the Coulomb interaction. This is irrelevant for
our purposes and if we desire, we can find out if the system is
in |E〉ABC or |M1〉ABC by measuring the charge on dot C. It is
interesting to note that for εC � −|tAC | we have

|E〉ABC → 1√
2

(|e〉A|e〉B − |o〉A|o〉B), (26)

|M1〉ABC → 1√
2

(|e〉A|o〉B + |o〉A|e〉B). (27)

Thus, the adiabatic gate sweep may or may not result in dot C

being filled, but in any case prepares the systems A and B in
a maximally entangled two-parity-qubit state.

We can now measure the coherence time T2 of the entangled
states by waiting a time τ before making another adiabatic gate
sweep back to εC � |tAC |, after which the charge on dot C is
measured. If τ � T2, the system remains in either |E〉ABC or
|M1〉ABC and after the second gate sweep dot C will always be
empty [nC = 0, point 3 in Fig. 3(b)]. If, on the other hand, τ �
T2, the system has time to decohere into a mixture of either

|E〉ABC and |M2〉ABC , or |F 〉ABC and |M1〉ABC . In this case,
after the second gate sweep dot C will be empty or filled [point
3 or 3′ in Fig. 3(b)] with equal probabilities. The coherence
time is found by many repetitions of this measurement with
different waiting times. This scheme can be described as parity
to charge conversion, similar to spin to charge conversion used
to measure coherence times in singlet-triplet qubits.29

If tAC = tBC is not perfectly fulfilled, a small avoided
crossing appears between the states |F 〉ABC and |E〉ABC . The
scheme described above works as long as we can make the
gate sweep fast with respect to this avoided crossing, but slow
with respect to the avoided crossing between |M1〉ABC and
|M2〉ABC .

V. CONCLUSIONS

In this paper we have introduced the concept of poor man’s
Majorana bound states, quasiparticle excitations which share
all the characteristics of “standard” Majorana bound states,
but lack topological protection. The poor man’s Majoranas
form in a rather simple setup consisting of two quantum dots
coupled via a standard s-wave superconductor and placed
in an inhomogeneous magnetic field. Under the appropriate
conditions, two spatially separated MBS appear, one on each
dot, as can be verified by tunnel spectroscopy. The fermionic
parity qubit formed by the two Majoranas is nonlocal and
cannot be measured by probing one dot only. We believe
that the suggested system is a very experimentally attractive
platform in which to test some of the exotic Majorana physics
which has been suggested theoretically.

We have also discussed coupling of two parity qubits via
an additional quantum dot. This setup allows entanglement of
parity qubits through gate-controlled charge transfer, as well
as measurements of the associated coherence times. While
finalizing the manuscript we became aware of a somewhat
related work.30
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