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Numerical simulation of the Nernst effect in extreme type-II superconductors: A negative Nernst
signal and its noise power spectra
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Recently, different transport coefficients have been measured in high-Tc superconductors to pinpoint the
nature of the pseudogap phase. In particular, the thermoelectric coefficients received considerable attention both
theoretically and experimentally. We numerically simulate the Nernst effect in extreme type-II superconductors
using the time-dependent Ginzburg-Landau equations. We report the sign reversal of the thermoelectric coefficient
αxy at temperatures close to the mean-field transition temperature T MF

c (H ), which qualitatively agrees with recent
experiments on high-Tc materials. We also discuss the noise power spectrum of αxy , which shows 1/f β behavior.
Based on this observation, we propose an experiment to distinguish among different regimes of vortex dynamics
by measuring the noise correlations of the Nernst signal.
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I. INTRODUCTION

The unexpected observation of unusually large Nernst
coefficients (ν) in cuprates at temperatures much greater than
Tc

1 has drawn much spotlight to the Nernst effect over the
past decade. As the Nernst coefficients are generally small in
most ordinary metals,2 the large values of ν seen at T > Tc

have elevated the Nernst effect as one of the central avenues
used in attempts to characterize the nature of the pseudogap
state. Since then, an extensive investigation on the subject
has been done, both experimentally1,3–10 and theoretically,11–18

producing widely differing proposals on the origin of the phe-
nomenon. Most of these competing interpretations center in the
dynamics of either vortices1,3–5,11–16 or quasiparticles.7–9,17

In this article, we use the time-dependent Ginzburg-Landau
(TDGL) equations to simulate the Nernst effect for an extreme
type-II superconductor and (i) report a sign reversal of
the transverse thermoelectric coefficient αxy consistent with
the one observed in experiments, and (ii) examine the noise
properties of the Nernst signal, which has been surprisingly
overlooked thus far for the Nernst effect and, we find, can
distinguish among different dynamical phases of the vortex
system.

The Nernst effect is the emergence of a transverse voltage
V under the presence of an applied thermal gradient ∇T ||ŷ
and a perpendicular magnetic field H||ẑ (see Fig. 1). From
linear-response theory, the transport electric current due to
an applied electric field E and a thermal gradient ∇T has
the form J = σ̂E − α̂∇T , where σ̂ and α̂ are the electric and
thermoelectric conductivity tensors. Restricted to systems with
negligible Hall effect, the off-diagonal term of α̂ is related to
the Nernst coefficient as ν(H,T ) ≈ αxy(H,T )/Hσxx(H,T ).19

II. EXTREME TYPE-II LIMIT

The TDGL equations can formally be derived by taking
the Ginzburg-Landau free-energy functional20 and employing
Langevin dynamics for the time evolution of the super-
conducting order parameter ψ . For quintessential high-Tc

superconductors, it is appropriate to consider the extreme

type-II limit where κ , the ratio of the penetration depth λ

and the coherence length ξ , is assumed to be infinite by taking
λ → ∞. In this simplified picture, the applied magnetic field in
the sample is uniform and unscreened, as the lower critical field
Hc1 ∼ (ln κ)/κ → 0.20 Therefore, H(r,t) = Hext(t)ẑ and we
select an instantaneous Landau gauge for the vector potential
A(r,t) = Hext(t) (r × ẑ) /2. Consequently, the ∇ × H term in
Maxwell’s equations vanishes, and we obtain the following
relations that govern the evolution of ψ(r,t) and the electric
potential φ(r,t),

(∂t + iφ)ψ = −1

η
[(−i∇−A)2ψ+(1 − T )(|ψ |2 − 1)ψ]+f̃ ,

(1)

∂tA + ∇φ = (1 − T )Re[ψ∗(−i∇ − A)ψ], (2)

along with zero perpendicular supercurrent boundary condi-
tions, (−i∇ − A)ψ |n̂ = 0.

Temperature, length, and time are measured in units of
the mean-field transition temperature T MF

c , zero-temperature
coherence length ξ (0), and t0 = πh̄/(96kBT MF

c ), respectively.
Vector potential A and magnetic field H are in units of
Hc2(0)ξ (0) and Hc2(0), respectively, where Hc2(0) is the
upper-critical field at T = 0. The dimensionless parameter η

is proportional to the ratio of characteristic times for ψ and A,
and f̃ is a random thermal noise. The order parameter ψ has
been normalized by the equilibrium value ψ∞(T ).

III. NUMERICAL SCHEME

Initially inspired by the Euler-forward based finite-
difference scheme in Refs. 21 and 22 (cf. Ref. 23), we
develop a gauge-invariant discrete implementation of Eqs. (1)
and (2). Space and time have been discretized as shown
in Fig. 2 with ψi,j,n’s placed on the nodes, which are at
fixed local temperatures Ti,j . In addition to the spacelike link
variables, Ux

i,j,n = exp[−i
∫ xi+1

xi
dξAx(ξ,yj ,tn)] and U

y

i,j,n =
exp[−i

∫ yj+1

yj
dξAy(xi,ξ,tn)], we introduce a timelike link
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FIG. 1. (Color online) Geometry of a Nernst experiment. A
transverse voltage V in the x direction appears when a magnetic
field H and a thermal gradient ∇T are applied simultaneously in the
z and y directions, respectively.

variable Wi,j,n = exp[i
∫ tn+1

tn
dτφ(xi,yj ,τ )] to incorporate φ

into the numerics.
To write Eqs. (1) and (2) in discrete forms, accurate to order

O(�t2) and O(a2), we first note that

Ux
i,j,nWi+1,j,nU

x∗
i,j,n+1W

∗
i,j,n

= exp

(
i

∫ xi+1

xi

dξ

∫ tn+1

tn

dτ [∂τAξ + ∂ξφ]y=yj

)

≈ 1 + ia�t [∂tAx + ∂xφ]xi+1/2,yj ,tn
, (3)

where xi+1/2 ≡ (xi + xi+1)/2. Using Eq. (2) and the rela-
tion Re [ψ∗(−i∂x − Ax)ψ]xi+1/2,yj ,tn

≈ 1
a

Im(ψ∗
i,jU

x
i,jψi+1,j )n,

Eq. (3) yields

Wi+1,j,n = Ux∗
i,j,nU

x
i,j,n+1Wi,j,n

× [
1 + i�t(1 − Ti,j )Im

(
ψ∗

i,jU
x
i,jψi+1,j

)
n

]
, (4)

and together with an analogous expression in the y direction,
they provide a solution to a Neumann-type boundary-value
problem for Wi,j,n’s [with ψi,j,n’s given, and Ui,j,n’s fixed by
Hext(tn)].

FIG. 2. (Color online) Scheme of discretization. The order pa-
rameter ψ is a nodal variable and Ux , Uy , and W are placed on links
connecting the nodes. We take the grid spacing �x = �y = a = 0.5,
while we set �t = 0.015 for the time interval between successive time
steps, both in normalized units. These values were chosen so as to
be able to resolve the structure and dynamics of the vortices. Use of
smaller values does not alter the results in any significant way.

Moreover, it can be shown that Eq. (1) in
terms of the discrete variables can be expressed as(
Wi,j,nψi,j,n+1 − ψi,j,n

)
/�t = Pi,j,n + f̃i,j,n with

Pi,j,n = (1/η)
[(

Ux
i,jψi+1,j − 2ψi,j + Ux∗

i−1,jψi−1,j

)
/a2

+(
U

y

i,jψi,j+1 − 2ψi,j + U
y∗
i,j−1ψi,j−1

)
/a2

−(1 − Ti,j )(ψi,jψ
∗
i,j − 1)ψi,j

]
n
, (5)

from which ψi,j ’s at t = tn+1 may be evaluated.
We perform our simulations on square grids with N × N

cells with N ranging from 64 to 384. A time-independent
thermal gradient is realized by linearly varying the local
temperature Ti,j along the y direction of the sample. For
N = 192, we apply a fixed temperature difference �T =
0.03 throughout, so that temperatures at the coldest and the
hottest edges are T∓ = T ∓ �T/2, respectively, where T

marks the average temperature of the sample. The thermal
fluctuation term f̃ is a Gaussian noise with standard deviation
σi,j = √

πEoTi,j�t/6, where Eo is a material-dependent
parameter. For our choice of η = 1, we set E0 = 1 (guided
by the fluctuation-dissipation theorem and values used in the
literature to fit experiments12) and confirmed that the results
do not depend sensitively on variations around this value.

IV. SIMULATION RESULTS

Our initial setting at t = 0 is the Meissner state, where
ψi,j = Ux

i,j = U
y

i,j = 1. With the fixed thermal gradient ap-
plied, we ramp up the magnetic field to a set value in the first
few thousand steps and wait for 0.2 million time steps to reach
a steady state. We then time-average αxy(tn) over 0.8 million
time steps to obtain αxy , where

αxy(tn) = −Jx(tn)

|∇T | = −
∫∫

Jx(x,y,tn)dxdy

Na�T
, (6)

and Jx = (1 − T )Re [ψ∗(−i∂x − Ax)ψ] at t = tn.

A. Transverse thermoelectric response

Figure 3(a) is the plot of αxy vs temperature for various mag-
netic fields (see Fig. 6 for αxy vs H ). At low temperatures and,
particularly, at lower magnetic fields, αxy attains large positive
values as also seen in both experimental5 and theoretical12,13

results. As T is increased, αxy falls monotonically until it
reaches a vortex-proliferation temperature TVP(H ), which can
be identified from Fig. 3(b) (see Fig. 5 for vortex densities
vs H ). At TVP(H ), the number of vortices and antivortices
proliferate and the long-range phase coherence of ψ is
destroyed. The exhibition of high αxy values at T < TVP is
consistent with the very low resistances of the samples in that
regime (cf. Ref. 24). Above TVP(H ), the curves of αxy resemble
the profiles seen in Nernst coefficients ν for typical high-Tc

superconductors. At even higher temperatures, αxy becomes
negative, and we designate the onset temperature for negative
Nernst signals as TNN(H ) for later discussions.

Above TNN, we find that the onset of negative Nernst signal
is correlated to the onset of the superconducting to normal
transition at the hotter edge. Prior to the transition, H lies in the
range Hc2(T−) < H < Hc3(T+), where Hc3 is the critical field
that destroys surface superconductivity. The bulk is already
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FIG. 3. (Color online) (a) Temperature dependence of αxy . Inset:
αxy zoomed into the negative-Nernst-signal region with TNN(H )’s
marked by vertical arrows; the error bars (comparable to symbol
sizes) highlight the statistical accuracy of the negative signals. The
error bar for each data point has been obtained from eight independent
measurements of αxy , each measurement consisting of time-averaging
over 0.1 million time steps. (b) Temperature dependence of nv+v̄ , the
total density of vortices plus antivortices, showing the onset of the
vortex-proliferation regime, which is correlated to small kinks in αxy

and is seen to be unrelated to the onset of the negative Nernst signal.
The net vorticity nv−v̄ (dotted lines) reflects the applied magnetic flux
that is independent of temperature.

at the normal state, while the Nernst signal is dominated by
superconducting edge currents circulating around the bulk of
the sample. As T is continually increased, Hc3(T ) decreases
and the hotter edge crosses the phase boundary to enter the nor-
mal state. Consequently, the Cooper-pair density at that edge
is abruptly suppressed, resulting in a significant asymmetry
in the supercurrent density relative to the colder edge and a
different vortex vs antivortex dynamics across the sample.

From experiments, the negative αxy reported in Ref. 10 for
an optimally doped YBCO sample displays a notable resem-
blance to our results. A qualitatively similar profile of negative
Nernst signals can also be inferred from measurements of
Nernst coefficients done on a wide range of samples at various

doping levels,4,8 which indicates that this effect is ubiquitous
and independent of details or fine tuning. Theoretical results on
granular superconductors in Ref. 16 also show negative Nernst
signals, which they interpret as diffusion of vortex vacancies
in a pinned-vortex state. In our simulations, however, the sign
reversal is not from quasiparticle effects,17 as that scenario is
not comprised in the Ginzburg-Landau framework. Moreover,
vortex vacancies do not seem to be the cause, since it can be
inferred from Ref. 16 that TNN(H ) would increase as H is
increased, while in Fig. 3(a) we see that TNN(H ) displays an
opposite trend as the field is increased.

B. Noise analysis

The dynamic phase diagram of vortex matter is more diverse
than the one at equilibrium.25 In our simulations, at finite κ and
in the absence of pinning centers, we observe rich dynamical
behavior. Depending on the strength of the driving force (tem-
perature gradient in our case), temperature, and magnetic field,
vortex motion can be characterized into different regimes:
immobile lattice of vortices due to the geometrical pinning
in the finite-size sample, sliding vortex crystal, and flowing
vortex liquids. It is not surprising that noise properties of
transport signals depend on the dynamical behavior of vortices.
Especially, since the Nernst signal is highly sensitive to vortex
dynamics, we propose the measurement of its noise properties
as a means to tell apart different dynamical scenarios. For this
purpose, we have computed the noise correlation for αxy(t).
The noise power S(f ) of a signal x(t) is defined as the Fourier
transform of the temporal correlation function,

S(t − t ′) ≡ 1
2 〈�x(t)�x(t ′) + �x(t ′)�x(t)〉, (7)

where �x(t) ≡ x(t) − 〈x〉.
Depending on the dynamical regimes described above, S(f )

shows different qualitative behaviors. We note here that in
the κ → ∞ limit, the shear modulus of the vortex matter
vanishes and thus only the vortex liquid phase survives.26

To give a full picture, we provide a short description of the
noise behavior in the finite-κ regime also, but a more detailed
account will be published elsewhere. In the pinned phase,
the Nernst signal is suppressed and the noise power is nearly
independent of f , thus displaying a white-noise spectrum. In
the sliding-lattice phase, the noise power shows a characteristic
narrow-band behavior and most of the spectral density is found
near a particular frequency. The characteristic frequency can
be estimated as fw ∼ v/�, where v is the speed of vortices
and � is the distance between vortices in the direction of
motion. This type of noise is known as washboard noise and
has been observed experimentally in the conduction noise
spectra of driven BSCCO samples.27 In the vortex-liquid
regime, noise power again shows a wide-band behavior. In
the infinite-κ limit, we found it to be fitted well by a power
law 1/f β . Figure 4 shows the plot of β for different magnetic
fields as a function of temperature. We observe that in the
low-T vortex-liquid regime, the exponent β ≈ 1 and is nearly
independent of the applied magnetic field. As the system enters
into the negative-Nernst-signal regime, β drastically drops to
lower values. This sharp feature provides an excellent means
for experiments to causally correlate the onset temperature
for negative Nernst signals, TNN, to vortex dynamics. As the
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FIG. 4. (Color online) Exponent of the noise power, β, as a
function of T for different values of H . The error bars (shown for
selected data points) have been obtained from a least-squares fitting
procedure on the log S vs log f plots. The vertical arrows mark
the onset temperatures (TNN) for the negative Nernst signal obtained
using linear interpolation in Fig. 3(a).

temperature approaches the mean-field transition temperature,
the exponent is further reduced, but remains finite. In contrast
to the low-T vortex-liquid regime, in this case, β strongly
depends on the applied magnetic field. We remark that we do
not see any observable signatures of the vortex-proliferation
transition in the behavior of β. Even though 1/f behavior
of noise is ubiquitous in transport measurements of many
physical systems,28 to the best of our knowledge, it has not
been measured for the Nernst signal. In YBCO samples, a
similar power-law behavior has been observed in flux noise
spectra in a nondriven system29 and in longitudinal-voltage
noise spectra in a current-driven system.30 Although the above
measurements have been done for regimes and observables
other than those presented here, they illustrate the feasibility
of the noise-measurement scenario we propose here.

V. CLOSING REMARKS

In this article, a computational method has been introduced
to simulate the Nernst effect in high-Tc superconductors
using the TDGL theoretical framework. We show that the
thermoelectric coefficient αxy (i) is large and monotonically
decreasing for T < TVP, (ii) displays a profile that is quali-
tatively consistent with experiments at intermediate T ’s, and
(iii) reverses signs at T > TNN > TVP. Furthermore, we pro-
pose a noise-based observable to distinguish between different
dynamical phases of the vortex system. The noise power of the
Nernst signal reveals distinctive qualitative and quantitative
properties for different regimes, thus demonstrating its great
potential as an experimental probe of vortex dynamics.
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APPENDIX

For ease of comparison with the existing literature, we
alternatively present the data in Figs. 3(a) and 3(b) as
functions of magnetic fields for several temperatures [contrary
to functions of temperatures for several fields as in Figs. 3(a)
and 3(b)]. For any given curve in Fig. 5, we see a linear increase
of vortex densities until reaching a certain field value, at which

0.2 0.4 0.6 0.8 1 1.2
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

H/H
c2

(0)

α xy

 

 

T=0.45
T=0.55
T=0.65
T=0.75
T=0.85

FIG. 6. (Color online) Magnetic field dependence of αxy ; the
error bars (comparable to symbol sizes) highlight the statistical
accuracy of the negative signals. The error bar for each data point
has been obtained from eight independent measurements of αxy , each
measurement consisting of time averaging over 0.1 million time steps.
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vortices proliferate due to the onset of vortex-antivortex pair
generation. The proliferation starts at higher fields for lower
temperatures.

Figure 6 shows the plot of αxy in the region where the
negative values are conspicuous. As H is increased beyond

Hc2(T ) for a given temperature, αxy reverses sign and becomes
negative before diminishing towards zero from the negative
side. The sign reversal of αxy occurs at higher magnetic fields
and the magnetic-field ranges for negative αxy broaden for
lower temperatures.
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