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Theory of terahertz conductivity in the pseudogap phase of the cuprates:
A preformed pair perspective

Dan Wulin and K. Levin*

James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
(Received 10 February 2012; revised manuscript received 9 September 2012; published 17 October 2012)

In this paper we deduce transport properties in the presence of a pseudogap associated with precursor
superconductivity. Our theoretical analysis is based on the widely adopted self-energy expression reflecting
this normal state gap, which has appeared in interpretations of photoemission and in other experiments. Thus,
it should be generally applicable. Here we address THz conductivity σ (ω) = σ1(ω) + iσ2(ω) measurements in
the underdoped high-temperature superconductors and arrive at reasonable agreement between theory and recent
experiment for both σ1 and σ2 above and below Tc.
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I. INTRODUCTION

One of the biggest challenges in understanding the high-
temperature superconductors revolves around the origin of
the ubiquitous pseudogap. Because this normal state gap
has d-wave-like features compatible with the superconducting
order parameter, this suggests that the pseudogap is related
to some form of “precursor pairing.” On the other hand,
there are many reports1,2 suggesting that the pseudogap
onset temperature is associated with a broken symmetry
and, thus, another order parameter. It is widely believed that
because the pseudogap has clear signatures in generalized
transport, these measurements3,4 may help with the centrally
important question of distinguishing the two scenarios. In
this paper we analyze recent experimental observations which
have suggested that precursor pairing scenarios5,6 may be
problematic. By default, these observations may imply that
the pseudogap must involve another (yet unspecified) order
parameter.

Our work is based on a preformed pair scenario,7 which
has been previously applied to transport8–12 within a slightly
different, but equivalent, framework. Importantly, this pre-
formed pair scheme is associated with the widely used7,13,14

approximate self-energy, which we derived even earlier within
our microscopic formalism:15,16

�pg,K = −iγ + �2
pg,k

iωn + ξk + iγ
, (1)

where K = (k,iωn) and iωn is a fermionic Matsubara fre-
quency. Here γ represents a damping, which we will interpret
here as related to the interconversion of pairs and fermions.
We next show how this self-energy leads very naturally to an
expression for the complex conductivity.

II. TRANSPORT THEORY IN THE PRESENCE OF A
PREFORMED PAIR-BASED PSEUDOGAP

The complex conductivity can be written in terms of the
paramagnetic current-current correlation function

↔
P (Q) to

which one adds the diamagnetic contribution n
↔

/m:

σ (ω) = − lim
q→0

Pxx(q,ω) + (n/m)xx

iω
, (2)

where the xx subscript denotes the diagonal tensor component
along the x direction. We consider in the transverse gauge the
linear response of the electromagnetic current J = −←→

K A, to
a small vector potential A. Here

↔
K(Q) = ↔

P (Q) + n
↔

/m, where
the paramagnetic contribution, given by

↔
P (Q), is associated

with the normal current resulting from fermionic and bosonic
excitations. The vector Q is defined as Q = (q,i�m), where
i�m is a bosonic Matsubara frequency.

A. Weak dissipation limit

For simplicity, we begin in the weak dissipation limit where
the parameter γ in Eq. (1) is small. We define G−1

0,K = (iωn −
ξk)−1 as the bare Green’s function, and show how this standard
self-energy expression in the pseudogap state,

�pg,K ≈ −�2
pg,kG0,−K = �2

pg,k

iωn + ξk
,

leads to consistent expressions for the current-current correla-
tion functions.

We derive an expression for P (Q) by turning first to the
diamagnetic current. This can be written as

←→
n

m
= 2

∑
K

∂2ξk

∂k∂k
GK = −2

∑
K

∂ξk

∂k
∂GK

∂k
. (3)

The right-hand side of Eq. (3) can be manipulated so that
it appears in a form which suggests how to write

↔
P (Q).

First, differentiating both sides of the equality G−1
K = G−1

0,K −
�pg,K , one has the identity

∂G−1
K

∂k
= ∂G−1

0,K

∂k
− ∂�pg,K

∂k
= −∂ξk

∂k
− ∂�pg,K

∂k
. (4)

Using ∂GK/∂k = −G2
K∂G−1

K /∂k, Eq. (3) becomes
←→
n

m
= −2

∑
K

G2
K

∂ξk

∂k

[
∂ξk

∂k
+ ∂�pg,K

∂k

]
. (5)

The expression for the self-energy [Eq. (1)] can be used
to further simplify Eq. (5). Since �pg,K = −�2

pg,kG0,−K =
�2

pg,k(iωn + ξk)−1, then

∂�pg,K

∂k
= −�2

pg,kG
2
0,−K

∂ξk

∂k
, (6)
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where a term proportional to ∂�pg,k/∂k has been dropped
since it gives a negligible contribution to the final result.
Therefore Eq. (5) becomes

←→
n

m
= −2

∑
K

G2
K

∂ξk

∂k
∂ξk

∂k

(
1 − �2

pg,kG
2
0,−K

)
. (7)

Interestingly, the combination GG0 appears naturally in the
manipulations, and this is further exploited in the Appendix to
derive a consistent scheme for evaluating the various excitation
gaps. In order for the Meissner effect to be present only below
Tc we require

↔
P (0) + n

↔
/m = 0, T � Tc, (8)

which results in
↔
P (0) = 2

∑
K

∂ξk

∂k
∂ξk

∂k

[
GKGK

(
1 − �2

pg,kG
2
0,−K

)]
. (9)

A natural extension of Eq. (9) to general Q is

↔
P (Q) = 2

∑
K

∂ξk+q/2

∂k
∂ξk+q/2

∂k
[GKGK+Q

−�pg,k�pg,k+qG0,−K−QG0,−KGK+QGK ]. (10)

This ansatz will be checked by appealing to the transverse
f-sum rule. First, we rewrite Eq. (10) as

Pxx(q,ω) =
∑

k

∂ξk

∂kx

∂ξk

∂kx

[
E+

k + E−
k

E+
k E−

k

E+
k E−

k − ξ+
k ξ−

k − δ�2
k,q

ω2 − (E+
k + E−

k )2

× (1 − f (E+
k ) − f (E−

k )) − E+
k − E−

k

E+
k E−

k

× E+
k E−

k + ξ+
k ξ−

k + δ�2
k,q

ω2 − (E+
k − E−

k )2
(f (E+

k ) − f (E−
k ))

]
,

(11)

where a ± superscript indicates that the given function is
evaluated at k ± q/2. We define

δ�2
k,q = −�+

pg,k�
−
pg,k, T � Tc. (12)

Once the temperature passes below Tc, we need to include the
self-energy of the condensed pairs as well:

�K = �sc,K + �pg,K = −[
�2

pg,k + �2
sc,k

]
G0,−K, (13)

where �K now consists of a condensed and noncondensed pair
contributions. This results in an expression for the diamagnetic

contribution, just as in Eq. (9), which can be rewritten in the
form

n
↔

m
= 2

∑
k

∂ξk

∂k
∂ξk

∂k

[
�2

k

E2
k

1 − 2f (Ek)

2Ek
− ξ 2

k

E2
k

∂f (Ek)

∂Ek

]
, (14)

where �2
k = �2

pg,k + �2
sc,k. To determine how �2

sc,k enters into
the paramagnetic current P (Q), we observe that, in the BCS
limit,

δ�2
k,q = �+

sc,k�
−
sc,k, BCS limit.

An essential point is that the superconducting gap �sc,k ap-
pears with the opposite sign from the pseudogap contribution
in Eq. (12). In the case of general temperatures, 0 � T � T ∗,
we combine the two limits to yield the appropriate form for
the quantity

δ�2
k,q = �+

sc,k�
−
sc,k − �+

pg,k�
−
pg,k, (15)

which enters into Eq. (11). Importantly, Eqs. (11) and (15)
represent the full electromagnetic response above and below
Tc, albeit in the weak dissipation limit. The superfluid density
follows from the definition

↔
P (0) + n

↔
/m = n

↔
s/m. (16)

Combining Eq. (11), (15), and (14) implies that the superfluid
density is given by

ns

m
= 2

∑
k

∂ξk

∂kx

∂ξk

∂kx

�2
sc,k

E2
k

[
1 − 2f (Ek)

2Ek
+ ∂f (Ek)

∂Ek

]
. (17)

Thus the normal fluid density, which will be used as input into
the f-sum rule that constrains σ1(ω), is

nn/m = n/m − ns/m

= 2
∑

k

∂ξk

∂kx

∂ξk

∂kx

[
�2

pg,k

E2
k

1 − 2f (Ek)

2Ek

− E2
p − �2

pg,k

E2
k

∂f (Ek)

∂Ek

]

The transverse f-sum rule is given by

lim
q→0

∫ +∞

−∞

dω

π

(
− ImPxx(q,i�m → ω + i0+)

ω

)
= nn

m
. (18)

This sum rule can be proven to hold analytically by directly
using Eq. (11), along with the normal fluid density. From
Eq. (11), we have

lim
q→0

∫ +∞

−∞

dω

π

(
− ImPxx(q,i�m → ω + i0+)

ω

)

=
∑

p

1

2

∂ξk

∂kx

∂ξk

∂kx

[
E2

k − E2
k + 2�2

pg,k

E2
k

(
1

2Ek
− 1

−2Ek

)
(1 − 2f (Ek)) − 2

E2
k + E2

k − 2�2
pg,k

E2
k

lim
q→0

f (E+
k ) − f (E−

k )

E+
k − E−

k

]

= 2
∑

k

∂ξk

∂kx

∂ξk

∂kx

[
�2

pg,k

E2
k

1 − 2f (Ek)

2Ek
− E2

p − �2
pg,k

E2
k

∂f (Ek)

∂Ek

]
= nn

m
. (19)
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FIG. 1. (Color online) (a) The superconducting gap �sc and pseudogap �pg at the antinode for three different dopings and in units of
the in-plane hopping integral t||, obtained self-consistently within the microscopic model discussed here for a nearest neighbor tight-binding
dispersion, as a function of temperature. Temperature is measured in units of the transition temperature Tc. Solid lines show �, dotted lines
�pg, and dashed lines �sc (from Ref. 17). (b) The gaps used for the present calculations. Superconducting gap �sc and pseudogap �pg at the
antinode in meV for three different dopings as functions of temperature. Temperature is measured in units of the transition temperature Tc.
The solid lines show �pg, and dashed lines denote �sc. Here �2 = �2

sc + �2
pg represents the square of the excitation gap. Details of these

parameters are included in Ref. 18.

Importantly one can see by direct Kramers Kronig analysis that
Eq. (8), which reflects the absence of a normal state Meissner
effect, is intimately connected to the sum rule above Tc.

The confirmation of the sum rule then serves to validate
Eq. (11), where importantly Eq. (15) must be used. This theory
was discussed in the context of the more microscopic model
derived in the Appendix and Ref. 19. We stress that in the usual
BCS-like, purely fermionic Hamiltonian (which we consider
here) only fermions possess a hopping kinetic energy and
thereby directly contribute to transport, as indicated by the
right-hand side of the sum rule. The contribution to transport
from pair-correlated fermions enters indirectly by liberating
these fermions through a break-up of the pairs.

We now see that the general form of the superconducting
electromagnetic response consists of three distinct contribu-
tions: (1) superfluid acceleration, (2) quasiparticle scattering,
and (3) pair breaking and pair forming. These all appear in
conventional BCS superconductors, but at T = 0 this last
effect is present only when there is disorder. However, in
the presence of stronger than BCS attraction and at T �= 0,
noncondensed pairs can be decomposed to add to the higher
frequency conductivity.

B. Strong dissipation limit

We now use the full expression for the self-energy to obtain
compatible expressions for transport coefficients in the strong
dissipation limit.9 The full Green’s function is given by

GK =
(

iωn − ξk + iγ − �2
pg,k

iωn + ξk + iγ
− �2

sc,k

iωn + ξk

)−1

.

(20)

Below Tc we introduce terms of the form Fsc,KFsc,K+Q,
which represent the usual Gor’kov functions to represent the

condensate. More specifically, Fsc,K can be represented as a
product of one dressed and one bare Green’s function (GG0):

Fsc,K ≡ − �sc,k

iωn + ξk

1

iωn − ξk − �2
k

iωn+ξk

. (21)

This natural extension of our small dissipation result leads to

↔
P (Q) ≈ 2

∑
K

∂ξk+q/2

∂k
∂ξk+q/2

∂k
[GKGK+Q + Fsc,KFsc,K+Q

−Fpg,KFpg,K+Q], (22)

where Fpg,K ≡ −�pg,k(iωn + ξk + iγ )−1GK . Here the Fpg,K

terms represent the noncondensed pair contribution to trans-
port, which appeared in our small dissipation derivation as
well. They are not to be associated with broken symmetry.
This is, in part, reflected in the incorporation of the finite
lifetime γ −1 in the expression for Fpg,K . Rather they represent
correlations among pairs of fermions. This is in contrast to
the Fsc,K contributions, which are present only for T � Tc

and reflect a nonzero order parameter �sc,k. Note that the
difference in the relative signs of �2

pg,k and �2
sc,k that appears in

Eq. (23) is a direct consequence of the same physics discussed
in our weak dissipation calculations. That the condensed and
noncondensed pairs enter in a different fashion is a crucial
finding and one that is essential in order that the noncondensed
pairs do not contribute to a Meissner effect.

III. CALCULATION OF THE PAIRING GAPS

Throughout this paper we have implicitly presumed that
the gap components �pg(T ) and �sc(T ) are known, where
the gaps are assumed to be d-wave and �pg(T ) and �sc(T )
are the gap magnitudes at the antinodes. We now discuss the
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FIG. 2. (Color online) (a) The real conductivity σ1 as a function of frequency normalized by the dc conductivity at T = 300 K, σ dc
300K. Inset:

The imaginary conductivity σ2 as a function of frequency. (b) The real conductivitiy σ1 as a function of temperature. (c) The quantity ωσ2 as a
function of frequency. Inset: ωσ2 as a function of temperature. (d) The imaginary conductivity σ2 as a function of temperature. Inset: σ2 as a
function of temperature near Tc.

way in which these are calculated, referring the reader to the
Appendix for more details.

We consider a preformed pair scenario, which is based on
BCS-Bose Einstein condensation (BCS-BEC) theory. Given
the small pair size and the anomalously high transition tem-
peratures of the cuprates, one might associate these findings
with a stronger than BCS attractive interaction. Importantly,
the BCS ground state wave function

|�0〉 =
∏

k

(uk + vkc
†
k,↑c

†
−k,↓)|0〉 (23)

is well known to contain both the BCS and BEC limits. We
present in the Appendix a treatment of finite temperature
effects which is based on a t-matrix implementation of BCS-
BEC theory. Ours represents a straightforward extension of
standard BCS and Gor’kov theory. Given that we start with
the same wave function, it is not surprising that our pairing
scenario is a mean-field scheme just as in strict BCS theory.
Beyond this BCS endpoint there are two types of excitations,
fermionic quasiparticles and pair excitations. The fermions
have the usual dispersion relation Ek, where Ek ≡

√
ξk + �2

k
and where the excitation gap consists of two contributions
from noncondensed (pg) and condensed (sc) pairs: via �2

k ≡
�2

pg,k + �2
sc,k. We stress that the preformed pairs represent

pair correlations of fermions which have nothing to do with
broken symmetry. Note that the full gap �k remains relatively
T-independent, even below Tc because of the conversion

of noncondensed (�pg,k) to condensed (�sc,k) pairs as the
temperature is lowered.

Written in terms of fermion creation and annihilation
operators (c† and c, respectively), these pair correlations
correspond to [〈cc†cc†〉 − 〈c†c†〉〈cc〉] and are ignored in BCS
theory (where the attraction is very weak). In a closely
related fashion, the (square of the) contribution to the total
pairing gap [�(T )] associated with noncondensed pairs (pg)
can be written7 as �2

pg(T ) = [�2(T ) − �2
sc(T )], where sc

corresponds to condensed pairs and pg corresponds to the
preformed (pseudogap) pairs.

The results of a full numerical solution17 for these gap
parameters [associated with Eqs. (A6), (A9), and (A10)] for a
nearest-neighbor tight-binding dispersion is shown in Fig. 1(a),
where the gaps �, �sc, and �pg are plotted as functions
of temperature and for different dopings, as represented by
different interaction coupling constants. For the calculations
performed in this paper, the specific parameters that were used
are illustrated in Fig. 1(b). These particular parameters were
chosen for consistency with the cuprate phase diagram, so
that, for example, the attractive interaction was chosen to fit
T ∗. This procedure is described in more detail in Ref. 18.

IV. DETAILED NUMERICAL STUDIES

We now turn to more detailed comparisons between the
theory of the conductivity and experiment. Figure 2 displays
our more quantitative results for σ1 and σ2 both as functions of
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ω and T . Our numerical results, based on Eq. (2), are presented
in a layout designed to mirror Fig. 1 from Ref. 5 where the
general trends are similar. One sees from Fig. 2(a) and its inset
that well above Tc, the real part of the conductivity is almost
frequency independent. The imaginary part is small in this
regime. At the lowest temperatures σ1 contains much reduced
spectral weight while the frequency dependence of σ2 ∝ ω−1;
both of these reflect the characteristic behavior of a superfluid.
The behavior below Tc is not superficially different from that of
strict BCS theory. However, it should be noted that the pairing
gap �(T ) (at the antinodes) is almost T independent. BCS
theory (which considers only fermionic excitations) would,
thus, predict no significant T dependences in σ1 and σ2.

Here, as in the experimental studies,5 we focus primarily
on the temperature dependent plots in Figs. 2(b), 2(d), and the
inset to 2(c). One sees that σ1 shows a slow decrease as the
temperature is raised above Tc. Somewhat below Tc, σ1 exhibits
a peak that occurs at progressively lower temperatures as the
probe frequency is decreased. At roughly Tc, we find that σ2

shows a sharp upturn at low ω. The region of finite σ2 above
the transition can be seen from the inset in Fig. 2(d). The inset
shows an expanded view of σ2(T ) near Tc. In agreement with
experiment, the nesting of the σ2 versus T curves switches
orders above Tc.

These effects are made clearer by plotting the “phase
stiffness,” which is proportional to the quantity ωσ2 and is
shown in Fig. 2(c). Deep in the superconducting state there is
no ω dependence to ωσ2(ω), while at higher T this dependence
becomes apparent. In the inset to Fig. 2(c), the temperature
dependence of ωσ2(T ) is displayed. We see that above Tc, ωσ2

is never strictly constant, as would be expected from fluctuation
contributions.

In general, these curves capture the qualitative features
observed in recent experiments.5

V. CONCLUSIONS

In this paper we have shown how the standard self-energy
expression (�pg,K ) which appears in Eq. (1) and which is
widely adopted in the literature7,13,14 can be used to derive
the frequency dependent conductivity σ (ω). Importantly, the
results can be seen to be analytically compatible with the
transverse f-sum rule, and semiquantitatively compatible with
the data. In the normal state this constraint is equivalent
to the requirement that there is no Meissner effect. This
theory is readily extended below Tc by including a second
component to the excitation gap associated with condensed
pairs which is of the usual BCS (undamped) form. We have
additionally shown that the recent experiments by Bilbro
et al.5 can be successfully addressed in this framework, which
can be microscopically associated with BCS-BEC crossover
theory. Importantly, this particular variant of a preformed
pair approach has been unambiguously realized in (atomic
physics) experiments where a pseudogap is claimed to be
observed.20

We can summarize the effects of a pseudogap in the
normal state, which differentiates the present theory from that
of its BCS counterpart. In the low-frequency regime, with
a pseudogap present, there are fewer fermions available to
contribute to transport since their number is reduced because

they are tied up into pairs. However, once the frequency is
sufficiently high to break the pairs into individual fermions,
the conductivity rises above that of the Drude model. One can
see that the effect of the pseudogap is to transfer the spectral
weight from low frequencies to higher energies, ω ≈ 2�

(where � is the pairing gap). In this way one finds an extra
“midinfrared” contribution to the conductivity,21 which is as
observed22 experimentally and is strongly tied to the presence
of a pseudogap. This contribution is not, however, visible in
the low ω THz experiments that are considered in this paper.

The behavior of σ2(ω) is rather similarly constrained. On
general principles, σ2 must vanish at strictly zero frequency
as long as the system is normal. Here one can see that the
low-frequency behavior is also suppressed by the presence of a
pseudogap because of the gap-induced decrease in the number
of carriers. At higher ω ≈ 2�), the second peak in σ1(ω)
leads, via a Kramers-Kronig transform to a slight depression in
σ2(ω) in this frequency range. As a result, σ2(ω) is significally
reduced relative to the Drude result.

We now turn to the question of to what extent does the
conductivity below the transition temperature differ from
that in strict BCS theory. Here it is important to stress
the complexity of the superfluid phase in the presence of
a pseudogap. Angle resolved photoemission experiments23

indicate that the (antinodal) spectral gap is not sensitive to Tc.
In strict BCS theory with a constant pairing gap, the superfluid
density should not vanish at Tc. Rather, it would vanish when
the excitation gap disappeared, say, at T ∗. Moreover, since
σ2 ∝ ns/ω it would then seem to be difficult to understand
the behavior of the THz conductivity, which reflects Tc and
not T ∗.

There has to be, therefore, a substantial effect of the
pseudogap which persists below Tc, thus differentiating these
systems from conventional BCS superconductors. In the
present theory this difference is incorporated by including
a nonzero �pg, to be associated with noncondensed pairs
which are present above Tc and do not immediately disappear
once the transition line is crossed. Rather, these noncondensed
pairs gradually convert to the condensate as T → 0. As a
consequence, in the present approach we find that the spectral
gap exhibits the T insensitivity at the antinodes18 while ns

8

vanishes at Tc and appears clearly in transport.
Finally, we raise the important issue of concomitant order

in the above Tc pseudogap phase. Interestingly, we have found
such order to exist in high magnetic fields, in the form of
bosonic charge density wave-like states or precursor vortex
configurations. Future work will be required to see if this
is a more general phenomenon. Nevertheless, it should be
clear that the THz conductivity and even the two-gap physics
observed in ARPES23 are not incompatible with a preformed
pair scenario for the cuprates. They, thus, do not necessarily
require the presence of another order parameter.
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APPENDIX: SUMMARY OF T-MATRIX THEORY

In this section we summarize previous work8,19,24 which
established a microscopic description of the pseudogap based
on BCS-BEC theory. It led as well to the expression for
the response function used here. Alternative formulations
of preformed pairs of a different nature from our work are
discussed in Ref. 25. In the present paper a stronger than
BCS attraction leads to boson-like excitations or metastable,
long-lived pairs with nonzero net momentum. These pairs give
rise to a gap for fermionic excitations. At the microscopic level
these pairs are associated with a t-matrix, which is coupled to
the fermionic Green’s function, which is, in turn, dependent
on the t-matrix.

It is useful to begin by reformulating strict BCS theory as
a BEC phenomenom which motivates our extension to treat a
stronger than BCS attraction. Important here is that BCS theory
can be viewed as incorporating virtual noncondensed pairs.
Here we consider the general case applicable to both s- and
d-wave pairing by defining the form factor ϕk = [cos(kx) −
cos(ky)] for the latter and taking it to be unity for the former.
These virtual Q �= 0 pairs are associated with an effective
propagator or t-matrix, which is taken to be of the form

t(Q) ≡ U

1 + U
∑

K GKG0,−K+Qϕ2
k−q/2

(A1)

in order to yield the standard BCS equations. This t-matrix
incorporates a summation of ladder diagrams in the particle-
particle channel and importantly depends on both G and
G0, which represent dressed and noninteracting Green’s
functions, respectively. That one has this mixture of the two
Green’s functions can be traced back to the gap equation of
Gor’kov theory. In order to describe pairing in the dx2−y2 -wave
channel, we write the attractive fermion-fermion interaction
in the form Uk,k′ = Uϕkϕk′ , where U is the strength of the
pairing interaction. As in bosonic theories, noncondensed pair
excitations of the condensate are necessarily gapless below
Tc. This means that t(Q → 0) → ∞ and is equivalent to the
vanishing of the effective pair chemical potential μpair for
T � Tc. This leads to a central constraint on the T -matrix
t−1(Q → 0) = 0 → μpair = 0,T � Tc. In order to identify
the above condition with the BCS gap equation, we need to
incorporate the appropriate form for GK . In BCS theory the
fermionic self-energy that appears in the fully dressed Green’s
function GK is

�sc,K =
∑
Q

tsc(Q)G0,−K+Qϕ2
k−q/2

= −
∑
Q

�2
sc,kδ(Q)G0,−K+Q

= −�2
sc,kG0,−K, (A2)

where �sc,k(T ) ≡ �sc(T )ϕk is the superconducting order
parameter. The full Green’s function is then G−1

K = G−1
0,K −

�sc,K , which, when inserted in Eq. (A1), yields the BCS
gap equation below Tc: 1 = −U

∑
k

1−2f (Esc
k )

2Esc
k

ϕ2
k with Esc

k ≡√
ξ 2

k + �2
sc,k. We have thus used Eq. (A1) to derive the standard

BCS gap equation within a t-matrix language. Importantly, this
demonstrates that we can interpret this gap equation as a BEC

condition. That is, it is an extended version of the Thouless
criterion of the strict BCS theory that applies for all T � Tc.

In order to extend the t-matrix theory to include a stronger
than BCS attraction we presume that the Q �= 0 pairs are
no longer virtual. The t-matrix in general possesses two
contributions: the q = 0 contribution that gives rise to the
condensed or superconducting pairs and the q �= 0 contribution
of Eq. (A1) that describes the correlations associated with the
noncondensed pairs. As a result, the fermionic self-energy also
possesses two contributions that are given by

�K =
∑
Q

t(Q)G0,−K+Qϕ2
k−q/2

=
∑
Q

[tsc(Q) + tpg(Q)]G0,−K+Qϕ2
k−q/2 = �sc,K+�pg,K .

(A3)

The resulting full Green’s function is G−1
K = G−1

0,K − �sc,K −
�pg,K . While, as before, �sc,K = −�2

sc,kG0,−K , we find
numerically15,16 that �pg,K is in general of the form

�pg,K ≈ �2
pg,k

ω + ξk + iγ
(A4)

with �pg,k = �pgϕk. That is, the self-energy associated with
the noncondensed pairs possesses the same structure as its
BCS counterparts, albeit with a finite lifetime, γ −1.

We can understand these results more physically as arising
from the fact that tpg(Q) is strongly peaked around Q = 0
below Tc where the pair chemical potential is zero and for a
range of temperatures above Tc as well where this chemical
potential is small. Thus the bulk of the contribution to �pg,K

in the ordered state comes from small Q:

�pg,K ≈ −
∑
Q

tpg(Q)G0,−K. (A5)

If we define

�2
pg,k ≡ −

∑
Q

tpg(Q)ϕ2
k, (A6)

we may write

�K ≈ −(
�2

sc,k + �2
pg,k

)
G0,−K ≡ −�2

kG0,−K. (A7)

Equation (A5) leads to an effective pairing gap �(T )
whose square is associated with the sum of the squares of
the condensed and noncondensed contributions

�2
k(T ) = �2

sc,k(T ) + �2
pg,k(T ). (A8)

Note that the full gap �k remains relatively T-independent,
even below Tc because of the conversion of noncondensed
(�pg,k) to condensed (�sc,k) pairs as the temperature is
lowered. The gap equation for this pairing gap, �k(T ) =
�(T )ϕk, is again obtained from the condition t−1

pg (Q = 0) = 0,
and given by

1 = −U
∑ 1 − 2f (Ek)

2Ek
ϕ2

k, (A9)

where Ek ≡
√

ξ 2
k + �2(T )ϕ2

k, and f is the Fermi distribution
function. Note that one needs to self-consistently determine the
fermionic chemical potential, μ, by conserving the number of

134519-6



THEORY OF TERAHERTZ CONDUCTIVITY IN THE . . . PHYSICAL REVIEW B 86, 134519 (2012)

particles, n = 2
∑

K GK , which leads to

n = 2
∑
K

GK =
∑

k

[
1 − ξk

Ek
+ 2

ξk

Ek
f (Ek)

]
. (A10)

Equations (A6), (A9), and (A10) present a closed set of
equations for the chemical potential μ, the pairing gap
�k(T ) = �(T )ϕk, the pseudogap �pg,k(T ) ≡ �pg(T )ϕk, and

the superconducting order parameter �sc,k(T ) = �scϕk with
�sc(T ) =

√
�2(T ) − �2

pg(T ). We find that �pg(T ) essentially
vanishes at T = 0 where � = �sc. In this way, the “two gap”
physics disappears in the ground state. Importantly, numerical
studies26 show that for d-wave pairing, there is no superfluid
phase in the bosonic regime where μ is negative; the pseudogap
is thus associated with the fermionic regime.
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