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The nature and symmetry of the superconducting gap function in the noncentrosymmetric superconductor
Li2Pt3B, even many years after its discovery, appear to be full of contradictions. In this article based on the
existing band structure calculations we find that owing to the considerable nesting near the Fermi surface and
the enhanced d character of the relevant bands that cross the Fermi level, the system gets weakly correlated.
Considering the effect of the on-site Coulomb repulsion on the pairing potential perturbatively, we extract a
possible superconducting transition. The strong normal spin fluctuation gives rise to a singlet-dominant gap
function with accompanying sign change. Thus our theory predicts an s±-wave gap function with line nodes as
the most promising candidate in the superconducting state.
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I. INTRODUCTION

Unconventional superconductivity appears in the correlated
electron system, where electron correlation plays a role in
producing an effective pairing potential. Here, Cooper pairs
are formed by electrons sited on different sites. On the other
hand, the conventional s-wave superconductivity mediated by
the phonon between electrons at the same site principally is
considerably suppressed due to the local electron Coulomb
repulsion. The fact that the momentum summation of the
order parameter of superconductivity in the first Brillouin
zone vanishes is a feature of unconventional superconductivity,
since the symmetry of unconventional superconductivity is
different from that of the conventional s-wave superconduc-
tivity. Actually, these features are observed in well-known
unconventional superconductors, such as high-Tc cuprate1,2

and heavy-fermion superconductors.3–5

The discovery of superconductivity in the noncentrosym-
metric compound CePt3Si6 opened a new field of research.
Broken inversion symmetry gives rise to an antisymmetric
spin-orbit coupling which splits the spin degenerate electronic
bands into two, each of which are now described by a
helicity index. Gor’kov and Rashba7 already predicted that
the superconducting order parameter in such a system is
bound to be a mixture of spin-singlet as well as spin-triplet
components. On the other hand, this gives rise to many unusual
behaviors which are revealed through various experiments.
Many possible theoretical explanations came up to explain
these behaviors. These anomalous behaviors include high
upper critical field,8–10 large residual susceptibility and its
anisotropy,11–13 properties related to the Josephson junc-
tion and different tunnel junctions,14–18 impurity effects,19–22

the existence of edge states,23–25 the possibility of finding
Majorana fermions,26 and very recently their novel topo-
logical aspects.27–32 The mixed-parity pairing state could be
realized by a peculiar mechanism capturing features of the
noncentrosymmetric system.33–35 For CePt3Si the fact that
the superconducting phase coexists with the magnetic phase6

makes it difficult to clarify the mechanism. Presently many

other noncentrosymmetric superconductors have been found
in the extensive investigation.

The experimental finding of superconductivity in
Li2Pd3B36 and subsequently the experiments in the pseu-
dobinary complete solid solution Li2(Pd1−xPtx)3B, x = 0 ∼
1,37 attracted much attention as the superconducting phase
for this family of compounds does not coexist with other
phases. This makes the system simple for studying the
properties of noncentrosymmetric superconductors (NCSs).
There exist many experimental as well as theoretical works
reporting different interesting aspects of this family of com-
pounds. The end compounds Li2Pd3B (x = 0) and Li2Pt3B
(x = 1)38–43 were also studied intensively and compared. It
is now established that the superconductivity in Li2Pd3B is
of the phonon-mediated s-wave type.44 The presence of the
Hebel-Slichter peak in the nuclear spin-lattice relaxation rate
measurement,38,39 low-temperature behavior of the specific
heat,40,41 penetration depth,43 etc., as well as NMR Knight
shift data strongly support this conclusion. On the other hand,
the nature and symmetry of the gap function of the compound
Li2Pt3B is still debatable. According to similar experiments on
this compound39,41,43 the presence of line nodes is suggested,
indicating some unconventional superconducting state. The
NMR Knight shift, often used to distinguish the spin state of the
Cooper pair between singlet and triplet, is almost temperature
independent even below Tc. This behavior is also interesting
and deserves special attention.

The article is organized as follows. In Sec. II based on the
existing band structure calculations45,46 we derive an effective
band model which captures the essential features of the band
structure calculations. We establish a nesting between two
branches of the Fermi surface by calculating the interband as
well as intraband static susceptibilities. We further calculate
the static charge and spin susceptibilities numerically and
estimate the effect of different spin fluctuations. Here we
would like to mention that earlier work47 which aimed to
explain this compound did not considered these effects. In
Sec. III we derive the superconducting gap equation within the
weak-coupling approach by estimating the pairing potential
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within the perturbation theory for the electron repulsion. From
the momentum dependencies of the pairing potential it is clear
that owing to the large usual spin fluctuation the singlet gap
function becomes much stronger than the triplet gap function.
We then solve the gap equations numerically and find the
detailed nature of the gap function. We find that the gap
function belongs to the A1 representation of the corresponding
point group with sign change between two branches of the
Fermi surface. Thus our theory suggests a singlet-dominant
s±-wave gap function with line nodes on another branch of
the Fermi surface as the most promising candidate for the
superconducting state of Li2Pt3B. This prediction also explains
most of the experiments, suggesting the existence of the line
node. We then discuss the structure of the line nodes and
the possibility of getting zero-energy surface bound states in
Sec. IV. Finally in Sec. V we calculate the behavior of uniform
spin susceptibility below Tc. We also draw conclusions from
our work and suggest some experiments to facilitate further
investigation.

II. MODEL HAMILTONIAN FOR Li2Pt3B

In this section we present the model Hamiltonian for
the noncentrosymmetric superconductor Li2Pt3B and reveal
the important role of nesting between different branches of
the Fermi surface based on the evidences of the existing
literature. The crystal structure of the compound Li2Pt3B is
simple cubic (with point group O) and isostructural with the
compound Li2Pd3B. The only difference between them is in the
mass of the central Pt and Pd atoms. However this gives rise to
some significant observable effects.45,46 For the Pt compound
there is an enhancement of the d character of the bands that
cross the Fermi level. This enhancement of the d character is
reflected in the increased density of state at the Fermi level.
Considering these, we consider a minimal model Hamiltonian
(H = H0 + H1) of Li2Pt3B which is given by the Hubbard
model with an antisymmetric spin-orbit (ASO) coupling term,
where

H0 =
∑
kσσ ′

([εk − μ] σ̂o + gk · σ̂ )σσ ′ c
†
kσ ckσ ′ , (1)

H1 = U
∑

i

ni↑ni↓. (2)

Here ckσ and c
†
kσ denote the annihilation and creation operators

of an electron with momentum k and spin σ . εk is the dis-
persion of electrons and μ the chemical potential. gk = −g−k
denotes the effective ASO coupling which breaks the inversion
symmetry. Thus H0 describes the usual noncentrosymmetric
metallic system. In the interaction term H1, U is the strength
of the screened on-site interaction.

Now we concentrate on the main features of the electronic
bands near the Fermi level for the compound Li2Pt3B, obtained
by the previous first-principles calculations.45,46 A careful
study of these works suggests that the major contribution to
the density of states comes from Pt 5d bands. These d bands
cross the Fermi level forming discrete Fermi surfaces. We can
clearly identify electron pockets at the � and M points and
hole pockets at the R and X points. Also the electron pocket at
the � point is connected to the hole pockets at the R point by

a nesting vector (π,π,π ) which is half of the reciprocal lattice
vector.

Based on the discussions in the previous paragraph, we
give an effective band which captures most of these essential
features. The dispersion of electrons εk is described by the
tight-binding method including up to fourth-neighbor hopping
in the three-dimensional simple cubic lattice:

εk = 2t1[cos(kx) + cos(ky) + cos(kz)]

+ 4t2[cos(kx) cos(ky) + cos(ky) cos(kz)

+ cos(kz) cos(kx)] + 8t3 cos(kx) cos(ky) cos(kz)

+ 2t4[cos(2kx) + cos(2ky) + cos(2kz)]. (3)

The ASO coupling term appropriate for the point group
is given as gk = g( sin(kx), sin(ky), sin(kz)). Here g indi-
cates the strength of the ASO coupling. The values of the
parameters (t1,t2,t3,t4,g,μ) are chosen to be (1.0, −0.03,

−0.88, −0.03,0.5,0.02) as Fermi surfaces obtained by the
band structure calculation are reproduced. One can diagonalize
H0 to get the eigenenergies εk± = εk ± |gk| − μ, which give
us the energy of the two helicity bands. The Fermi surfaces
of the two opposite helicity bands as obtained by the fitting
are shown in Fig. 1. From the figure it is clear that the Fermi
surfaces for both helically split bands consist of three major
branches: one small electron pocket around the � point, hole
pockets around the R points, and the other remaining large
portion forming a cagelike structure with neck and mouth
along the �-X directions. The corresponding parts of the Fermi
surfaces of the different helicity bands are shifted from each
other depending on the magnitude of g. Owing to the smallness
of the parameters t2,t4, and μ there appears a large nesting with
a vector Q = (π,π,π ) connecting between the cagelike portion
of the Fermi surface of the negative helicity band εk− and the
similar Fermi surface of the positive helicity band εk+.

The presence of this nesting is also verified in the momen-
tum dependence of the interband susceptibility χ+−(q). By
definition χηξ (q) is given as

χηξ (q) = 1

8N0

∑
k

f (εkξ ) − f (εk+qη)

εk+qη − εkξ

, (4)

where η,ξ = ±. Here f (εkξ ) is the Fermi function and εkξ is
the dispersion relation of the helicity bands. We thus calculate
the momentum dependence of all χηξ (q) and plot them in
Fig. 2. As expected, we observe a sharp peak at the R point
indicating the (π,π,π ) nesting in the momentum dependence
of χ+−(q), as shown by the red dotted line in Fig. 2. We
also observe peaks near the nesting vector Q = (π,π,π ) in
the momentum dependence of both χ++(q) and χ−−(q). This
indicates the fact that there also exists partial intraband nesting
as well. This nesting will occur between the Fermi surfaces
around the � and R points of both helicity bands.

In the remaining part of this section we examine the effect
of nesting in the static susceptibilities χαβ where α and β

are either a component of spin S or a charge component.
As we see later the superconducting pairing potential is
described by the static susceptibility χαβ(q). We calculate the
momentum dependence of all susceptibility components nu-
merically for the cubic NCS system and examine the property
of spin fluctuations. The dynamical susceptibility tensor is
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FIG. 1. (Color online) Different branches of the Fermi surfaces for (a) positive helicity band and (b) negative helicity band. Both the Fermi
surfaces consist of central spherical part around the � point and another branch at the R points. The remaining part forms a cagelike structure.
The cagelike Fermi surfaces for two helicity bands overlap with each other when translated by the nesting vector Q = (π,π,π ). Details are
described in text.

defined as

χαβ(q,i�n) =
∫ 1/T

0
dτei�nτ

〈
Tτ

[
Sα

q (τ )Sβ
−q(0)

]〉
. (5)

Here 〈...〉 denotes thermal average, Tτ imaginary time ordering,
and �n are the bosonic Matsubara frequencies. The charge
(α = c) and τ component of spin (α = τ ) operators with wave
vector q are defined as

Sc
q = 1

2

∑
kσ

c
†
kσ ck+qσ , Sτ

q = 1

2

∑
kσσ ′

σ τ
σσ ′c

†
kσ ck+qσ ′ , (6)

where σ τ is the τ component of the Pauli matrix (τ = x,y,z).
Simultaneously with Eq. (4) using Eqs. (5) and (6) we arrive
at the momentum dependencies of the matrix elements of the
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FIG. 2. (Color online) Signature of nesting. Momentum depen-
dence of interband and intraband susceptibilities showing nesting
around Q = (π,π,π ).

static spin susceptibilities χττ ′(q) in the noninteracting case
U = 0:

χττ ′(q) = 1

8N0

∑
k

∑
ξζ

�ττ ′
ξζ (k; q)

f (εkξ ) − f (εk+qζ )

εk+qζ − εkξ

, (7)

where f (ε) is the Fermi distribution function and the function
�ττ ′

ξζ is obtained as

�ττ ′
ξζ (k; q) = δτ,τ ′(1 − ξζ g̃k.g̃k+q) + ξζ (g̃kτ g̃k+qτ ′

+ g̃kτ ′ g̃k+qτ ) − εττ ′τ ′′ i(ξ g̃k+qτ ′′ − ζ g̃kτ ′′). (8)

Here g̃kτ is the direction cosines along the τ direction
and εττ ′τ ′′ is the usual Levi-Civita symbols where τ,τ ′,τ ′′
denote spatial indices. Similarly the charge fluctuation in the
normal state, i.e., χcc(q), is obtained with the replacement
of �ττ ′

ξζ (k; q) by �cc
ξζ (k; q) where �cc

ξζ (k; q) = 1 + ξζ g̃k · g̃k+q.
The susceptibilities between spin and charge operators χcτ (q)
and χτc(q) all vanish for the static case. All other susceptibility
components have different momentum dependence.

We further consider the contributions of nesting to dif-
ferent spin fluctuations. According to the group theoretical
consideration,34 the symmetry of momentum dependence of
every spin susceptibility could be classified as follows. The
usual spin fluctuation 1

3 (χxx + χyy + χzz) which is also present
in the centrosymmetric cubic system has the momentum
dependence of q2 type. Other symmetric spin fluctuations
(2χzz − χxx − χyy),(χxx − χyy), and (χαβ + χβα) with α �= β

are found to have momentum dependence 2q2
z − q2

x − q2
y ,q

2
x −

q2
y , and qαqβ(α �= β) types, respectively, and are special to

the cubic noncentrosymmetric case. Along with these the
antisymmetric spin fluctuations i(χαβ − χβα) with α �= β with
momentum dependence qγ (γ �= α �= β) type are also present.
A good discussion of the momentum dependence of various
spin fluctuations can be found in earlier work34 for the
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FIG. 3. (Color online) Momentum dependencies as well as the
comparison of the relative magnitudes of normal and anomalous spin
fluctuations. The charge fluctuation χcc and normal spin fluctuation
1
3 (χxx + χyy + χzz) contribute strongly compared to the anomalous
spin fluctuations. The spin susceptibility also gets enhanced at the R
point.

tetragonal NCS case. In Fig. 3 we show the result of numerical
calculation of the momentum dependence of various spin
fluctuations for our noninteracting model. From this we can
also compare the relative strengths of the charge and usual
spin fluctuation together with the anomalous spin fluctuations
along symmetrical lines. Each spin fluctuation follows the
appropriate symmetry of momentum dependence. We observe
the largeness of the usual spin fluctuation compared to other
symmetric and antisymmetric spin fluctuations. The charge
and usual spin fluctuations are enhanced at the nesting vector
implying that the system is rather close to an instability.

III. SUPERCONDUCTING GAP EQUATION

In this section we derive the superconducting gap equations
and solve them to get the nature and symmetry of the
superconducting gap. We will also see how this large nesting
affects the superconducting state.

We start with the discussion of the nature of the supercon-
ducting gap function in NCSs in general. As shown by the
work of Gor’kov and Rashba,7 breakdown of the inversion
symmetry leads to a gap function which is a mixture of singlet
as well as triplet gap functions in the superconducting state.
Thus the most general form of the matrix gap function is

�̂k = [�(k)σ̂0 + d(k) · σ̂ ] iσ̂y . (9)

Here �(k) is the singlet gap function and the triplet d vector
is d(k) = (dx(k),dy(k),dz(k)). In NCSs the triplet component
satisfying |d(k) · gk| = |d(k)||gk| only survives the pinning
from the ASO coupling.48 So one can write d(k) = φ(k)gk
where φ(k) has the same symmetry of momentum dependence
as �(k). With all these we can define the normal Ĝ(k,iωn) and
anomalous F̂ (k,iωn) matrix Green’s functions as given by

Ĝ(k,iωn) = G+(k,iωn)σ̂0 + G−(k,iωn)g̃k · σ̂ , (10)

F̂ (k,iωn) = [F+(k,iωn)σ̂0 + F−(k,iωn)g̃k · σ̂ ] iσ̂y . (11)

Here g̃k = gk/|gk|. G± and F± are given as

G±(k,iωn) = 1

2

(
−iωn − εk+
ωn

2 + E2
k+

± −iωn − εk−
ωn

2 + E2
k−

)
, (12)

F±(k,iωn) = 1

2

(
�k+

ωn
2 + E2

k+
± �k−

ωn
2 + E2

k−

)
. (13)

Here �k± = �(k) ± φ(k)|gk| and Ek± =
√

ε2
k± + �2

k± .
Our next step is to get the superconducting gap equations.

To derive the pairing potential we treat the interaction term
H1 perturbatively and expand the Green’s function within
the second-order perturbation theory. The gap equations are
obtained from the anomalous self-energy part of the expanded
Green’s function. Details of this procedure are sketched in the
Appendix. We follow the standard procedure35,49,50 to arrive
at the following superconducting gap equation:

[�(k)dx(k)dy(k)dz(k)]t

= 1

N0

∑
q

⎛
⎜⎝

Vss(q) Vsx(q) Vsy(q) Vsz(q)
Vxs(q) Vxx(q) Vxy(q) Vxz(q)
Vys(q) Vyx(q) Vyy(q) Vyz(q)
Vzs(q) Vzx(q) Vzy(q) Vzz(q)

⎞
⎟⎠

×

⎛
⎜⎝
Fs(k − q)
Fx(k − q)
Fy(k − q)
Fz(k − q)

⎞
⎟⎠ . (14)

Here Vζη with (ζ,η) = (s,x,y,z) denotes the pairing potential
arising from the corresponding fluctuation exchange and they
are expressed as

Vss(q) = −U − U 2[χxx(q) + χyy(q) + χzz(q) − χcc(q)],

Vζζ (q) = U 2[χcc(q) + χηη(q) + χδδ(q) − χζζ (q)],
(15)

Vζη(q) = Vηζ (q) = −U 2[χζη(q) + χηζ (q)],

Vsζ (q) = −Vζs(q) = iU 2[χηδ(q) − χδη(q)],

where ζ �= η �= δ. Here Fs and Fα are the contributions from
the anomalous Green’s functions after frequency summation35

and given by

F̂(k) = [Fs(k)σ̂0 + Fα(k) · σ̂ ] iσ̂y, (16)

where

Fs(k) = 1

2
[ψ(k)φ+(k) + d(k) · g̃kφ−(k)] ,

Fα(k) = g̃kα

2
[ψ(k)φ−(k) + d(k) · g̃kφ+(k)] , (17)

φ±(k) = tanh(Ek+/2T )

2Ek+
± tanh(Ek−/2T )

2Ek−
.

The superconducting gap equation Eq. (14) is actually four
coupled equations. Since our main interest is to explain
the nature and symmetry of the gap function for this NCS
system, we avoid an estimation of the transition temperature
Tc from these equations. Instead we fix Tc at 0.02t1 and
calculate the maximum eigenvalue of the right-hand side
of Eq. (14) changing the U value. Figure 4 gives us the
critical value of the on-site interaction U for superconductivity,
i.e., Uc = 1.675t1, when maximum eigenvalue becomes unity.
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FIG. 4. (Color online) The variation of maximum eigenvalue with
U/t1. Red dotted line gives us the critical U for λ = 1.

We thus get the momentum dependence of both singlet and
triplet gap functions as the eigenfunctions of the maximum
eigenvalue. From the momentum dependence of the gap
function we conclude that the superconductivity belongs to
the A1 representation of the point group O.

Finally, we discuss details of the gap function. In our
calculation the triplet gap function is found to be a few orders
of magnitude smaller than the singlet one, so we extract only
the singlet part. In Fig. 5 we present the contour plot of the
singlet gap function at three different kz values in the first
Brillouin zone. The singlet gap function changes sign from
positive (red) to negative (violet) by gradually moving from
� to R point and vanishes completely somewhere in between
forming the nodal surface. Here we would like to mention
that the magnitude of the gap function is largest at either
the � or R point although the nesting is not so strong here.
On the other hand the cagelike portion of the Fermi surface
where we have the strongest nesting gives rise to a weak gap
function. This can be understood from a careful observation
of Eq. (15). The summation of prefactor �ττ

+−(k,Q) of charge
and spin susceptibility χττ (Q) vanishes for the spin-singlet
pairing potential Vss(Q) at the nesting vector Q = (π,π,π ).
Because of this, even strong interband nesting does not play
any role in opening up the gap function. However, the pairing
potential forms the gap on the Fermi surfaces around the �

and R points, connected by subdominant nesting of χ++(Q)
and χ−−(Q). Thus the singlet gap function with opposite

signs between these points opens up and a curved surface of
closing-gap momentum can exist in between. In this figure we
show the positive helicity Fermi surface by the + sign and the
dotted line denotes the exact location where the gap function
vanishes. In Fig. 5(c) we encounter the maximum negative
value of the gap function at the corner R points. In Fig. 5(a)
the gap is positive maximum. In Fig. 5(b), we can find the
intersection between the Fermi surface and the surface of the
closing-gap momentum, corresponding to “the line node” of
the gap function. Since the representation of superconductivity
is A1 the line node is an accidental one, which is not protected
by symmetry, but rather depends on the three-dimensional
geometry of the Fermi surface. Thus the gap function appears
to be singlet s± type with accidental line nodes.

IV. SURFACE BOUND STATES

In this section we mainly discuss two topics. The first one
is related to the nodal structure of the gap function for both
positive as well as negative helicity bands. Next we discuss
the novel topological aspects of the nodal lines (that are
present in this system) related to the edge states. To begin with
we show the three-dimensional structures of gap functions
on both helicity Fermi surfaces in Fig. 6. Usually we can
identify the line nodes from the intersection between the Fermi
surface of certain helicity bands and the nodal contour of the
same helicity gap function. Using this method we identify the
location of the line nodes both for the negative helicity band in
Fig. 6(a) as well as for the positive helicity band in Fig. 6(b).

Following the recent categorization of the topological sur-
face states for nodal29–32 noncentrosymmetric superconductors
we find it worthy to discuss our case. The nodal lines in the bulk
of the noncentrosymmetric superconductor can give rise to the
zero-energy surface bound states which appear only in some
closed regions bounded by the projections of the closed nodal
lines of the bulk gap. The zero-energy surface states have some
distinct topological origin and give rise to a zero-bias tunneling
conductance peak.

According to the existing literature the nontrivial value of
the topological invariant W[lmn]

29–32 leads to the surface flat
bands and can be observed in the surface spectral function for
a suitably chosen surface with the normal along [lmn]. The
topological invariant W[lmn] is defined by the equation

W[lmn](k‖) = −1

2

∑
ν=±

[
sgn

(
�ν

kF,ν

) − sgn
(
�ν

k̃F,ν

)]
, (18)

FIG. 5. (Color online) The contour plot of the singlet gap function at three kz values: (a) kz = 0.0, (b) kz = 0.7π , and (c) kz = π . Gap
function varies from positive maximum (red) to the negative maximum (violet) following the scale attached to each figure. The blue line with +
sign shows the Fermi surface of the positive helicity band while the dotted blue line denotes the nodes of the gap function (details in text).
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FIG. 6. (Color online) (a) Fermi surface of the negative helicity
band in the first Brillouin zone. The nodal lines of the gap function
(shown in red lines) are located near the edge of the mouths of the
Fermi surface. Surrounding each mouth there exist two pairs of nodal
lines. The green (black) dots denote the region where the sign of
the gap function is positive (negative) on the negative helicity Fermi
surface. (b) The same for positive helicity band where the dots have
the same meaning. Now we show orange patches on the Fermi surface
which actually have a positive sign of the gap function surrounded
by the negative sign region (blue region with occasional black dots).
Thus the boundary between them give rise to the line nodes of this
gap function. There are four such patches surrounding each mouth
and each patch is shared by two mouths of the positive helicity Fermi
surface, totaling twelve in number.

where kF,ν(k̃F,ν) are vectors located on the helicity Fermi
surface ν, which decomposes into a component parallel to
[lmn] and a two-dimensional vector k‖ on the [lmn] plane
(common between kF,ν and k̃F,ν).

To start with we consider the case for a spherical Fermi
surface. For a spherical Fermi surface the line of integration
[in the sense of Eq. (14) in Ref. 32] always crosses the Fermi
surface twice, making it possible to define a k̃ for every k
as defined in Eq. (18) for any [lmn]. In our case the shape
of the Fermi surface vastly differs from the spherical one,
especially near the mouth region of the Fermi surface, as shown
in Fig. 6, where the nodal rings are located. Here first the nodal

lines do not form a closed loop. Second, we cannot define a
path of integration simultaneously passing through one region
bounded by the nodal rings and another region of a Fermi
surface, when we fix the direction along [111].

Since the location of the nodal lines for the negative helicity
gap function is different from that of the positive helicity gap
function, we have to consider them separately. First we discuss
the situation that arises from the negative helicity gap function
and will come back to case for positive helicity gap function. To
show that the nodal lines indeed form closed loops we repeat
our first Brillouin zone along the positive kz direction. This
clearly shows the formation of four nodal rings surrounding
each mouth around kz = π in Fig. 7(a). In order to consider
the [111] surface we use the equivalent cylindrical hexagonal
Brillouin zone and extend the data of the gap function up to
the second Brillouin zone, as shown in Fig. 7(b). Now in the
effective cylindrical Brillouin zone the nodal lines form closed
nodal rings and we can also define the path of the integration
which now intersect another part of the Fermi surface after
passing through the regions bounded by the nodal rings, so
that Eq. (18) can be safely applied. In Fig. 7(c) we draw the
projection of Fig. 7(b) on the [111] surface. This figure shows
six nodal rings (large black region surrounded by red dots)
around corners of the hexagonal Brillouin zone. These six
regions are basically the projection of the nodal rings of the
bulk gaps as shown in Fig. 7(a). Three of these regions like
the top corner in Fig. 7(c) are covered from above by the
positive region of the negative helicity gap function. Thus
when we consider the path of integration along [111] through
these regions, kF,ν lies on the positive sign of the gap function
but k̃F,ν is on the negative sign of gap function giving rise
to Wν=−

[111] = −1. On the other hand the other three projected
nodal regions are covered from below by the positive-sign
region of the negative helicity gap function; thus the reverse is
the case. The same consideration gives Wν=−

[111] = 1 for the later
three regions. Thus we have six regions with alternate values
of Wν=−

[111] = ±1 as shown in Fig. 7(c).
Similar consideration for positive helicity band gives rise

to opposite signs of Wν=+
[111] as shown in Fig. 8. According

to Eq. (18), adding them up results in mutual cancellation
of the winding number between two helicity bands. Such
cancellation however is not complete (depending on the band
structure specific to the actual material) and we can get
topologically protected surface states in regions where the
cancellation is incomplete. So there is a possibility that the
projected regions of the nodal rings give rise to topologically
protected zero-energy surface bands.

V. DISCUSSION AND SUMMARY

We thus explained the role of the correlation effect
and nesting in the compound Li2Pt3B which is responsible
for the nodal gap function. The appearance of line nodes
as suggested in many experiments is thus explained. This
correlation effect is completely absent in the Pd compound.
This also explains that if one gradually starts doping the Pd
compound with Pt then this correlation effect comes into play
gradually and causes the appearance of nodal behavior in
the superconducting order parameter at some point. In this
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FIG. 7. (Color online) (a) The negative helicity Fermi surface
with the negative helicity gap function repeated along the kz direction.
This diagram clearly shows the location of the nodal rings of the gap
function. (b) The hexagonal cylinder represents the deformed first
Brillouin zone having the same volume as that of the original first
Brillouin zone. The first Brillouin zone is also shown with dashed
black lines. Few data points are coming from the second Brillouin
zone region but included within the cylindrical region. (c) The same
diagram as in (b) but projected on [111] surface. Six regions of nega-
tive gap function bounded by nodal lines (red dots form closed nodal
rings) are clearly visible. These six regions are the projections of the
nodal rings of the bulk gap on the [111] surface. The + and − signs in-
dicate the sign of the winding number Wν=−

[111] at those specific regions.

concluding section we calculate the temperature dependence
of the susceptibility in the superconducting state to compare
the NMR data. As we have already mentioned the NMR Knight

FIG. 8. (Color online) Gap function sign on the positive helicity
Fermi surface projected on the [111] surface. Here we have opposite
sign of Wν=+

[111] around the corner when compared with Fig. 7(c).

shift39 experiment gives the temperature-independent Knight
shift, which was taken as a signature of spin-triplet Cooper
pairing in the superconducting state. Within our scenario
since the spin-triplet component is really suppressed, so
such a temperature-independent Knight shift is not expected.
However we calculate the temperature dependence of the
susceptibility and predict a scenario which can explain this
temperature-independent Knight shift even for our singlet-
dominated superconducting state. Within the weak-coupling
approximation neglecting the feedback effect we assume that
the order parameter below Tc follows the BCS temperature
dependence �̂(k,T ) = �̂(k,0) tanh(1.74

√
Tc/T − 1) at every

momentum point. Using this gap function we calculate the
uniform susceptibility χs(T ) below Tc as follows:13

χs(T ) = (1/3)
∑

α

χαα(T ),

χαβ(T ) = −μ2
BkBT

∑
k

∑
ωn

tr[σ̂αĜ(k,ωn)σ̂βĜ(k,ωn)

− σ̂αF̂ (k,ωn)σ̂β F̂ †(k,ωn)]. (19)

Here χαβ(T ) is the αβ-component of the temperature-
dependent susceptibility in the superconducting state. We carry
out the frequency summation and after regrouping terms we
arrive at the following equation,

χs(T ) =
∑

k

[χ0(k,T ) + χ+(k,T ) + χ−(k,T )] , (20)

where χ0(k,T ), χ+(k,T ), and χ−(k,T ) are given as

χ0(k,T ) = 1

3

∑
ξ=±

[(
1 − ξ

�k+�k− + εk+εk−
Ek+Ek−

)

×
(

tanh
(

Ek+
2T

) + ξ tanh
(

Ek−
2T

)
Ek+ + ξEk−

)]
, (21)

χ±(k,T ) = 1/[12T cosh2(Ek±/2T )]. (22)

We plot in Fig. 9 the contribution from the temperature-
independent Van Vleck term χ0(T ), temperature-dependent
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FIG. 9. (Color online) The variation of normalized spin suscepti-
bility (solid red line) with temperature in the superconducting state.
Also shown in the same figure are the contributions from the Van
Vleck term (dashed magenta line) and the Pauli term of positive
helicity band (green square) and negative helicity band (blue square),
all scaled by χs(Tc).

Pauli terms χ+(T ),χ−(T ), and the susceptibility χs(T ) all
normalized by χs(Tc) (red line). Although χs(T )/χs(Tc)
shows excellent agreement with earlier work,20 it apparently
contradicts the NMR Knight shift data.39 It is well known that
the Knight shift becomes temperature independent, when the
set of the d vector around the Fermi surface is perpendicular
to the magnetic field. So in the present case, the temperature
independence cannot be explained even if we start with
a triplet-dominant order parameter, since in that case we
cannot fix the direction of the magnetic field perpendicular
to the d vector [d(k)‖gk]. So neither spin-singlet nor spin-
triplet scenario can in fact explain the observed temperature
independence in Knight shift data. However to resolve this
contradiction, one can formulate a multiorbital theory which
captures the complicated band structure in more detail. Then
the large contributions of the Van Vleck term between the t2g

and eg orbitals for a cubic system through spin-orbit interaction
is expected and this will further reduce the deviation of the
normalized susceptibility from the normal state below Tc. We
do not address this issue here.

In conclusion, we suggest that in the noncentrosymmetric
superconductor Li2Pt3B the considerable d character of the
bands near the Fermi energy and nesting of the Fermi surfaces
give rise to a weak correlation effect which can be treated
perturbatively and this gives rise to a singlet-dominated (with
negligible triplet component) s± kind of gap function with
accidental line nodes arising from the Fermi surface geometry.
The three-dimensional geometry of the Fermi surface and the
nesting of the Fermi surface play a crucial role in determining
the nature of the gap function. We propose that angle-resolved
photoemission spectroscopy and de Hass–van Alphen effect
experiments may shed light on this nesting property of the
Fermi surface and can be useful to study the properties
of the superconducting state as well. We also calculate
the susceptibility below Tc and emphasize the importance

of the orbital degeneracy of the d electron to explain the
experimental data. We also show that the nodal rings of both
positive and negative helicity gap functions give rise to some
nontrivial winding numbers with opposite signs between the
two bands and the winding numbers cancel partially. Thus,
momentum regions having totally nontrivial winding number
corresponding to topologically protected surface flat bands
appear in the surface Brillouin zone depending on the direction
of surface and the superconducting electronic states, even
though the gap function is singlet dominating.
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APPENDIX: DERIVATION OF EQUATION (14)

Within the weak-coupling theory of superconductivity only
static susceptibility is required for calculating the supercon-
ducting gap equations and we have already derived them in
the last part of Sec. II. The static susceptibilities χαβ(q) are
transformed to χσ1σ2σ3σ4 (q) as

⎛
⎜⎝

χss(q) χsz(q) χsx(q) χsy(q)
χzs(q) χzz(q) χzx(q) χzy(q)
χxs(q) χxz(q) χxx(q) χxy(q)
χys(q) χyz(q) χyx(q) χyy(q)

⎞
⎟⎠

= 1

2
Ŵ

⎛
⎜⎝

χ↑↑↑↑(q) χ↑↑↓↓(q) χ↑↑↑↓(q) χ↑↑↓↑(q)
χ↓↓↑↑(q) χ↓↓↓↓(q) χ↓↓↑↓(q) χ↓↓↓↑(q)
χ↑↓↑↑(q) χ↑↓↓↓(q) χ↑↓↑↓(q) χ↑↓↓↑(q)
χ↓↑↑↑(q) χ↓↑↓↓(q) χ↓↑↑↓(q) χ↓↑↓↑(q)

⎞
⎟⎠ Ŵ †.

(A1)

Here Ŵ is the orthogonal matrix of transformation given as

Ŵ =

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 i

0 0 1 −i

⎞
⎟⎠ , (A2)

and χσ1σ2σ3σ4 (q) is defined as

χσ1σ2σ3σ4 (q) = −T
∑

k

∑
m

Gσ3σ1 (k,iωm)Gσ2σ4 (k + q,iωm).

(A3)

Now we expand the superconducting normal Green’s func-
tion within the weak-coupling approach treating H1 as a
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perturbation term. We find the contribution to the self-energy
which give us the gap equations. Following this procedure we
can write the gap equation in spin space as

�σ1σ2 = χσ̄1σ̄1σ̄2σ̄2Fσ1σ2 − χσ̄1σ1σ̄2σ̄2Fσ̄1σ2

−χσ̄1σ̄1σ2σ̄2Fσ1σ̄2 + χσ̄1σ1σ2σ̄2Fσ̄1σ̄2 . (A4)

Here Fσ1σ2 are the components of the matrix anomalous
Green’s function. In Eq. (A4) the first term is the contribution
from the first Feynman diagram in Fig. 10 and the last three
terms are three different contributions from the other Feynman
diagram. Simultaneously using Eqs. (9), (16), and (A1) in
Eq. (A4) we arrive at the gap equation Eq. (14).

FIG. 10. Feynman diagrams that contribute to the gap function.
Here −σ = σ̄ , i.e., spin opposite to that of σ . The solid single line rep-
resents the electronic line and the dashed line represents the interac-
tion line. The double arrow indicates the anomalous Green’s function.
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